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1 Introduction

The analysis and design of nonlinear feedback systems has recently undergone an
exceptionally rich period of progress and maturation, fueled, to a great extent, by (1)
the discovery of certain basic conceptual notions, and (2) the identification of classes
of systems for which systematic decomposition approaches can result in effective
and easily computable control laws. These two aspects are complementary, since the
latter approaches are, typically, based upon the inductive verification of the validity
of the former system properties under compositions (in the terminology used in [62],
the “activation” of theoretical concepts leads to “constructive” control).

This expository presentation addresses the first of these aspects, and in particu-
lar the precise formulation of questions of robustness with respect to disturbances,
formulated in the paradigm ofinput to state stability. We provide an intuitive and in-
formal presentation of the main concepts. More precise statements, especially about
older results, are given in the cited papers, as well as in several previous surveys
such as [103] and [105] (of which the present paper represents an update), but we
provide a little more detail about relatively recent work. Regarding applications and
extensions of the basic framework, we give some pointers to the literature, but we
do not focus on feedback design and specific engineering problems; for the latter we
refer the reader to textbooks such as [43], [60], [58], [96], [66], [27], [44].

2 ISS as a Notion of Stability of Nonlinear I/O Systems

Our subject is the study ofstability-type questions for input/output (“i/o”) systems.
We later define more precisely what we mean by “system,” but, in an intuitive sense,
we have in mind the situation represented in Fig. 1, where the “system” may well
represent a component (“module” or “subsystem”) of a more complex, larger, sys-
tem. In typical applications of control theory, our “system” may in turn represent
a plant/controller combination (Fig. 2), where the inputu = (u1, u2) incorporates
actuator and measurement noises respectively, as well as disturbances or tracking
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Fig. 2.Plant and Controller

signals, and wherey = (y1, y2) might consist respectively of some measure of per-
formance (distance to a set of desired states, tracking error, etc.) and quantities di-
rectly available to a controller.

The goals of our work include:

• helping develop a “toolkit” of concepts for studying systems via decompositions;
• the quantification of system response to external signals; and
• the unification of state-space and input/output stability theories.

2.1 Desirable properties

We wish to formalize the idea of “stability” of the mappingu(·) 7→ y(·). Intuitively,
we look for a concept that encompasses the properties that inputs that are bounded,
“eventually small,” “integrally small,” or convergent, produce outputs with the re-
spective property:

u


bounded
(ev)small

(integ)small
→ 0

 ?⇒ y


bounded
(ev)small

(integ)small
→ 0


and, in addition, we will also want to account appropriately for initial states and
transients. A special case is that in which the outputy of the system is just the internal
state. The key notion in our study will be one regarding such stability from inputs
to states; only later do we consider more general outputs. In terms of states, thus,
the properties that we would like to encompass in a good stability notion include the
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theconvergent-input convergent-state (CICS)and thebounded-input bounded-state
(BIBS)properties.

We should remark that, for simplicity of exposition, we concentrate here solely
on stability notions relative to globally attractive steady states. However, the general
theory allows consideration of more arbitrary attractors (so that norms get replaced
by, for example, distances to certain compact sets), and one may also consider local
versions, as well as robust and/or adaptive concepts associated to the ones that we
will define.

2.2 Merging two different views of stability

Broadly speaking, there are two main competing approaches to system stability: the
state-space approachusually associated with the name of Lyapunov, and theopera-
tor approach, of which George Zames was one of the main proponents and develop-
ers and which was the subject of major contributions by Sandberg, Willems, Safonov,
and others. Our objective is in a sense (Fig. 3) that of merging these “Lyapunov” and

Fig. 3.Lyapunov state-space & Zames-like external stability

“Zames” views of stability. The operator approach studies the i/o mapping

(x0, u(·)) 7→ y(·)
Rn × [Lq(0,+∞)]m → [Lq(0,+∞)]p

(with, for instance,q = 2 or q = ∞, and assuming the operator to be well-defined
and bounded) and has several advantages, such as allowing the use of Hilbert or Ba-
nach space techniques, and elegantly generalizing many properties of linear systems,
especially in the context of robustness analysis, to certain nonlinear situations. The
state-space approach, in contrast, is geared to the study of systems without inputs,
but is better suited to the study of nonlinear dynamics, and it allows the use of geo-
metric and topological ideas. The ISS conceptual framework is consistent with, and
combines several features of, both approaches.
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2.3 Technical assumptions

In order to keep the discussion as informal and simple as possible, we make the
assumption from now on that we are dealing with systems with inputs and outputs,
in the usual sense of control theory ([104]):

ẋ(t) = f(x(t), u(t)) , y(t) = h(x(t))

(usually omitting argumentst from now on) with statesx(t) taking values in Eu-
clidean spaceRn, inputs (also called “controls” or “disturbances” depending on the
context) being measurable locally essentially bounded mapsu(·) : [0,∞) → Rm,
and output valuesy(t) taking values inRp, for some positive integersn,m, p. The
mapf : Rn × Rm → Rn is assumed to be locally Lipschitz withf(0, 0) = 0,
andh : Rn → Rp is continuous withh(0) = 0. Many of these assumptions can be
weakened considerably, and the cited references should be consulted for more de-
tails. We writex(t, x0, u) to denote the solution, defined on some maximal interval
[0, tmax(x0, u)), for each initial statex0 and inputu. In particular, for systems with
no inputs

ẋ(t) = f(x(t)) ,

we write justx(t, x0). The zero-systemassociated tȯx = f(x, u) is by definition
the system with no inputṡx = f(x, 0). We use|x| to denote Euclidean norm and
‖u‖, or ‖u‖∞ for emphasis, the (essential) supremum norm (possibly+∞, if u is
not bounded) of a function, typically an input or an output. When only the restriction
of a signal to an intervalI is relevant, we write‖uI‖∞ (or just‖uI‖), for instance∥∥u[0,T ]

∥∥
∞ whenI = [0, T ], to denote the sup norm of that restriction.

2.4 Comparison function formalism

A classK∞ function is a functionα : R≥0 → R≥0 which is continuous, strictly
increasing, unbounded, and satisfiesα(0) = 0 (Fig. 4), and aclassKL functionis a

Fig. 4.K∞-function

functionβ : R≥0 × R≥0 → R≥0 such thatβ(·, t) ∈ K∞ for eacht andβ(r, t) ↘ 0
ast→∞.
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2.5 Global asymptotic stability

For a system with no inputṡx = f(x), there is a well-known notion of global asymp-
totic stability (for short from now on,GAS, or “0-GAS” when referring to the zero-
systemẋ = f(x, 0) associated to a given system with inputsẋ = f(x, u)) due to
Lyapunov, and usually defined in “ε-δ” terms. It is an easy exercise to show that this
standard definition is in fact equivalent to the following statement:

(∃β ∈ KL) |x(t, x0)| ≤ β (|x0|, t) ∀x0 , ∀ t ≥ 0 .

Observe that, sinceβ decreases ont, we have, in particular:

|x(t, x0)| ≤ β (|x0|, 0) ∀x0 , ∀ t ≥ 0 ,

which provides the Lyapunov-stability or “small overshoot” part of the GAS defini-
tion (becauseβ (|x0|, 0) is small whenever|x0| is small, by continuity ofβ(·, 0) and
β(0, 0) = 0), while the fact thatβ → 0 ast→∞ gives:

|x(t, x0)| ≤ β (|x0|, t) −→
t→∞

0 ∀x0 ,

which is the attractivity (convergence to steady state) part of the GAS definition.
We also remark a property proved in [102], Proposition 7, namely that for each

β ∈ KL there exist two classK∞ functionsα1, α2 such that:

β(r, t) ≤ α2

(
α1(r)e−t

)
∀ s, t ≥ 0 ,

which means that the GAS estimate can be also written in the form:

|x(t, x0)| ≤ α2

(
α1(|x0|)e−t

)
and thus suggests a close analogy between GAS and an exponential stability estimate
|x(t, x0)| ≤ c |x0| e−at.

2.6 0-GAS does not guarantee good behavior with respect to inputs

A linear system in control theory is one for which bothf andh are linear mappings:

ẋ = Ax+Bu , y = Cx

withA ∈ Rn×n,B ∈ Rn×m, andC ∈ Rp×n. It is well-known that a linear system is
0-GAS (or “internally stable”) if and only if the matrixA is aHurwitzmatrix, that is
to say, all the eigenvalues ofA have negative real parts. Such a 0-GAS linear system
automatically satisfies all reasonable input/output stability properties: bounded in-
puts result in bounded state trajectories as well as outputs, inputs converging to zero
imply solutions (and outputs) converging to zero, and so forth; see e.g. [104]. But
the 0-GAS property is not equivalent, in general, to input/output, or even input/state,
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stability of any sort. This is in general false for nonlinear systems. For a simple ex-
ample, consider the following one-dimensional (n = 1) system, with scalar (m = 1)
inputs:

ẋ = −x+ (x2 + 1)u .

This system is clearly 0-GAS, since it reduces toẋ = −x whenu ≡ 0. On the other
hand, solutions diverge even for some inputs that converge to zero. For example,
take the controlu(t) = (2t + 2)−1/2 andx0 =

√
2, There results the unbounded

trajectoryx(t) = (2t + 2)1/2 (Fig. 5). This is in spite of the fact that the unforced

Fig. 5.Diverging state for converging input, for example

system is GAS. Thus, the converging-input converging-state property does not hold.
Even worse, the bounded inputu ≡ 1 results in a finite-time explosion. This example
is not artificial, as it arises in feedback-linearization design, as we mention below.

2.7 Gains for linear systems

For linear systems, the three most typical ways of defining input/output stability in
terms of operators {

L2, L∞
}
→
{
L2, L∞

}
are as follows. (In each case, we mean, more precisely, to ask that there should exist
positivec andλ such that the given estimates hold for allt ≥ 0 and all solutions of
ẋ = Ax+Bu with x(0) = x0 and arbitrary inputsu(·).)

“L∞ → L∞” : c |x(t, x0, u)| ≤ |x0| e−λt + sup
s∈[0,t]

|u(s)|

“L2 → L∞” : c |x(t, x0, u)| ≤ |x0| e−λt +
∫ t

0

|u(s)|2 ds

“L2 → L2” : c

∫ t

0

|x(s, x0, u)|2 ds ≤ |x0| +
∫ t

0

|u(s)|2 ds

(the missing caseL∞ → L2 is less interesting, being too restrictive). For linear
systems, these are all equivalent in the following sense: if an estimate of one type
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exists, then the other two estimates exist too. The actual numerical values of the
constantsc, λ appearing in the different estimates are not necessarily the same: they
are associated to the various types of norms on input spaces and spaces of solutions,
such as “H2” and “H∞” gains, see e.g. [23]. Here we are discussing only the question
of existenceof estimates of these types. It is easy to see that existence of the above
estimates is simply equivalent to the requirement that theA matrix be Hurwitz, that
is to say, to 0-GAS, the asymptotic stability of the unforced systemẋ = Ax.

2.8 Nonlinear coordinate changes

A “geometric” view of nonlinear dynamics leads one to adopt the view that

notions of stability should be invariant under (nonlinear) changes of variables

– meaning that if we make a change of variables in a system which is stable in
some technical sense, the system in new coordinates should again be stable in the
same sense. For example, suppose that we start with the exponentially stable system
ẋ = −x, but we make the change of variablesy = T (x) and wish to consider the
equationẏ = f(y) satisfied by the new variabley. Suppose thatT (x) ≈ lnx for
largex. If it were the case that the systeṁy = f(y) is globally exponentially stable
(|y(t)| ≤ ce−λt |y(0)| for some positive constantsc, λ), then there would exist some
time t0 > 0 so that|y(t0)| ≤ |y(0)|/2 for all y(0). But ẏ = T ′(x)ẋ ≈ −1 for large
y, soy(t0) ≈ y(0) − t0, contradicting|y(t0)| ≤ |y(0)|/2 for large enoughy(0). In
conclusion, exponential stability isnota natural mathematical notion when nonlinear
coordinate changes are allowed. This is why the notion of asymptotic stability is
important.

Let us now discuss this fact in somewhat more abstract terms, and see how it
leads us to GAS and, when adding inputs, to ISS. By achange of coordinateswe
will mean a map

T : Rn → Rn

such that the following properties hold:T (0) = 0 (since we want to preserve the
equilibrium atx = 0),T is continuous, and it admits an inverse mapT−1 : Rn → Rn

which is well-defined and continuous as well. (In other words,T is a homeomor-
phism which fixes the origin. We could also add the requirement thatT should be
differentiable, or that it be differentiable at least forx 6= 0, but the discussion to
follow does not need this additional condition.) Now suppose that we start with a
systemẋ = f(x) that is exponentially stable:

|x(t, x0)| ≤ c |x0|e−λt ∀ t ≥ 0 (some c, λ > 0)

and we perform a change of variables:

x(t) = T (z(t)) .

We introduce, for this transformationT , the following two functions:
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α(r) := min
|x|≥r

|T (x)| and α(r) := max
|x|≤r

|T (x)| ,

which are well-defined becauseT and its inverse are both continuous, and are both
functions of classK∞ (easy exercise). Then,

α(|x|) ≤ |T (x)| ≤ α(|x|) ∀x ∈ Rn

and therefore, substitutingx(t, x0) = T (z(t, z0)) in the exponential stability esti-
mate:

α(|z(t, z0)|) ≤ c α(|z0|) e−λt

wherez0 = T−1(x0). Thus, the estimate inz-coordinates takes the following form:

|z(t, z0)| ≤ β (|z0|, t)

whereβ(r, t) = α−1
(
cα
(
re−λt

))
is a function of classKL. (As remarked earlier,

any possible function of classKL can be written in this factored form, actually.)
In summary, we re-derived the concept of global asymptotic stability simply by

making coordinate changes on globally exponentially stable systems. So let us see
next where these considerations take us when looking at systems with inputs and
starting from the previously reviewed notions of stability for linear systems. Since
there are now inputs, in addition to the state transformationx(t) = T (z(t)), we must
now allow also transformationsu(t) = S(v(t)), whereS is a change of variables
in the space of input valuesRm. Arguing exactly as for the case of systems without
inputs, we arrive to the following three concepts:

L∞ → L∞ ; α (|x(t)|) ≤ β(|x0| , t) + sup
s∈[0,t]

γ(|u(s)|)

L2 → L∞ ; α (|x(t)|) ≤ β(|x0| , t) +
∫ t

0

γ(|u(s)|) ds

L2 → L2 ;

∫ t

0

α (|x(s)|) ds ≤ α0(|x0|) +
∫ t

0

γ(|u(s)|) ds .

From now on, we often writex(t) instead of the more cumbersomex(t, x0, u) and we
adopt the convention that, any time that an estimate like the ones above is presented,
an unless otherwise stated, we mean that there should exist comparison functions
(α, α0 ∈ K∞, β ∈ KL) such that the estimates hold for all inputs and initial states.
We will study these three notions one at a time.

2.9 Input-to-state stability

The “L∞ → L∞” estimate, under changes of variables, leads us to the first concept,
that of input to state stability (ISS). That is, there should exist someβ ∈ KL and
γ ∈ K∞ such that

|x(t)| ≤ β(|x0| , t) + γ (‖u‖∞) (ISS)
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holds for all solutions. By “all solutions” we mean that this estimate is valid for all
inputsu(·), all initial conditionsx0, and allt ≥ 0. Note that we did not now in-
clude the function “α” in the left-hand side. That’s because, redefiningβ andγ, one
can assume thatα is the identity: ifα(r) ≤ β(s, t) + γ(t) holds, then alsor ≤
α−1(β(s, t) + γ(t)) ≤ α−1(2β(s, t)) + α−1(2γ(t)); sinceα−1(2β(·, ·)) ∈ KL and
α−1(2γ(·)) ∈ K∞, an estimate of the same type, but now with no “α,” is obtained.
In addition, note that the supremumsups∈[0,t] γ(|u(s)|) over the interval[0, t] is the
same asγ(‖u[0,t]‖∞) = γ(sups∈[0,t](|u(s)|)), because the functionγ is increasing,
and that we may replace this term byγ(‖u‖∞), where‖u‖∞ = sups∈[0,∞) γ(|u(s)|)
is the sup norm of the input, because the solutionx(t) depends only on values
u(s), s ≤ t (so, we could equally well consider the input that has values≡ 0 for
all s > t).

It is important to note that a potentially weaker definition might simply have
requested that this condition hold merely for allt ∈ [0, tmax(x0, u)). However, this
definition turns out to be equivalent to the one that we gave. Indeed, if the estimate
holdsa priori only on such a maximal interval of definition, then, since the right-hand
is bounded on[0, T ], for anyT > 0 (recall that inputs are by definition assumed to be
bounded on any bounded interval), it follows that the maximal solution ofx(t, x0, u)
is bounded, and therefore thattmax(x0, u) = +∞ (see e.g. Proposition C.3.6 in
[104]). In other words, the ISS estimate holds for allt ≥ 0 automatically, if it is
required to hold merely for maximal solutions.

Since, in general,max{a, b} ≤ a + b ≤ max{2a, 2b}, one can restate the ISS
condition in a slightly different manner, namely, asking for the existence of some
β ∈ KL andγ ∈ K∞ (in general different from the ones in the ISS definition) such
that

|x(t)| ≤ max {β(|x0|, t) , γ (‖u‖∞)}

holds for all solutions. Such redefinitions, using “max” instead of sum, will be pos-
sible as well for each of the other concepts to be introduced later; we will use
whichever form is more convenient in each context, leaving implicit the equivalence
with the alternative formulation.

Intuitively, the definition of ISS requires that, fort large, the size of the state must
be bounded by some function of the sup norm —that is to say, the amplitude,— of
inputs (becauseβ(|x0| , t) → 0 ast → ∞). On the other hand, theβ(|x0| , 0) term
may dominate for smallt, and this serves to quantify the magnitude of the transient
(overshoot) behavior as a function of the size of the initial statex0 (Fig. 6). TheISS
superposition theorem, discussed later, shows that ISS is, in a precise mathematical
sense, the conjunction of two properties, one of them dealing with asymptotic bounds
on |x0| as a function of the magnitude of the input, and the other one providing a
transient term obtained when one ignores inputs.

2.10 Linear case, for comparison

For internally stable linear systemsẋ = Ax + Bu, the variation of parameters for-
mula gives immediately the following inequality:
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-

6

?

≈ |x0|

t

x

6
?≈ ‖u‖∞

Fig. 6. ISS combines overshoot and asymptotic behavior

|x(t)| ≤ β(t) |x0| + γ ‖u‖∞ ,

where

β(t) =
∥∥etA

∥∥ → 0 and γ = ‖B‖
∫ ∞

0

∥∥esA
∥∥ ds < ∞ .

This is a particular case of the ISS estimate,|x(t)| ≤ β(|x0|, t) + γ (‖u‖∞), with
linear comparison functions.

2.11 Feedback redesign

The notion of ISS arose originally as a way to precisely formulate, and then answer,
the following question. Suppose that, as in many problems in control theory, a system
ẋ = f(x, u) has been stabilized by means of a feedback lawu = k(x) (Fig. 7), that

�

- ẋ = f(x, u)

u = k(x)

u x

Fig. 7.Feedback stabilization, closed-loop systemẋ = f(x, k(x))

is to say,k was chosen such that the origin of the closed-loop systemẋ = f(x, k(x))
is globally asymptotically stable. (See e.g. [103] for a discussion of mathematical
aspects of state feedback stabilization.) Typically, the design ofk was performed
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by ignoring the effect of possibleinput disturbancesd(·) (also called actuator dis-
turbances). These “disturbances” might represent true noise or perhaps errors in the
calculation of the valuek(x) by a physical controller, or modeling uncertainty in
the controller or the system itself. What is the effect of considering disturbances? In
order to analyze the problem, we incorporated into the model, and study the new
systemẋ = f(x, k(x) + d), whered is seen as an input (Fig. 8). We then ask what is

�

v

6

-

u x

ẋ = f(x, v)

u = k(x)

m-d

Fig. 8.Actuator disturbances, closed-loop systemẋ = f(x, k(x) + d)

the effect ofd on the behavior of the system.
Disturbancesd may well destabilize the system, and the problem may arise even

when using a routine technique for control design, feedback linearization. To appre-
ciate this issue, we take the following very simple example. We are given the system

ẋ = f(x, u) = x+ (x2 + 1)u .

In order to stabilize it, we first substituteu = ũ
x2+1 (a preliminary feedback transfor-

mation), rendering the system linear with respect to the new inputũ: ẋ = x+ ũ, and
then we usẽu = −2x in order to obtain the closed-loop systemẋ = −x. In other
words, in terms of the original inputu, we use the feedback law:

k(x) =
−2x
x2 + 1

so thatf(x, k(x)) = −x. This is a GAS system. Next, let’s analyze the effect of the
disturbance inputd. The systeṁx = f(x, k(x) + d) is:

ẋ = −x+ (x2 + 1) d .

As seen before, this system has solutions which diverge to infinity even for inputs
d that converge to zero; moreover, the constant inputd ≡ 1 results in solutions that
explode in finite time. Thusk(x) = −2x

x2+1 was not a good feedback law, in the sense
that its performance degraded drastically once that we took into account actuator
disturbances.

The key observation for what follows is that, if we add a correction term “−x”
to the above formula fork(x), so that we now have:
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k̃(x) =
−2x
x2 + 1

−x

then the systeṁx = f(x, k̃(x) + d) with disturbanced as input becomes, instead:

ẋ = − 2x − x3 + (x2 + 1) d

and this system is much better behaved: it is still GAS when there are no disturbances
(it reduces toẋ = −2x − x3) but, in addition, it is ISS (easy to verify directly, or
appealing to some of the characterizations mentioned later). Intuitively, for largex,
the term−x3 serves to dominate the term(x2 + 1)d, for all bounded disturbances
d(·), and this prevents the state from getting too large.

2.12 A feedback redesign theorem for actuator disturbances

This example is an instance of a general result, which says that, whenever there
is some feedback law that stabilizes a system, there is also a (possibly different)
feedback so that the system with external inputd (Fig. 9) is ISS.

�

6

- ẋ = f(x, u)

u = k̃(x)

j-d

Fig. 9.Different feedback ISS-stabilizes

Theorem 1. ([99]) Consider a system affine in controls

ẋ = f(x, u) = g0(x) +
m∑

i=1

uigi(x) (g0(0) = 0)

and suppose that there is some differentiable feedback lawu = k(x) so that

ẋ = f(x, k(x))

hasx = 0 as a GAS equilibrium. Then, there is a feedback lawu = k̃(x) such that

ẋ = f(x, k̃(x) + d)

is ISS with inputd(·)
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The proof is very easy, once that the appropriate technical machinery has been in-
troduced: one starts by considering a smooth Lyapunov functionV for global asymp-
totic stability of the origin in the systeṁx = f(x, k(x)) (such aV always exists,
by classical converse theorems); thenk̂(x) := −(LGV (x))T = −(∇V (x)G(x))T ,
whereG is the matrix function whose columns are thegi, i = 1, . . . ,m andT in-
dicates transpose, provides the necessary correction term to add tok. This term has
the same degree of smoothness as the vector fields making up the original system.
Somewhat less than differentiability of the originalk is enough for this argument:
continuity is enough. However, if no continuous feedback stabilizer exists, then no
smoothV can be found. (Continuous stabilization of nonlinear systems is basically
equivalent to the existence of what are called smooth control-Lyapunov functions,
see e.g. [103].) In that case, if only discontinuous stabilizers are available, the result
can still be generalized, see [79], but the situation is harder to analyze, since even the
notion of “solution” of the closed-loop systeṁx = f(x, k(x)) has to be carefully
defined.

There is also a redefinition procedure for systems that are not affine on inputs,
but the result as stated above is false in that generality, and is much less interesting;
see [101] for a discussion.

The above feedback redesign theorem is merely the beginning of the story. See
for instance the book [60], and the references given later, for many further devel-
opments on the subjects of recursive feedback design, the “backstepping” approach,
and other far-reaching extensions.

3 Equivalences for ISS

Mathematical concepts are useful when they are “natural” in the sense that they can
be equivalently stated in many different forms. As it turns out, ISS can be shown
to be equivalent to several other notions, including asymptotic gain, existence of
robustness margins, dissipativity, and an energy-like stability estimate. We review
these next.

3.1 Nonlinear superposition principle

Clearly, if a system is ISS, then the system with no inputsẋ = f(x, 0) is GAS:
the term‖u‖∞ vanishes, leaving precisely the GAS property. In particular, then, the
systemẋ = f(x, u) is 0-stable, meaning that the origin of the system without inputs
ẋ = f(x, 0) is stable in the sense of Lyapunov: for eachε > 0, there is someδ > 0
such that|x0| < δ implies|x(t, x0)| < ε. (In comparison-function language, one can
restate 0-stability as: there is someγ ∈ K such that|x(t, x0)| ≤ γ(|x0|) holds for all
smallx0.)

On the other hand, sinceβ(|x0| , t) → 0 ast → ∞, for t large one has that the
first term in the ISS estimate|x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)} vanishes. Thus an
ISS system satisfies the followingasymptotic gain property (“AG”):there is some
γ ∈ K∞ so that:
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lim
t→+∞

|x(t, x0, u)| ≤ γ (‖u‖∞) ∀x0, u(·) (AG)

(see Fig. 10). In words, for all large enought, the trajectory exists, and it gets ar-

Fig. 10.Asymptotic gain property

bitrarily close to a sphere whose radius is proportional, in a possibly nonlinear way
quantified by the functionγ, to the amplitude of the input. In the language of robust
control, the estimate (AG) would be called an “ultimate boundedness” condition;
it is a generalization of attractivity (all trajectories converge to zero, for a system
ẋ = f(x) with no inputs) to the case of systems with inputs; the “lim sup” is re-
quired since the limit ofx(t) as t → ∞ may well not exist. From now on (and
analogously when defining other properties), we will just say “the system is AG”
instead of the more cumbersome “satisfies the AG property”.

Observe that, since only large values oft matter in the limsup, one can equally
well consider merely tails of the inputu when computing its sup norm. In other
words, one may replaceγ(‖u‖∞) by γ(limt→+∞ |u(t)|), or (sinceγ is increasing),
limt→+∞γ(|u(t)|).

The surprising fact is that these two necessary conditions are also sufficient. We
call this theISS superposition theorem:

Theorem 2. ([110]) A system is ISS if and only if it is 0-stable and AG.

This result is nontrivial. The basic difficulty is in establishing uniform conver-
gence estimates for the states, i.e., in constructing theβ function in the ISS estimate,
independently of the particular input. As in optimal control theory, one would like
to appeal to compactness arguments (using weak topologies on inputs), but there is
no convexity to allow this. The proof hinges upon a lemma given in [110], which
may be interpreted ([41]) as a relaxation theorem for differential inclusions, relating
global asymptotic stability of an inclusioṅx ∈ F (x) to global asymptotic stability
of its convexification.

A minor variation of the above superposition theorem is as follows. Let us con-
sider thelimit property (LIM):

inf
t≥0

|x(t, x0, u)| ≤ γ(‖u‖∞) ∀x0, u(·) (LIM )

(for someγ ∈ K∞).
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Theorem 3. ([110]) A system is ISS if and only if it is 0-stable and LIM.

3.2 Robust stability

Let us call a systemrobustly stableif it admits amargin of stabilityρ, by which we
mean some smooth functionρ ∈ K∞ which is such that the system

ẋ = g(x, d) := f(x, dρ(|x|))

is GAS uniformly in this sense: for someβ ∈ KL,

|x(t, x0, d)| ≤ β(|x0| , t)

for all possibled(·) : [0,∞) → [−1, 1]m. An alternative way to interpret this concept
(cf. [109]) is as uniform global asymptotic stability of the origin with respect to all
possible time-varying feedback laws∆ bounded byρ: |∆(t, x)| ≤ ρ(|x|). In other
words, the system

ẋ = f(x,∆(t, x))

(Fig. 11) is stable uniformly over all such perturbations∆. In contrast to the ISS

�

- ẋ = f(x, u)

∆

u x

Fig. 11.Margin of robustness

definition, which deals with all possible “open-loop” inputs, the present notion of
robust stability asks about all possible closed-loop interconnections. One may think
of∆ as representing uncertainty in the dynamics of the original system, for example.

Theorem 4. ([109]) A system is ISS if and only if it is robustly stable.

Intuitively, the ISS estimate|x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)} tells us that the
β term dominates as long as|u(t)| � |x(t)| for all t, but |u(t)| � |x(t)| amounts to
u(t) = d(t).ρ(|x(t)|) with an appropriate functionρ. This is an instance of a “small
gain” argument, about which we will say more later.

One analog for linear systems is as follows: ifA is a Hurwitz matrix, thenA+Q is
also Hurwitz, for all small enough perturbationsQ; note that whenQ is a nonsingular
matrix, |Qx| is aK∞ function of|x|.
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3.3 Dissipation

Another characterization of ISS is as a dissipation notion stated in terms of a
Lyapunov-like function.

We will say that a continuous functionV : Rn → R is a storage functionif it
is positive definite, that is,V (0) = 0 andV (x) > 0 for x 6= 0, and proper, that is,
V (x) → ∞ as |x| → ∞. This last property is equivalent to the requirement that
the setsV −1([0, A]) should be compact subsets ofRn, for eachA > 0, and in the
engineering literature it is usual to call such functionsradially unbounded. It is an
easy exercise to show thatV : Rn → R is a storage function if and only if there exist
α, α ∈ K∞ such that

α(|x|) ≤ V (x) ≤ α(|x|) ∀x ∈ Rn

(the lower bound amounts to properness andV (x) > 0 for x 6= 0, while the upper
bound guaranteesV (0) = 0). We also use this notation:̇V : Rn × Rm → R is the
function:

V̇ (x, u) := ∇V (x).f(x, u)

which provides, when evaluated at(x(t), u(t)), the derivativedV/dt along solutions
of ẋ = f(x, u).

An ISS-Lyapunov functionfor ẋ = f(x, u) is by definition a smooth storage
functionV for which there exist functionsγ, α ∈ K∞ so that

V̇ (x, u) ≤ −α(|x|) + γ(|u|) ∀x, u . (L-ISS)

In other words, an ISS-Lyapunov function is a smooth (and proper and positive def-
inite) solution of apartial differential inequalityof this form, for appropriateα, γ.
Integrating, an equivalent statement is that, along all trajectories of the system, there
holds the following dissipation inequality:

V (x(t2))− V (x(t1)) ≤
∫ t2

t1

w(u(s), x(s)) ds

where, using the terminology of [126], the “supply” function isw(u, x) = γ(|u|)−
α(|x|). Note that, for systems with no inputs, an ISS-Lyapunov function is precisely
the same as a Lyapunov function in the usual sense. Massera’s Theorem says that
GAS is equivalent to the existence of smooth Lyapunov functions; the following
theorem provides a generalization to ISS:

Theorem 5. ([109]) A system is ISS if and only if it admits a smooth ISS-Lyapunov
function.

Since−α(|x|) ≤ −α(α−1(V (x))), the ISS-Lyapunov condition can be restated
as

V̇ (x, u) ≤ −α̃(V (x)) + γ(|u|) ∀x, u
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for someα̃ ∈ K∞. In fact, one may strengthen this a bit ([93]): for any ISS sys-
tem, there is a always a smooth ISS-Lyapunov function satisfying the “exponential”
estimateV̇ (x, u) ≤ −V (x) + γ(|u|).

The sufficiency of the ISS-Lyapunov condition is easy to show, and was already
in the original paper [99]. A sketch of proof is as follows, assuming for simplicity
a dissipation estimate in the forṁV (x, u) ≤ −α(V (x)) + γ(|u|). Given anyx
andu, eitherα(V (x)) ≤ 2γ(|u|) or V̇ ≤ −α(V )/2. From here, one deduces by a
comparison theorem that, along all solutions,

V (x(t)) ≤ max
{
β(V (x0), t) , α−1(2γ(‖u‖∞))

}
,

where we have defined theKL function β(s, t) as the solutiony(t) of the initial
value problem

ẏ = −1
2
α(y) + γ(u) , y(0) = s .

Finally, an ISS estimate is obtained fromV (x0) ≤ α(x0).
The proof of the converse part of the theorem is much harder. It is based upon

first showing that ISS implies robust stability in the sense already discussed, and
then obtaining a converse Lyapunov theorem for robust stability for the systemẋ =
f(x, dρ(|x|)) = g(x, d), which is asymptotically stable uniformly on all Lebesgue-
measurable functionsd(·) : R≥0 → B(0, 1). This last theorem was given in [73], and
is basically a theorem on Lyapunov functions for differential inclusions. A classical
result of Massera [84] for differential equations becomes a special case.

3.4 Using “energy” estimates instead of amplitudes

In linear control theory,H∞ theory studiesL2 → L2 induced norms. We already
saw that, under coordinate changes, we are led to the following type of estimate:∫ t

0

α (|x(s)|)) ds ≤ α0(|x0|) +
∫ t

0

γ(|u(s)|) ds

along all solutions, and for someα, α0, γ ∈ K∞. More precisely, let us say, just for
the purposes of the next theorem, that a systemsatisfies an integral-integral estimate
if for every initial statex0 and inputu, the solutionx(t, x0, u) is defined for allt > 0
and an estimate as above holds. (In contrast to ISS, we now have to explicitly demand
thattmax = ∞.)

Theorem 6. ([102]) A system is ISS if and only if it satisfies an integral-integral
estimate.

This theorem is quite easy, in view of previous results. A sketch of proof is
as follows. If the system is ISS, then there is an ISS-Lyapunov function satisfying
V̇ (x, u) ≤ −V (x) + γ(|u|), so, integrating along any solution we obtain∫ t

0

V (x(s)) ds ≤
∫ t

0

V (x(s)) ds + V (x(t)) ≤ V (x(0)) +
∫ t

0

γ(|u(s)|) ds
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and thus an integral-integral estimate holds. Conversely, if such an estimate holds,
one can prove thaṫx = f(x, 0) is stable and that an asymptotic gain exists. We show
here just the “limit property”inft≥0 |x(t)| ≤ θ(‖u‖∞). Indeed, letθ := α−1 ◦ γ.
Pick anyx0 andu, and suppose thatinft≥0 |x(t)| > (α−1 ◦ γ)(‖u‖), so that there
is someε > 0 so thatα(x(t)) ≥ ε + γ(|u(t)|) for all t ≥ 0. Then,

∫ t

0
α(x(s))ds ≥

εt+
∫ t

0
γ(|u(s)|)ds, which impliesα0(|x0|) > εt for all t, a contradiction. Therefore,

the LIM property holds with this choice ofθ.

4 Cascade Interconnections

One of the main features of the ISS property is that it behaves well under composi-
tion: a cascade (Fig. 12) of ISS systems is again ISS, see [99]. In this section, we will

- -
u

zx

Fig. 12.Cascade

sketch how the cascade result can also be seen as a consequence of the dissipation
characterization of ISS, and how this suggests a more general feedback result. We
will not provide any details of the rich theory of ISS small-gain theorems, and their
use in nonlinear feedback design, for which the references should be consulted, but
we will present a very simple example to illustrate the ideas. We consider a cascade
as follows:

ż = f(z, x)
ẋ = g(x, u)

where each of the two subsystems is assumed to be ISS. Each system admits an ISS-
Lyapunov functionVi. But, moreover, it is always possible (see [106]) to redefine the
Vi’s so that the comparison functions for both are matched in the following way:

V̇1(z, x) ≤ θ(|x|)− α(|z|)
V̇2(x, u) ≤ θ̃(|u|)− 2θ(|x|) .

Now it is obvious why the full system is ISS: we simply useV := V1 + V2 as an
ISS-Lyapunov function for the cascade:

V̇ ((x, z), u) ≤ θ̃(|u|)− θ(|x|)− α(|z|) .

Of course, in the special case in which thex-subsystem has no inputs, we have also
proved that the cascade of a GAS and an ISS system is GAS.

More generally, one may allow a “small gain” feedback as well (Fig. 13). That
is, we allow inputsu = k(z) as long as they are small enough:
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Fig. 13.Adding a feedback to the cascade

|k(z)| ≤ θ̃−1((1− ε)α(|z|)) .

The claim is that the closed-loop system

ż = f(z, x)
ẋ = g(x, k(x))

is GAS. This follows because the sameV is a Lyapunov function for the closed-loop
system; for(x, z) 6= 0:

θ̃(|u|) ≤ (1− ε)α(|z|) ; V̇ (x, z) ≤ −θ(|x|)− εα(|z|) < 0 . X

A much more interesting version of this result, resulting in a composite system
with inputs being itself ISS, is theISS small-gain theoremdue to Jiang, Teel, and
Praly [53].

4.1 An example of stabilization using the ISS cascade approach

We consider a model of a rigid body in 3-space (Fig. 14), controlled by two torques

Fig. 14.Rigid body

acting along principal axes. This is a simple model of a satellite controlled by an
opposing jet pair. If we denote byω = (ω1, ω2, ω3) the angular velocity of a body-
attached frame with respect to inertial coordinates, and letI = diag(I1, I2, I3) be the
principal moments of inertia, the equations are:

Iω̇ =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 Iω +

 0 0
1 0
0 1

u
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Ignoring kinematics, we just look at angular momenta, and we look for a feedback
law to globally stabilize this system toω = 0. Under feedback and coordinate trans-
formations, one can bring this into the following form of a system inR3 with controls
in R2:

ẋ1 = x2x3

ẋ2 = u1

ẋ3 = u2 .

(We assume thatI2 6= I3, and use these transformations:(I2− I3)x1=I1ω1, x2=ω2,
x3=ω3, I2ũ1=(I3 − I1)ω1ω2 + u1, I3ũ2=(I1 − I2)ω1ω3 + u2.) Our claim is that
the following feedback law globally stabilizes the system:

u1 = −x1 − x2 − x2x3

u2 = −x3 + x2
1 + 2x1x2x3 .

Indeed, as done in [18] for the corresponding local problem, we make the following
transformations:z2 := x1 + x2, z3 := x3 − x2

1, so the system becomes:

ẋ1 = −x3
1 + α(x1, z2, z3) (degx1

α ≤ 2)
ż2 = −z2
ż3 = −z3 .

Now, thex1-subsystem is easily seen to be ISS, and thez1, z2 subsystem is clearly
GAS, so the cascade is GAS. Moreover, a similar construction produces a feedback
robust with respect to input disturbances.

5 Integral Input-to-State Stability

We have seen that several different properties, including “integral to integral” stabil-
ity, dissipation, robust stability margins, and asymptotic gain properties, all turned
out to be exactly equivalent to input to state stability. Thus, it would appear to be
difficult to find a general and interesting concept of nonlinear stability that is truly
distinct from ISS. One such concept, however, does arise when considering a mixed
notion which combines the “energy” of the input with the amplitude of the state. It
is obtained from the “L2 → L∞” gain estimate, under coordinate changes, and it
provides a genuinely new concept ([102]).

A system is said to beintegral-input to state stable (iISS)provided that there
existα, γ ∈ K∞ andβ ∈ KL such that the estimate

α (|x(t)|) ≤ β(|x0| , t) +
∫ t

0

γ(|u(s)|) ds (iISS)

holds along all solutions. Just as with ISS, we could state this property merely for
all timest ∈ tmax(x0, u), but, since the right-hand side is bounded on each interval
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[0, t] (because, recall, inputs are by definition assumed to be bounded on each finite
interval), it is automatically true thattmax(x0, u) = +∞ if such an estimate holds
along maximal solutions. So forward-completeness can be assumed with no loss of
generality.

5.1 Other mixed notions

We argued that changes of variables transformed linear “finiteL2 gain” estimates
into an “integral to integral” property, which we then found to be equivalent to the
ISS property. On the other hand, finite operator gain fromLp toLq, with p 6= q both
finite, lead one naturally to the following type of “weak integral to integral” mixed
estimate: ∫ t

0

α(|x(s)|) ds ≤ κ(|x0|) + α

(∫ t

0

γ(|u(s)|) ds
)

for appropriateK∞ functions (note the additional “α”). See [12] for more discussion
on how this estimate is reached, as well as the following result:

Theorem 7. ([12]) A system satisfies a weak integral to integral estimate if and only
if it is iISS.

Another interesting variant is found when considering mixedintegral/supremum
estimates:

α(|x(t)| ≤ β(|x0|, t) +
∫ t

0

γ1(|u(s)|) ds + γ2(‖u‖∞)

for suitableβ ∈ KL andα, γi ∈ K∞. One then has:

Theorem 8. ([12]) A system satisfies a mixed estimate if and only if it is iISS.

5.2 Dissipation characterization of iISS

There is an amazingly elegant characterization of iISS, as follows. Recall that by
a storage function we mean a continuousV : Rn → R which is positive definite
and proper. Following [11], we will say that a smooth storage functionV is aniISS-
Lyapunov functionfor the systemẋ = f(x, u) if there are aγ ∈ K∞ and anα :
[0,+∞) → [0,+∞) which is merelypositive definite(that is,α(0) = 0 andα(r) >
0 for r > 0) such that the inequality:

V̇ (x, u) ≤ −α(|x|) + γ(|u|) (L-iISS)

holds for all(x, u) ∈ Rn × Rm. By contrast, recall that an ISS-Lyapunov function
is required to satisfy an estimate of the same form but whereα is required to be of
classK∞; since everyK∞ function is positive definite, an ISS-Lyapunov function is
also an iISS-Lyapunov function.
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Theorem 9. ([11]) A system is iISS if and only if it admits a smooth iISS-Lyapunov
function.

Since an ISS-Lyapunov function is also an iISS one, ISS implies iISS. How-
ever, iISS is a strictly weaker property than ISS, becauseα may be bounded in the
iISS-Lyapunov estimate, which means thatV may increase, and the state become un-
bounded, even under bounded inputs, so long asγ(|u(t)|) is larger than the range of
α. This is also clear from the iISS definition, since a constant input with|u(t)| = r
results in a term in the right-hand side that grows likert. As a concrete example
using a nontrivialV , consider the system

ẋ = −tan−1x + u

which is not ISS, sinceu(t) ≡ π/2 results in unbounded trajectories. This system is
nonetheless iISS: if we pickV (x) = x tan−1x, then

V̇ ≤ −(tan−1 |x|)2 + 2 |u|

soV is an iISS-Lyapunov function. An interesting general class of examples is given
by bilinear systems

ẋ =

(
A+

m∑
i=1

uiAi

)
x + Bu

for which the matrixA is Hurwitz. Such systems are always iISS (see [102]), but
they are not in general ISS. For instance, in the case whenB = 0, boundedness of
trajectories for all constant inputs already implies thatA+

∑m
i=1 uiAi must have all

eigenvalues with nonpositive real part, for allu ∈ Rm, which is a condition involving
the matricesAi (for example,ẋ = −x+ ux is iISS but it is not ISS).

The notion of iISS is useful in situations where an appropriate notion of de-
tectability can be verified using LaSalle-type arguments. There follow two examples
of theorems along these lines.

Theorem 10.([11]) A system is iISS if and only if it is 0-GAS and there is a smooth
storage functionV such that, for someσ ∈ K∞:

V̇ (x, u) ≤ σ(|u|)

for all (x, u).

The sufficiency part of this result follows from the observation that the 0-GAS
property by itself already implies the existence of a smooth and positive definite, but
not necessarily proper, functionV0 such thatV̇0 ≤ γ0(|u|) − α0(|x|) for all (x, u),
for someγ0 ∈ K∞ and positive definiteα0 (if V0 were proper, then it would be an
iISS-Lyapunov function). Now one usesV0 + V as an iISS-Lyapunov function (V
provides properness).
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Theorem 11.([11]) A system is iISS if and only if there exists an output function
y = h(x) (continuous and withh(0) = 0) which provides zero-detectability (u ≡ 0
and y ≡ 0 ⇒ x(t) → 0) and dissipativity in the following sense: there exists a
storage functionV andσ ∈ K∞, α positive definite, so that:

V̇ (x, u) ≤ σ(|u|)− α(h(x))

holds for all(x, u).

The paper [12] contains several additional characterizations of iISS.

5.3 Superposition principles for iISS

We now discuss asymptotic gain characterizations for iISS.
We will say that a system isbounded energy weakly converging state (BEWCS)

if there exists someσ ∈ K∞ so that the following implication holds:∫ +∞

0

σ(|u(s)|) ds < +∞ ⇒ lim inf
t→+∞

|x(t, x0, u)| = 0 (BEWCS)

(more precisely: if the integral is finite, thentmax(x0, u) = +∞ and the liminf is
zero), and that it isbounded energy frequently bounded state (BEFBS)if there exists
someσ ∈ K∞ so that the following implication holds:∫ +∞

0

σ(|u(s)|) ds < +∞ ⇒ lim inf
t→+∞

|x(t, x0, u)| < +∞ (BEFBS)

(again, meaning thattmax(x0, u) = +∞ and the liminf is finite).

Theorem 12.([6]) The following three properties are equivalent for any given sys-
temẋ = f(x, u):

• The system is iISS.
• The system is BEWCS and 0-stable.
• The system is BEFBS and 0-GAS.

These characterizations can be obtained as consequences of characterizations of
input/output to state stability (IOSS), cf. Section 8.4. The key observation is that a
system is iISS with input gain (the function appearing in the integral)σ if and only
if the following auxiliary system is IOSS with respect to the “error” outputy = e:

ẋ = f(x, u)
ė = σ(|u|) .

The proof of this equivalence is trivial, so we include it here. If the system is iISS,
then:
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α(|x(t, x0, u)|) ≤ β(|x0| , t) +
∫ t

0

σ(|u(s)|) ds = β(|x0| , t) + e(t)− e(0)

≤ β(|x0| , t) + 2
∥∥y[0,t]

∥∥
∞

and, conversely, if it is IOSS, then for anyx0 and pickinge(0) = 0, we have:

|x(t, x0, u)| ≤ β(|(x0, 0)| , t) + γ(‖u‖∞) +
∥∥y[0,t]

∥∥
∞

≤ β(|x0| , t) + γ(‖u‖∞) +
∫ t

0

σ(|u|) ds .

5.4 Cascades involving iISS systems

We have seen that cascades of ISS systems are ISS, and, in particular, any system of
the form:

ẋ = f(x, z)
ż = g(z)

for which thex-subsystem is ISS whenz is viewed as an input and theg-subsystem is
GAS, is necessarily GAS. This is one of the most useful properties of the ISS notion,
as it allows proving stability of complex systems by a decomposition approach. The
iISS property on the first subsystem, in contrast, is not strong enough to guarantee
that the cascade is GAS. As an illustration, consider the following system:

ẋ = −sat(x) + xz

ż = −z3 ,

wheresat(x) := sgn(x)min{1, |x|}. It is easy to see that thex-subsystem with input
z is iISS, and thez-subsystem is clearly GAS. On the other hand ([13]), if we pick
z(0) = 1 and anyx(0) ≥ 3, thenx(t) ≥ e(

√
1+2t−1), sox(t) →∞ ast→∞; so the

complete system is not GAS. However, under additional conditions, it is possible to
obtain a cascade result for a system of the above form. One such result is as follows.

Theorem 13.([13]) Suppose that thex-subsystem is iISS and affine inz, and that
thez-subsystem is GAS and locally exponentially stable. Then, the cascade is GAS.

Note that the counterexample shown above is so that thex-subsystem is indeed
affine inz, but theexponentialstability property fails. This theorem is a consequence
of a more general result, which is a bit technical to state. We first need to introduce
two concepts. The first one qualifies the speed of convergence in the GAS property,
and serves to relax exponential stability: we say that the systemż = g(z) is GAS(α),
for a givenα ∈ K∞, if there exists a class-K∞ functionθ(·) and a positive constant
k > 0 so that

|z(t)| ≤ α
(
e−ktθ(|z0|)

)
holds for allz0. (Recall that GAS is always equivalent to the existence ofsomeα and
θ like this.) The second concept is used to characterize the functionγ appearing in



Input to State Stability 25

the integral in the right-hand side of the iISS estimate, which we call the “iISS gain”
of the system: given anyα ∈ K∞, we say that the functionγ is “class-Hα” if it is of
classK and it also satisfies:∫ 1

0

(γ(α(s))
s

ds < ∞ .

The main result says that if the sameα can be used in both definitions, then the
cascade is GAS:

Theorem 14.([13]) Suppose that thex-subsystem is iISS with a class-Hα iISS gain,
and that thez-subsystem is GAS(α). Then, the cascade is GAS.

See [13] for various corollaries of this general fact, which are based upon check-
ing that the hypotheses are always satisfied, for example for the above-mentioned
case ofx-subsystem affine inz and exponentially stablez-subsystem.

5.5 An iISS example

As an example of the application of iISS ideas, we consider as in [11] a robotic device
studied by Angeli in [3]. This is a manipulator with one rotational and one linear
actuator (Fig. 15). A simple model is obtained considering the arm as a segment with

Fig. 15.A linear/rotational actuated arm

massM and lengthL, and the hand as a material point with massm. The equations
for such a system are 4-dimensional, using as state variables angular position and
velocity θ, θ̇ and linear extension and velocityr, ṙ, and they follow from the second
order equation

(mr2 +ML2/3) θ̈ + 2mrṙθ̇ = τ

mr̈ −mrθ̇2 = F ,

where the controls are the torqueτ and linear forceF . We write the state as(q, q̇),
with q = (θ, r), We wish to study the standard tracking feedback controller with
equations



26 Eduardo D. Sontag

τ = −k1θ̇ − k2(θ − θd) , F = −k3ṙ − k4(r − rd)

whereqd, rd are the desired trajectories. It is well-known that, forconstanttracking
signalsqd, rd, one obtains convergence:q̇ → 0 andq → qd ast → ∞. In the spirit
of the ISS approach, however, it is natural to ask what is the sensitivity of the design
to additive measurement noise, or equivalently, since these errors are potentially ar-
bitrary functions, what is the effect oftime-varyingtracking signals. One could ask if
the system is ISS, and indeed the paper [83] proposed the reformulation of tracking
problems using ISS as a way to characterize performance.

It turns out that, for this example, even bounded signals may destabilize the sys-
tem, by a sort of “nonlinear resonance” effect, so the system cannot be ISS (not even
bounded-input bounded-state) with respect toqd andrd. Fig. 16 plots a numerical

Fig. 16.Destabilizing input

example of a de-stabilizing input; the correspondingr(t)-component is in Fig. 17.

Fig. 17.Correspondingr(·)

To be precise, the figures show the “r” component of the state of a certain solution
which corresponds to the shown input; see [11] for details on how this input and tra-
jectory were calculated. Thus, the question arises of how to qualitatively formulate
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the fact that some other inputs are not destabilizing. We now show that iISS provides
one answer to this question,

In summary, we wish to show that the closed loop system

(mr2 +ML2/3)θ̈ + 2mrṙθ̇ = u1 − k1θ̇ − k2θ

mr̈ −mrθ̇2 = u2 − k3ṙ − k4r

with states(q, q̇), q = (θ, r), andu = (k2θd, k4rd) is iISS.
In order to do so, we consider the mechanical energy of the system:

V (q, z) :=
1
2
q̇TH(q)q̇ +

1
2
qTKq

and note ([11]) the following passivity-type estimate:

d

dt
V (q(t), q̇(t)) ≤ −c1|q̇(t)|2 + c2 |u(t)|2

for sufficiently smallc1 > 0 and largec2 > 0. Taking q̇ as an output, the system
is zero-detectable and dissipative, sinceu ≡ 0 and q̇ ≡ 0 imply q ≡ 0, and hence,
appealing to the given dissipation characterizations, we know that it is indeed iISS.

6 Input to State Stability with Respect to Input Derivatives

The ISS property imposes a very strong requirement, in that stable behavior must
hold with respect to totally arbitrary inputs. Often, on the other hand, only stability
with respect to specific classes of signals is expected. An example is in regulation
problems, where disturbance rejection is usually formulated in terms of signals gen-
erated by a given finite-dimensional exosystem. Another example is that of parame-
ter drift in adaptive control systems, where bounds on rates of change of parameters
(which we may see as inputs) are imposed. This question motivated the work in [10]
on ISS notions in which one asks, roughly, thatx(t) should be small provided that
u and its derivatives of some fixed order be small, but not necessarily when justu is
small. The precise definition is as follows.

For any given nonnegative integerk, we say that the systeṁx = f(x, u) is
differentiablyk-ISS (DkISS)if there existβ ∈ KL andγi ∈ K∞, i = 0, . . . , k, such
that the estimate:

|x(t, x0, u)| ≤ β(|x0| , t) +
k∑

i=0

γi

(
‖u(i)‖∞

)
(DkISS)

holds for allx0, all inputsu ∈ W k,∞, and all t ∈ tmax(x0, u). (By W k,∞ we
are denoting the Sobolev space of functionsu: [0,∞)→Rm for which the(k−1)st
derivativeu(k−1) exists and is locally Lipschitz, which means in particular thatu(k)

exists almost everywhere and is locally essentially bounded.) As with the ISS prop-
erty, forward completeness is automatic, so one can simply say “for allt” in the
definition. Notice thatD0ISS is the same as plain ISS, and that, for everyk, DkISS
implies Dk+1ISS.
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6.1 Cascades involving theDkISS property

Consider any cascade as follows:

ẋ = f(x, z)
ż = g(z, u)

where we assume thatg is smooth. The following result generalizes the fact that
cascading ISS and GAS subsystems gives a GAS system.

Theorem 15.([10]) If each subsystem is DkISS, then the cascade is DkISS. In par-
ticular the cascade of a DkISS and a GAS system is GAS.

Actually, somewhat less is enough: thex-subsystem need only be Dk+1ISS, and
we may allow the input to appear in this subsystem.

It is not difficult to see that a system is D1ISS if and only if the following system:

ẋ = f(x, z)
ż = −z + u

is ISS, and recursively one can obtain a similar characterization of DkISS. More gen-
erally, a system is DkISS if and only if it isDk−1ISS when cascaded with any ISS
“smoothly invertible filter” as defined in [10]. Also very useful is a close relation-
ship with the IOSS concept studied in Section 8.2. Consider the following auxiliary
system with inputu and outputy:

ẋ = f(x, u0)
u̇0 = u1

...
...

u̇k−1 = uk

y = [u0, u1, . . . , uk−1]

Theorem 16.([10]) The auxiliary system is IOSS if and only if the original system is
DkISS

The paper [10] also discusses some relations between the notion of D1ISS and
ISS, for systems of the special forṁx = f(x + u), which are of interest when
studying observation uncertainty.

6.2 Dissipation characterization of DkISS

Theorem 17.([10]) A system is D1ISS if and only if there exists a smooth function
V (x, u) such that, for someα, δ0, δ1, α1, α2 ∈ K∞,

α1(|x|+ |u|) ≤ V (x, u) ≤ α2(|x|+ |u|)
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and

DxV (x, u) f(x, u) +DuV (x, u)u̇ ≤ −α(|x|) + δ0(|u|) + δ1(|u̇|)

for all (x, u, u̇) ∈ Rn × Rm × Rm.

Notice that “̇u” is just a dummy variable in the above expression. Analogous
characterizations hold forDkISS.

6.3 Superposition principle for DkISS

We will say that a forward-complete system satisfies thek-asymptotic gain (k-AG)
propertyif there are someγ0, γ1, . . . , γk ∈ K so that, for allu ∈ W k,∞, and allx0,
the estimate

lim
t→∞

|x(t, ξ, u)| ≤ γ0(‖u‖∞) + γ1(‖u̇‖∞) + . . .+ γk(‖u(k)‖∞)

holds.

Theorem 18.([10]) A system is DkISS if and only if it is 0-stable andk-AG.

6.4 A counter-example showing that D1ISS 6= ISS

Consider the following system:

ẋ = ‖x‖2 U(θ)′ ΦU(θ)x,

wherex ∈ R2, andu = θ(·) is the input,

U(θ) =
[

sin(θ) cos(θ)
− cos(θ) sin(θ)

]
,

and whereΦ is any2 × 2 Hurwitz matrix such thatΦ′ + Φ has a strictly positive
real eigenvalue. It is shown in [10] that this system is not forward complete, and in
particular it is not ISS, but that it is D1ISS. This latter fact is shown by proving,
through the construction of an explicit ISS-Lyapunov function, that the cascaded
system

ẋ = ‖x‖2 U(θ)′ ΦU(θ)x, θ̇ = −θ + u

is ISS.
It is still an open question ifD2ISS is strictly weaker than D1ISS, and more

generallyDk+1ISS than DkISS for eachk.
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7 Input-to-Output Stability

Until now, we only discussed stability of states with respect to inputs. For systems
with outputsẋ = f(x, u), y = h(x), if we simply replace states by outputs in the
left-hand side of the estimate defining ISS, we then arrive to the notion ofinput-to-
output stability (IOS): there exist someβ ∈ KL andγ ∈ K∞ such that

|y(t)| ≤ β(|x0| , t) + γ (‖u‖∞) (IOS)

holds for all solutions, wherey(t) = h(x(t, x0, u)). By “all solutions” we mean that
this estimate is valid for all inputsu(·), all initial conditionsx0, and all t ≥ 0,
and we are imposing as a requirement that the system be forward complete, i.e.
tmax(x0, u) = ∞ for all initial statesx0 and inputsu. As earlier,x(t), and hence
y(t) = h(x(t)), depend only on past inputs (“causality”), so we could have used just
as well simply the supremum of|u(s)| for s ≤ t in the estimate.

We will say that a system isbounded-input bounded-state stable (BIBS)if, for
someσ ∈ K∞, the following estimate:

|x(t)| ≤ max {σ(|x0|), σ(‖u‖∞)}

holds along all solutions. (Note that forward completeness is a consequence of this
inequality, even if it is only required on maximal intervals, since the state is upper
bounded by the right-hand side expression.)

We define anIOS-Lyapunov functionas any smooth functionV : Rn → R≥0 so
that, for someαi ∈ K∞:

α1(|h(x)|) ≤ V (x) ≤ α2(|x|) ∀ x ∈ Rn, u ∈ Rm

and, for allx, u:

V (x) > α3(|u|) ⇒ ∇V (x) f(x, u) < 0 .

Theorem 19.([113]) A BIBS system is IOS if and only if it admits an IOS-Lyapunov
function.

A concept related to IOS is as follows. We call a systemrobustly output stable
(ROS)if it is BIBS and there is some smoothλ ∈ K∞ such that

ẋ = g(x, d) := f(x, dλ(|y|)) , y = h(x)

is globally output-asymptotically stable uniformly with respect to alld(·) : [0,∞) →
[−1, 1]m: for someβ ∈ KL,

|y(t, x0, d)| ≤ β(|x0| , t)

for all solutions. Then, IOS implies ROS, but the converse does not hold in gen-
eral ([112]). We have the following dissipation characterization of ROS:
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Theorem 20.([113]) A system is ROS if and only if it is BIBS and there areα1, α2 ∈
K∞, χ ∈ K, andα3 ∈ KL, and a smooth functionV : Rn → R, so that

α1(|h(x)|) ≤ V (x) ≤ α2(|x|)

and
|h(x)| ≥ χ(|u|) ⇒ V̇ ≤ −α3(V (x), |x|)

for all (x, u).

The area ofpartial stability studies stability of a subset of variables in a system
ẋ = f(x). Letting y = h(x) select the variables of interest, one may view par-
tial stability as a special case of output stability, for systems with no inputs. Note
that, for systems with no inputs, the partial differential inequality for IOS reduces to
∇V (x) f(x) < 0 for all nonzerox, and that for ROS tȯV ≤ −α3(V (x), |x|). In
this way, the results in [113] provide a far-reaching generalization of, and converse
theorems to, sufficient conditions ([125]) for partial stability.

There is also a superposition principle for IOS. We’ll say that a forward-complete
system satisfies theoutput asymptotic gain (OAG)property if

lim
t→∞

|y(t)| ≤ γ(‖u‖∞) (OAG)

for someγ ∈ K∞ and all solutions. One would like to have a characterization of
IOS in terms of OAG, which is an analog of the AG gain property in the state case,
and a stability property. Let us define a system to beoutput-Lagrange stable (OL)if
it satisfies an estimate, for someσ ∈ K∞:

|y(t)| ≤ σ(|y(0)|) + σ(‖u‖∞)

along all solutions. Under this assumption, we recover a separation principle:

Theorem 21.([6]) An OL system is OAG if and only if it is IOS.

Observe that the OL property asks that the output be uniformly bounded in terms
of the amplitudes of the input and of the initial output (not of the initial state), which
makes this property a very strong constraint. If we weaken the assumption to an
estimate of the type

|y(t)| ≤ σ(|x0|) + σ(‖u‖∞)

then IOS implies the conjunction of OL and this property, but the converse fails, as
shown by the following counter-example, a system with no inputs:

ẋ1 = −x2 |x2| , ẋ2 = x1 |x2| , y = x2 .

The set of equilibria is{x2 = 0}, and trajectories are half circles traveled counter-
clockwise. We have that|y(t)| ≤ |x(0)| for all solutions, andy(t) → 0 ast→∞, so
both properties hold. However, there is no possible IOS estimate|y(t)| ≤ β(|x0| , t),
since, in particular, for a state of the formx(0) = (1, ε), the time it takes fory(·) to
enter anε-neighborhood of0 goes to∞ asε→ 0; see [6] for more discussion.
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8 Detectability and Observability Notions

Recall (see [104] for precise definitions) that anobserverfor a given system with
inputs and outputṡx = f(x, u), y = h(x) is another system which, using only
information provided by past input and output signals, provides an asymptotic (i.e.,
valid ast → ∞) estimatex̂(t) of the statex(t) of the system of interest (Fig. 18).

- -

-
-u y

x
x̂

Fig. 18.Observer provides estimatêx of statex; x̂(t)− x(t) → 0 ast →∞

One may think of the observer as a physical system or as an algorithm implemented
by a digital computer. The problem of state estimation is one of the most important
and central topics in control theory, and it arises in signal processing applications
(Kalman filters) as well as when solving the problem of stabilization based on partial
information. It is well understood for linear systems, but, a huge amount of research
notwithstanding, the theory of observers is not as developed in general.

We will not say much about the general problem of building observers, which is
closely related to “incremental” ISS-like notions, a subject not yet studied enough,
but will focus on an associated but easier question. When the ultimate goal is that
of stabilization to an equilibrium, let us sayx = 0 in Euclidean space, sometimes
a weaker type of estimate suffices: it may be enough to obtain anorm-estimator
which provides merely anupper boundon the norm|x(t)| of the statex(t); see [93],
[50], [57]. Before defining norm-estimators, and studying their existence, we need to
introduce an appropriate notion of detectability.

8.1 Detectability

Suppose that an observer exists, for a given system. Sincex0 = 0 is an equilibrium
for ẋ = f(x, 0), and alsoh(0) = 0, the solutionx(t) ≡ 0 is consistent withu ≡ 0
andy ≡ 0. Thus, the estimation propertŷx(t) − x(t) → 0 implies thatx̂(t) → 0.
Now consideranystatex0 for whichu ≡ 0 andy ≡ 0, that is, so thath(x(t, x0, 0)) ≡
0. The observer output, which can only depend onu and y, must be the samêx
as whenx0 = 0, so x̂(t) → 0; then, using once again the definition of observer
x̂(t) − x(t, x0, 0) → 0, we conclude thatx(t, x0, 0) → 0. In summary, anecessary
condition for the existence of an observer is that the “subsystem” ofẋ = f(x, u),
y = h(x) consisting of those states for whichu ≡ 0 produces the outputy ≡ 0 must
havex = 0 as a GAS state (Fig. 19); one says in that case that the system iszero-
detectable. (For linear systems, zero-detectability is equivalent to detectability or
“asymptotic observability” ([104]): two trajectories which produce the same output
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- -
u ≡ 0

⇒ x → 0
y ≡ 0

Fig. 19.Zero-detectability

must approach each other. But this equivalence need not hold for nonlinear systems.)
In a nonlinear context, zero-detectability is not “well-posed” enough: to get a well-
behaved notion, one should add explicit requirements to ask that small inputs and
outputs imply that internal states are small too (Fig. 20), and that inputs and outputs

- -
u ≈ 0

⇒ x ≈ 0
y ≈ 0

Fig. 20.Small inputs and outputs imply small states

converging to zero ast → ∞ implies that states do, too (Fig. 21), These properties

- -
u → 0

⇒ x → 0
y → 0

Fig. 21.Converging inputs and outputs imply convergent states

are needed so that “small” errors in measurements of inputs and outputs processed
by the observer give rise to small errors. Furthermore, one should impose asymptotic
bounds on states as a function of input/output bounds, and it is desirable to quantify
“overshoot” (transient behavior). This leads us to the following notion.

8.2 Dualizing ISS to OSS and IOSS

A system isinput/output to state stable (IOSS)if, for someβ ∈ KL andγu, γy ∈
K∞,

x(t) ≤ β(|x0|, t) + γ1

(∥∥u[0,t]

∥∥
∞

)
+ γ2

(∥∥y[0,t]

∥∥
∞

)
(IOSS)

for all initial states and inputs, and allt ∈ [0, Tξ,u). Just as ISS is stronger than
0-GAS, IOSS is stronger than zero-detectability. A special case is when one has no
inputs,output to state stability:

|x(t, x0)| ≤ β(|x0|, t) + γ
(∥∥y|[0,t]

∥∥
∞

)
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and this is formally “dual” to ISS, simply replacing inputsu by outputs in the ISS
definition. This duality is only superficial, however, as there seems to be no useful
way to obtain theorems for OSS by dualizing ISS results. (Note that the outputsy
depend on the state, not vice-versa.)

8.3 Lyapunov-like characterization of IOSS

To formulate a dissipation characterization, we define anIOSS-Lyapunov functionas
a smooth storage function so that

∇V (x) f(x, u) ≤ −α1(|x|) + α2(|u|) + α3(|y|)

for all x ∈ Rn, u ∈ Rm, y ∈ Rp. The main result is:

Theorem 22.([65]) A system is IOSS if and only if it admits an IOSS-Lyapunov
function.

8.4 Superposition principles for IOSS

Just as for ISS and IOS, there are asymptotic gain characterizations of input/output
to state stability.

We say that a system satisfies theIO-asymptotic gain (IO-AG)property if:

lim
t↗tmax(x0,u)

|x(t, x0, u)| ≤ γu(‖u‖∞) + γy(‖y‖∞) ∀x0, u(·) (IO-AG)

(for someγu, γy), and theIO-limit (IO-LIM) property if:

inf
t≥0

|x(t, x0, u)| ≤ γu(‖u‖∞) + γy(‖y‖∞) ∀x0, u(·) (IO-LIM )

(for someγu, γy), where sup norms and inf are taken over[0, tmax(x0, u)). We also
define the notion ofzero-input local stability modulo outputs (0-LS)as follows:

(∀ ε > 0) (∃ δε) max{|x0|, ‖y[0,t]‖∞} ≤ δε ⇒ |x(t, x0, 0)| ≤ ε . (0-LS)

This is a notion of marginal local detectability; for linear systems, it amounts to
marginal stability of the unobservable eigenvalues. We have the following result.

Theorem 23.([6]) The following three properties are equivalent for any given sys-
temẋ = f(x, u):

• The system is IOSS.
• The system is IO-AG and zero-input O-LS.
• The system is IO-LIM and zero-input O-LS.

Several other characterizations can also be found in [6].
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8.5 Norm-Estimators

We define astate-norm-estimator(or state-norm-observer) for a given system as
another system

ż = g(z, u, y) , with output k : R` × Rp → R≥0

evolving in some Euclidean spaceR`, and driven by the inputs and outputs of the
original system. We ask that the outputk should be IOS with respect to the inputsu
andy, and the true state should be asymptotically bounded in norm by some function
of the norm of the estimator output, with a transient (overshoot) which depends on
both initial states. Formally:

• there arêγ1, γ̂2 ∈ K andβ̂ ∈ KL so that, for each initial statez0 ∈ R`, and inputs
u andy, and everyt in the interval of definition of the solutionz(·, z0,u,y):

k (z(t, z0,u,y),y(t)) ≤ β̂(|z0| , t) + γ̂1

(∥∥u|[0,t]

∥∥)+ γ̂2

(∥∥y|[0,t]

∥∥) ;

• there areρ ∈ K, β ∈ KL so that, for all initial statesx0 andz0 of the system and
observer, and every inputu:

|x(t, x0,u)| ≤ β(|x0|+ |z0| , t) + ρ
(
k
(
z(t, z0,u,yx0,u),yx0,u(t)

))
for all t ∈ [0, tmax(x0,u)), whereyx0,u(t) = y(t, x0,u).

Theorem 24.([65]) A system admits a state-norm-estimator if and only if it is IOSS.

8.6 A remark on observers and incremental IOSS

As mentioned earlier, for linear systems, “zero-detectability” and detectability coin-
cide, where the latter is the property thatevery pairof distinct states is asymptotically
distinguishable. The following is an ISS-type definition of detectability: we say that
a system isincrementally (or Lipschitz) input/output-to-state stable (i-IOSS)if there
existγ1, γ2 ∈ K andβ ∈ KL such that, for any two initial statesx0 andz0, and any
two inputsu1 andu2,

|x(t, x0, u1)−x(t, z0, u2)| ≤ max {β(|x0−z0| , t), γ1(‖∆u‖), γ2(‖∆y‖)} (i-IOSS)

where∆u = (u1−u2), ∆y = (yx0,u1−yz0,u2)[0,t], for all t in the common domain
of definition. It is easy to see that i-IOSS implies IOSS, but the converse does not hold
in general. The notion of incremental-IOSS was introduced in [111]. A particular
case is that in whichh(x) ≡ 0, in which case we have the following notion: a system
is incrementally ISS (i-ISS)if there holds an estimate of the following form:

|x(t, x0, u1)−x(t, z0, u2)| ≤ max {β(|x0−z0| , t), γ1(‖∆u‖)} (i-ISS)

where∆u = u1 − u2, for all t in the common domain of definition. Several proper-
ties of the i-ISS notion were explored in [4], including the fact that i-ISS is preserved
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under cascades. Specializing even more, when there are no inputs one obtains the
propertyincremental GAS (i-GAS). This last property can be characterized in Lya-
punov terms using the converse Lyapunov result given in [73] for stability with re-
spect to (not necessarily compact) sets, since it coincides with stability with respect
to the diagonal of the system consisting of two parallel copies of the same system.
Indeed, i-GAS is equivalent to asking that the system:

ẋ = f(x)
ż = f(z)

be asymptotically stable with respect to{(x, z) | x = z}. A sufficient condition for
i-ISS in dissipation terms, using a similar idea, was given in [4].

As recalled earlier, an observer is another dynamical system, which processes
inputs and outputs of the original system, and produces an estimatex̂(t) of the state
x(t): x(t)−x̂(t) → 0 ast→∞, and this difference (the estimation error) should be
small if it starts small (see [104], Chapter 6). As with zero-detectability, it is more
natural in the ISS paradigm to ask that the estimation errorx(t)−x̂(t) should be small
even if the measurements of inputs and outputs received by the observer are corrupted
by noise. Writingud andyd for the input and output measurement noise respectively,
we have the situation shown pictorially in Fig. 22 (see [111] for a precise definition).

k
k- -

-
?

6

-

-
-

ẋ=f(x,u)
y=h(x)

u(t)

ud(t)

yd(t)

x̂(t)observer

y(t)

Fig. 22.Observer with perturbations in measurements

Existence of an observer implies that the system is i-IOSS ([111]). The converse and
more interesting problem of building observers under IOSS assumptions is still a
largely unsolved, although much progress has been made for systems with special
structures, cf. [16], [57].

8.7 Variations of IOSS

The terminology IOSS was introduced in [111], and the name arises from the view
of IOSS as “stability from the i/o data to the state”. It combines the “strong” observ-
ability from [99] with ISS; and was called simply “detectability” in [98], where it
was formulated in an input/output language and applied to controller parameteriza-
tion, and it was called “strong unboundedness observability” in [53] (more precisely,
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this paper allowed for an additive nonnegative constant in the estimate). IOSS is re-
lated to other ISS-like formalisms for observers, see e.g. [92], [77], [75], [37]. Both
IOSS and its incremental variant are very closely related to the OSS-type detectabil-
ity notions pursued in [59]; see also the emphasis on ISS guarantees for observers
in [82].

The dissipation characterization amounts to a Willems’-type dissipation inequal-
ity (d/dt)V (x(t))≤−σ1(|x(t)|) +σ2(|y(t)|) +σ3(|u(t)|) holding along all trajec-
tories. There have been other suggestions that one shoulddefine“detectability” in
dissipation terms; see e.g. [76], where detectability was defined by the requirement
that there exist a differentiable storage functionV as here, but with the special choice
σ2(r) := r2 (and no inputs), or as in [85], which asked for a weaker the dissipation
inequality:

x 6= 0 ⇒ d

dt
V (x(t)) < σ2(|y(t)|)

(again, with no inputs), not requiring the “margin” of stability−σ1(|x(t)|). Observe
also that, asking that along all trajectories there holds the estimate

d

dt
V (x(t)) ≤ −σ1(|x(t)|) + σ2(|y(t)|) + σ3(|u(t)|)

means thatV satisfies a partial differential inequality (PDI):

max
u∈Rm

{∇V (x) · f(x, u) + σ1(|x|)− σ2(|h(x)|)− σ3(|u|)} ≤ 0

which is same as the Hamilton–Jacobi inequality

g0(x) +
1
4

m∑
i=1

(∇V (x) · gi(x))2 + σ1(|x|)− σ2(|h(x)|) ≤ 0

in the special case of quadratic input “cost”σ3(r) = r2 and systemṡx = f(x, u)
affine in controls

ẋ = g0(x) +
m∑

i=1

ui gi(x)

(just replace the right-hand side in the PDI by the maximum value, obtained atui =
(1/2)∇V (x) · gi(x)). Thus the converse result amounts to providing necessary and
sufficient conditions for existence of a smooth (and proper and positive definite)
solutionV to the PDI. In this context, it is worth remarking that the mere existence
of a lower semicontinuousV (interpreted in an appropriate weak sense) implies the
existence of aC∞ solution (possibly with different comparison functions); see [64].

8.8 Norm-observability

There are many notions of observability for nonlinear systems (see e.g. [104], Chap-
ter 6); here we briefly mention one such notion given in an ISS style, which was
presented in [34]. More precisely, we define “norm-observability”, which concerns
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the ability to determine an upper bound on norms, rather than the precise value of
the state (an “incremental” version would correspond to true observability). We do
so imposing a bound on the norm of the state in terms of the norms of the output and
the input, and imposing an additional requirement which says, loosely speaking, that
the term describing the effects of initial conditions can be chosen to decay arbitrarily
fast.

A systemẋ = f(x, u), y = h(x) is small-time initial-state norm-observableif:

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x0| ≤ γ(
∥∥y[0,τ ]

∥∥
∞) + χ(

∥∥u[0,τ ]

∥∥
∞) ∀x0, u ,

it is small-time final-state norm-observableif:

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x(τ)| ≤ γ(
∥∥y[0,τ ]

∥∥
∞) + χ(

∥∥u[0,τ ]

∥∥
∞) ∀x0, u ,

and issmall-time-KL norm-observableif for every ε > 0 and everyν ∈ K, there
existγ, χ ∈ K∞ and aβ ∈ KL so thatβ(r, ε) ≤ ν(r) for all r ≥ 0 (i.e.,β can be
chosen to decay arbitrarily fast in the second argument) such that the IOSS estimate:

|x(t)| ≤ β(|x0| , t) + γ(
∥∥y[0,t]

∥∥
∞) + χ(

∥∥u[0,t]

∥∥
∞) ∀x0, u, t ≥ 0

holds along all solutions.

Theorem 25.([34]) The following notions are equivalent:

• small-time initial-state norm-observability;
• small-time final-state norm-observability;
• small-time-KL norm-observability.

To be precise, the equivalences assumeunboundedness observability (UO),
which means that for each trajectory defined on some maximal intervaltmax < ∞,
the output becomes unbounded ast ↗ tmax, as well as a similar property for the
reversed-time system. The unboundedness observability property is strictly weaker
than forward completeness, which is the property that each trajectory is defined for
all t ≥ 0; see [53] and [9], the latter especially for complete Lyapunov charac-
terizations of the UO property. Similarly, one can prove equivalences among other
definitions, such as asking “∃ τ ” instead of “∀ τ ”, and one may obtain Lyapunov-like
characterizations; the results are used in the derivation of LaSalle-like theorems for
verifying stability of switched systems in [34].

9 The Fundamental Relationship Among ISS, IOS, and IOSS

The definitions of the basic ISS-like concepts are consistent and related in an elegant
conceptual manner, as follows:

A system is ISS if and only if it is both IOS and IOSS.

In informal terms, we can say that:
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- -x → 0u → 0 y → 0

Fig. 23.Convergent input, state, and/or output

external stability & detectability ⇐⇒ internal stability

as it is the case for linear systems. Intuitively, we have the three possible signals
in Fig. 23. The basic idea of the proof is as follows. Suppose that external stability
and detectability hold, and take an input so thatu → 0. Theny → 0 (by external
stability), and this then implies thatx → 0 (by detectability). Conversely, if the
system is internally stable, then we prove i/o stability and detectability. Suppose
that u → 0. By internal stability,x → 0, and this givesy(t) → 0 (i/o stability).
Detectability is even easier: if bothu(t) → 0 andy(t) → 0, then in particularu→ 0,
sox→ 0 by internal stability. The proof that ISS is equivalent to the conjunction of
IOS and IOSS must keep careful track of the estimates, but the idea is similar.

10 Systems with Separate Error and Measurement Outputs

We next turn to a topic which was mentioned in [105] as a suggestion for further
work, but for which still only incomplete results are available. We will assume that
there aretwo types of outputs (Fig. 24), which we think of, respectively as an “error”

-
-

-
system

w

y
u

Fig. 24.System with error and measurement outputsẋ = f(x, u), y = h(x), w = g(x)

y = h(x) to be kept small, as in the IOS notion, and a “measurement”w = g(x)
which provides information about the state, as in the IOSS notion.

Several ISS-type formulations of the central concept in regulator theory, namely
the idea of using the size ofw in order to boundy, were given in [38], and are as
follows.

10.1 Input-measurement-to-error stability

We will say that a system isinput-measurement-to-error stable (IMES)if there are
β ∈ KL, σ ∈ K, andγ ∈ K such that the following estimate holds:

|y(t)| ≤ β(|x0| , t) + σ
(∥∥w[0,t]

∥∥
∞

)
+ γ(‖u‖∞) (IMES)
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for all t ∈ tmax(x0, u), for all solutions, where we are writingy(t) = h(x(t, x0, u))
andw(t) = g(x(t, x0, u)). Special cases are all the previous concepts:

• Whenh(x) = x, soy = x, and we vieww as the output, we recover IOSS.
• When the outputg = 0, that isw ≡ 0, we recover IOS.
• If both y = x andg = 0, we recover ISS.

The goal of obtaining general theorems for IMES which will specialize to all known
theorems for ISS, IOS, and IOSS is so far unattained. We only know of several partial
results, to be discussed next.

For simplicity from now on, we restrict to the case of systems with no inputs
ẋ = f(x), y = h(x), w = g(x), and we say that a system is measurement to error
stable (MES) if an IMES estimate holds, i.e., for suitableβ ∈ KL andγ ∈ K:

|y(t)| ≤ β(|x0| , t) + γ
(∥∥w[0,t]

∥∥
∞

)
for all t ∈ [0, Tmax) and for all solutions.

In order to present a dissipation-like version of MES, it is convenient to introduce
the following concept. We will say that a system isrelatively error-stable (RES)if
the following property holds, for someρ ∈ K andβ ∈ KL:

|y(t)| > ρ(|w(t)|) on [0, T ] ⇒ |y(t)| ≤ β(|x0| , t) on [0, T ] (RES)

along all solutions and for allT < tmax(x0, u). In words: while the error is much
larger than the estimate provided by the measurement, the error must decrease
asymptotically, with an overshoot controlled by the magnitude of the initial state.
This property, together with the closely related notion ofstability in three measures
(SIT), was introduced and studied in [38]. It is easy to see that MES implies RES,
but that the converse is false. In order to obtain a converse, one requires an additional
concept: we say a system satisfies therelative measurement to error boundedness
(RMEB)property if it admits an estimate of the following form, for someσi ∈ K:

|y(t)| ≤ max
{
σ1(|h(x0)|), σ2

(∥∥w[0,t]

∥∥
∞

)}
(RMEB)

along all solutions. For forward complete systems, and assuming RMEB, RES is
equivalent to MES ([38]).

10.2 Review: viscosity subdifferentials

So far, no smooth dissipation characterization of any of these properties is available.
In order to state a nonsmooth characterization, we first review a notion of weak
differential. For any functionV : Rn → R and any pointp ∈ Rn in its domain,
one says that a vectorζ is aviscosity subgradientof V atp if the following property
holds: there is some functionϕ : Rn → R, differentiable at zero and with∇ϕ(0) = ζ
(that is,ϕ(h) = ζ · h+ o(h)), such that

V (p+ h) ≥ V (p) + ϕ(h)
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Fig. 25.∂DV (0) = [−1, 1]

for eachh in a neighborhood of0 ∈ Rn. In other words, a viscosity subgradi-
ent is a gradient (tangent slopes) of any supportingC1 function. One denotes then
∂DV (p) := {all viscosity subgradients ofV atp}. As an illustration, Fig. 25 shows
a case where∂DV (0) = [−1, 1], for the functionV (x) = |x|, and Fig. 26 an exam-

Fig. 26.∂DV (0) = ∅

ple where∂DV (0) = ∅, for V (x) = −|x|. In particular, ifV is differentiable atp,
then∂DV (p) = {∇V (p)}.

10.3 RES-Lyapunov Functions

The lower semicontinuousV is anRES-Lyapunov functionif:

• there existα1 andα2 ∈ K∞ so, on the setC := {p : |h(p)| > ρ(|g(p)|)}, it
holds that

α1(|h(p)|) ≤ V (p) ≤ α2(|p|) ;

• for some continuous positive definiteα3 : R≥0 → R≥0, on the setC there holds
the estimate:

ζ · f(x) ≤ −α3(V (p)) ∀ ζ ∈ ∂DV (p)

(whenV is differentiable, this is just∇V · f(x) ≤ −α3(V (p))).

One can show (cf. [38]) that this estimate is equivalent to the existence of a locally
Lipschitz, positive definitẽα3 such that, for all trajectories:

x(t) ∈ C on [0, t1] ⇒ V (x(t))− V (x(0)) ≤ −
∫ t

0

α̃3(V (x(s))) ds .

Theorem 26.([38]) A forward-complete system is RES if and only if it admits an
RES-Lyapunov function.

As a corollary, we have that, for RMEB systems, MES is equivalent to the exis-
tence of such a lower semicontinuous RES Lyapunov function.
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11 Output to Input Stability and Minimum-Phase

We now mention a nonlinear “well-posed” version of Bode’s minimum phase sys-
tems, which relates to the usual notion (cf. [42]) in the same manner as ISS relates
to zero-GAS. We need to say, roughly, what it means for the “inverse system” to be
ISS (Fig. 27). The paper [71] defines a smooth system asoutput to input stable (OIS)

- -
⇒ u → 0

⇒ x → 0
y → 0

Fig. 27.Inverse of IOS property: small output implies input (and state) small

if there exists an integerN > 0, and functionsβ ∈ KL andγ ∈ K∞, so that, for
every initial statex0 and every(N−1)-times continuously differentiable inputu, the
inequality:

|u(t)|+ |x(t)| ≤ β(|x0|, t) + γ
(∥∥∥yN

[0,t]

∥∥∥
∞

)
holds for allt ∈ tmax(x0, u), where “yN ” lists y as well as its firstN derivatives
(and we use supremum norm, as usual). See [71] for relationships to OSS, an inter-
pretation in terms of an ISS property imposed on the “zero dynamics” of the system,
and connections to relative degree, as well as an application to adaptive control.

12 Response to Constant and Periodic Inputs

Systemsẋ = f(x, u) that are ISS have certain noteworthy properties when subject
to constant or, more generally periodic, inputs, which we now discuss. LetV be an
ISS-Lyapunov function which satisfies the inequalityV̇ (x, u) ≤ −V (x)+γ(|u|) for
all x, u, for someγ ∈ K∞.

To start with, suppose that̄u is any fixed bounded input, and leta := γ(‖ū‖∞),
pick any initial statex0, and consider the solutionx(t) = x(t, x0, ū) for this input.
Lettingv(t) := V (x(t)), we have thaṫv(t) + v(t) ≤ a so, usinget as an integrating
factor, we have thatv(t) ≤ a+ e−t(v(0)−a) for all t ≥ 0. In particular, ifv(0) ≤ a
it will follow that v(t) ≤ a for all t ≥ 0, that is to say, the sublevel setK :=
{x | V (x) ≤ a} is a forward-invariant set for this input: ifx0 ∈ K thenx(t) =
x(t, x0, ū) ∈ K for all t ≥ 0. ThereforeMT : x0 7→ x(T, x0, ū) is a continuous
mapping fromK into K, for each fixedT > 0, and thus, provided thatK has a
fixed-point property (every continuous mapM : K → K has some fixed point), we
conclude that for eachT > 0 there exists some statex0 such thatx(T, x0, ū) = x0.
The setK indeed has the fixed-point property, as does any sublevel set of a Lyapunov
function. To see this, we note thatV is a Lyapunov function for the zero-input system
ẋ = f(x, 0), and thus, ifB is any ball which includesK in its interior, then the map
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Q : B → K which sends anyξ ∈ B into x(tξ, ξ), wheretξ is the first time such that
x(t, ξ) ∈ K, is continuous (because the vector field is transversal to the boundary of
K since∇V (x).f(x, 0) < 0), and is the identity onK (that is,Q is a topological
retraction). A fixed point of the compositionM ◦Q : B → B is a fixed point ofM .

Now suppose that̄u is periodic of periodT , ū(t + T ) = ū(t) for all t ≥ 0, and
pick anyx0 which is a fixed point forMT . Then the solutionx(t, x0, ū) is periodic
of periodT as well. In other words,for each periodic input, there is a solution of the
same period. In particular, ifū is constant, we may pick for eachh > 0 a statexh

so thatx(h, xh, ū) = xh, and therefore, picking a convergent subsequencexh → x̄
gives that0 = (1/h)(x(h, xh, ū) − xh) → f(x̄, ū), sof(x̄, ū) = 0. Thus we also
have the conclusion thatfor each constant input, there is a steady state.

13 A Remark Concerning ISS andH∞ Gains

We derived the “integral to integral” version of ISS when starting fromH∞-gains,
that is,L2-induced operator norms. In an abstract manner, one can reverse the argu-
ment, as this result shows:

Theorem 27.([33]) Assumen 6= 4, 5. If the systeṁx = f(x, u) is ISS, then, under
a coordinate change, for all solutions one has:∫ t

0

|x(s)|2 ds ≤ |x0|2 +
∫ t

0

|u(s)|2 ds .

(A particular case of this is that global exponential stability is equivalent to global
asymptotic stability, under such nonsmooth coordinate changes. This would seem to
contradict Center Manifold theory, but recall that our “coordinate changes” are not
necessarily smooth at the origin, so dimensions of stable and unstable manifolds need
not be preserved.) It is still an open question if the theorem generalizes ton = 4 or
5. A sketch of proof is as follows.

Let us suppose that the systeṁx = f(x, u) is ISS. We choose a “robustness
margin” ρ ∈ K∞, i.e. aK∞ function with the property that the closed-loop sys-
tem ẋ = f(x, dρ(|x|)) is GAS uniformly with respect to all disturbances such that
‖d‖∞ ≤ 1. We next pick a smooth, proper, positive definite storage functionV so
that

∇V (x)·f(x, dρ(|x|)) ≤ −V (x) ∀x, d

(such a function always exists, by the results already mentioned). Now suppose that
we have been able to find a coordinate change so thatV (x) = |x|2, that is, aT so
thatW (z) := V (T−1(z)) = |z|2 with z = T (x). Then, whenever|u| ≤ ρ(|x|), we
have

d |z|2 /dt = Ẇ (z) = V̇ (x) ≤ −V (x) = − |z|2 .

It follows that, ifχ ∈ K∞ is so that|T (x)| ≤ χ(ρ(|x|)), and

α(r) := max
|u|≤r,|z|≤χ(r)

d |z|2 /dt
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then:
d |z|2

dt
≤ − |z|2 + α(|u|) = − |z|2 + v

(where we denote byv the input in new coordinates).
Integrating, one obtains

∫
|z|2 ≤ |z0|2 +

∫
|v|2, and this gives theL2 estimate as

wanted. The critical technical step, thus, is to show that, up to coordinate changes,
every Lyapunov functionV is quadratic. That fact is shown as follows. First notice
that the level setS := {V (x) = 1} is homotopically equivalent toSn−1 (this is
well-known:S × R ' S becauseR is contractible, andS × R is homeomorphic to
Rn \ {0} ' Sn−1 via the flow ofẋ = f(x, 0)). Thus,{V (x) = 1} is diffeomorphic
to Sn−1, providedn 6= 4, 5. (In dimensionsn = 1, 2, 3 this is proved directly; for
n ≥ 6 the sublevel set{V (x) < 1} is a compact, connected smooth manifold with
a simply connected boundary, and results onh-cobordism theory due to Smale and
Milnor show the diffeomorphism to a ball. Observe that results on the generalized
Poincaŕe conjecture would give a homeomorphism, forn 6= 4.) Finally, we consider
the normed gradient flow:

ẋ =
∇V (x)′

|∇V (x)|2

and take the new variable
z :=

√
V (x) θ(x′)

wherex′ is the translate via the flow back into the level set, andθ : {V = 1} '
{|z| = 1} is the given diffeomorphism, see Fig. 28. (Actually, this sketch is not quite

Fig. 28.Making level sets into spheres

correct: one needs to make a slight adjustment in order to obtain also continuity and
differentiability at the origin; the actual coordinate change isz = γ(V (x))θ(x′), so
W (z) = γ(|z|), for a suitableγ.)

14 Two Sample Applications

For applications of ISS notions, the reader is encouraged to consult textbooks such
as [43], [60], [58], [96], [66], [27], [44], as well as articles in journals as well as
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Proceedings of the various IEEE Conferences on Decision and Control. We highlight
next a couple of applications picked quite arbitrarily from the literature. They are
chosen as illustrations of the range of possibilities afforded by the ISS viewpoint.

The paper [63] provides a new observer suitable for output-feedback stabiliza-
tion, and applies the design to the stabilization of surge and the magnitude of the
first stall mode, in the single-mode approximation of the Moore-Greitzer PDE axial
compressor model used in jet engine studies. The equations are as follows:

φ̇ = −ψ + 3
2φ+ 1

2 − 1
2 (φ+ 1)3 − 3(φ+ 1)R

ψ̇ =
1
β2

(φ+ 1− u)

Ṙ = σR(−2φ− φ2 −R) (R ≥ 0) ,

whereφ denotes the mass flow relative to a setpoint,ψ the pressure rise relative to
the setpoint, andR the magnitude of the first stall mode. The objective is to stabilize
this system, using onlyy = ψ.

The systematic use of ISS-type properties is central to the analysis: taking the
magnitude of the first stall mode as evolving through uncertain dynamics, the authors
require that their estimator have an error that is ISS with respect to this unmodeled
dynamics, and that the first mode be IOS with respect to mass flow deviation from its
setpoint; an ISS small-gain theorem is then used to complete the design. Abstractly,
their general framework in [63] is roughly as follows. One is given a system with the
block structure:

ẋ = f(x, z, u)
ż = g(x, z)

and only an outputy = h(x) is available for stabilization. Thez-subsystem (R in
the application) is unknown (robust design). The authors construct a state-feedback
u = k(x) and a reduced-order observer that produces an estimatex̂ so that:

• the errore = x− x̂ is ISS with respect toz;
• the systemẋ = f(x, z, k(x̂)) = F (x, z, e) is ISS with respect to bothe andz;

and
• the systeṁz = g(x, z) is ISS with respect tox.

Combining with a small-gain condition, the stability of the entire system is guaran-
teed.

A completely different application, in signal processing, can be found in [4],
dealing with the topic of synchronized chaotic systems, which arises in the study of
secure communications. A “master-slave” configuration is studied, where a second
copy of the system (receiver) is driven by an output from the first (Fig. 29). The main
objective is to show that states synchronize:

|x(t)− z(t)| ≤ max{β(|x0 − z0|, t) , ‖d‖}

This can be shown, provided that the system isincrementallyISS, in the sense dis-
cussed in Section 8.6.
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j--
?

-

d(t)

noisy channel

u = y yẋ = f(x, y)
y = h(x)

ż = f(z, y+d)

Fig. 29.Synchronized systems

One particular example is given by the Lorentz attractor:

ẋ1 = −βx1 + sat(x2)sat(x3)
ẋ2 = σ(x3 − x2)
ẋ3 = −x3 + u

y = ρx2 − x1x2

whereβ = 8/3, σ = 10, ρ = 28 (the saturation function, sat(r) = r for |r| < 1
and sat(r) = sign(r) otherwise, is inserted for technical reasons and does not affect
the application). Preservation of the i-ISS property under cascades implies that this
system (easily to be seen a cascade of i-ISS subsystems) is i-ISS. The paper [4]
provides simulations of the impressive behavior of this algorithm.

15 Additional Discussion and References

The paper [99] presented the definition of ISS, established the result on feedback re-
definition to obtain ISS with respect to actuator errors, and provided the sufficiency
test in terms of ISS-Lyapunov functions. The necessity of this Lyapunov-like charac-
terization is from [109], which also introduced the “small gain” connection to mar-
gins of robustness; the existence of Lyapunov functions then followed from the gen-
eral result in [73]. The asymptotic gain characterizations of ISS are from [110]. (Gen-
eralizations to finite-dimensional and infinite-dimensional differential inclusions re-
sult in new relaxation theorems, see [41] and [39], as well as [81] for applications to
switched systems.) Asymptotic gain notions appeared also in [20] and [114]. Small-
gain theorems for ISS and IOS notions originated with [53]. See [40] for an abstract
version of such results.

The notion of ISS for time-varying systems appears in the context of asymptotic
tracking problems, see e.g. [124]. In [24], one can find further results on Lyapunov
characterizations of the ISS property for time-varying (and in particular periodic)
systems, as well as a small-gain theorem based on these ideas. See also [78].

Coprime factorizations are the basis of the parameterization of controllers in the
Youla approach. As a matter of fact, as the paper’s title indicates, their study was the
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original motivation for the introduction of the notion of ISS in [99]. Some further
work can be found in [98], see also [28], but much remains to be done.

One may of course also study the notion of ISS for discrete-time systems. Many
ISS results for continuous time systems, and in particular the Lyapunov characteriza-
tion and ISS small gain theorems, can be extended to the discrete time case; see [52],
[55] [56], [67], [61]. Discrete-time iISS systems are the subject of [2], who proves
the very surprising result that, in the discrete-time case, iISS is actually no different
than global asymptotic stability of the unforced system (this is very far from true in
the continuous-time case, of course); see also [74].

Questions of sampling, relating ISS properties of continuous and discrete-time
systems, have been also studied, see [119] which shows that ISS is recovered under
sufficiently fast sampling, as well as the papers [90], [87], [86].

The paper [5] introduces a notion of ISS where one merely requires good behav-
ior on a generic (open dense) subset of the state space. Properties of this type are of
interest in “almost-global” stabilization problems, where there are topological con-
straints on what may be achieved by controllers. The area is still largely undeveloped,
and there are several open problems mentioned in that reference.

More generally than the question of actuator ISS, one can ask when, given a
systemẋ = f(x, d, u), is there a feedback lawu = k(x) such that the system
ẋ = f(x, d, k(x)) becomes ISS (or iISS, etc) with respect tod. One approach to this
problem is in terms of control-Lyapunov function (“cLf”) methods, and concerns
necessary and sufficient cLf conditions, for the existence of such (possibly dynamic)
feedback laws. See for example [120], which deals primarily with systems of the
form ẋ = f(x, d)+g(x)u (affine in control, and control vector fields are independent
of disturbances) and with assigning precise upper bounds to the “nonlinear gain”
obtained in terms ofd.

A problem of decentralized robust output-feedback control with disturbance at-
tenuation for a class of large-scale dynamic systems, achieving ISS and iISS proper-
ties, is studied in [49].

Partial asymptotic stability for differential equations is a particular case of output
stability (IOS when there are no inputs) in our sense; see [125] for a survey of the
area, as well as the book [94], which contains a converse theorem for a restricted type
of output stability. The subject of IOS is also related to the topic of “stability in two
measures” (see e.g. [68]), in the sense that one asks for stability of one ”measure”
of the state (h(x)) relative to initial conditions measured in another one (the norm of
the state).

A useful variation of the notion of ISS is obtained when one studies stability with
respect to a closed subsetK of the state spaceRn, but not necessarilyK = {0}.
One may generalize the various definitions of ISS, IOS, IOSS, etc. For instance, the
definition of ISS becomes

|x(t, x0, u)|K ≤ β(|x0|K , t) + γ(‖u‖∞) ,

where|x|K denotes the distance fromx to the setK. (The special case whenu ≡ 0
implies in particular that the setK must be invariant for the unforced system.) The
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equivalence of various alternative definitions can be given in much the same way as
the equivalence for the particular caseK = {0} (at least for compactK), since the
general results in [73] are already formulated for set stability; see [108] for details.
The interest in ISS with respect to sets arises in various contexts, such as the design
of robust control laws, where the setK might correspond to equilibria for different
parameter values, or problems of so-called “practical stabilization,” concerned with
stabilization to a prescribed neighborhood of the origin. See [107] for a theorem
relating practical stabilization and ISS with respect to compact attractors.

Perhaps the most interesting set of open problems concerns the construction of
feedback laws that provide ISS stability with respect to observation errors. Actuator
errors are far better understood (cf. [99]), but save for the case of special structures
studied in [27], the one-dimensional case (see e.g. [25]) and the counterexample [26],
little is known of this fundamental question. Recent work analyzing the effect of
small observation errors (see [103]) might provide good pointers to useful directions
of research (indeed, see [69] for some preliminary remarks in that direction). For
special classes of systems, even output feedback ISS with respect to observation
errors is possible, cf. [88].

A stochastic counterpart of the problem of ISS stabilization is proposed and
solved in [22], formulated as a question of stochastic disturbance attenuation with
respect to noise covariance. The paper [21], for a class of systems that can be put
in output-feedback form (controller canonical form with an added stochastic output
injection term), produces, via appropriate clf’s, stochastic ISS behavior (“NSS” =
noise to state stability, meaning that solutions converge in probability to a residual
set whose radius is proportional to bounds on covariances). Stochastic ISS properties
are treated in [123].

For a class of block strict-feedback systems including output feedback form
systems, the paper [48] provided a global regulation result via nonlinear output
feedback, assuming that the zero dynamics are iISS, thus generalizing the ISS-like
minimum-phase condition in the previous [47], which in turn had removed the more
restrictive assumption that system nonlinearities depend only on the output. See
also [45] for iISS and ISS-stabilizing state and output feedback controllers for sys-
tems on strict-feedback or output-feedback forms.

For a class of systems including “Euler-Lagrange” models, the paper [17] pro-
vides a general result on global output feedback stabilization with a disturbance at-
tenuation property. The notion of OSS and the results on unbounded observability
both play a key role in the proof of correctness of the design.

An ISS result for the feedback interconnection of a linear block and a nonlin-
ear element (“Lurie systems”) is provided in [14], and an example is worked out
concerning boundedness for negative resistance oscillators, such as the van der Pol
oscillator.

The authors of [15] obtain robust tracking controllers with disturbance attenua-
tion for a class of systems in strict-feedback form with structurally (non-parametric)
unknown dynamics, using neural-network based approximations. One of the key as-
sumptions is an ISS minimum phase condition, when external disturbances are in-
cluded as inputs to the zero dynamics.
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Output-feedback robust stabilization both in the ISS and iISS sense is studied,
for large-scale systems with strongly nonlinear interconnections, in [51], using de-
centralized controllers.

Both ISS and iISS properties have been featured in the analysis of the perfor-
mance of switching controllers, cf. [36]. The paper [35] dealt with hybrid control
strategies for nonlinear systems with large-scale uncertainty, using a logic-based
switching among a family of lower-level controllers, each of which is designed by
finding an iISS-stabilizing control law for an appropriate system with disturbance
inputs. The authors provide a result on stability and finite time switching termina-
tion for their controllers. The dissipation characterizations of ISS and of iISS were
extended to a class of hybrid switched systems in [80].

A nonstandard application of IOSS, or more precisely of an MES property for
turbulent kinetic energy and dissipation, was the method fordestabilization of pipe
flows (to enhance mixing) studied in [1]. The authors used the wall velocity as inputs
(blowing/suction actuators are assumed distributed on the pipe wall) and pressure dif-
ferences across the pipe as outputs (using pressure sensors to measure). Detectability
in the sense of IOSS provided a useful way to express the energy estimates required
by the controller.

The papers [115, 116] introduced the notion of “formation input-to-state sta-
bility” in order to characterize the internal stability of leader-follower vehicle for-
mations. There, and in related papers by other authors (e.g. [91]), ISS is used as a
framework in which to systematically quantify the performance of swarm formations
under time-varying signals (leader or enemy to be followed, noise in observation, ac-
tuator errors); in this context, the statex in the ISS estimate is in reality a measure
of formation error. Thus, in terms of the original data of the problem, thisformation
ISSis an instance not of ISS itself, but rather of input/output stability (IOS), in which
a function of state variables is used in estimates.

For results concerning averaging for ISS systems, see [89], and see [19] for sin-
gular perturbation issues in this context. See [97] for a notion which is in some sense
close to IMES. Neural-net control techniques using ISS are mentioned in [95]. There
are ISS-small gain theorems for certain infinite dimensional classes of systems such
as delay systems, see [117].
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