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1 Introduction

The analysis and design of nonlinear feedback systems has recently under-
gone an exceptionally rich period of progress and maturation, fueled, to a
great extent, by (1) the discovery of certain basic conceptual notions, and (2)
the identification of classes of systems for which systematic decomposition ap-
proaches can result in effective and easily computable control laws. These two
aspects are complementary, since the latter approaches are, typically, based
upon the inductive verification of the validity of the former system proper-
ties under compositions (in the terminology used in [62], the “activation” of
theoretical concepts leads to “constructive” control).

This expository presentation addresses the first of these aspects, and in
particular the precise formulation of questions of robustness with respect to
disturbances, formulated in the paradigm of input to state stability. We provide
an intuitive and informal presentation of the main concepts. More precise
statements, especially about older results, are given in the cited papers, as well
as in several previous surveys such as [103, 105] (of which the present paper
represents an update), but we provide a little more detail about relatively
recent work. Regarding applications and extensions of the basic framework,
we give some pointers to the literature, but we do not focus on feedback
design and specific engineering problems; for the latter we refer the reader to
textbooks such as [27,43,44,58,60,66,96].

2 ISS as a Notion of Stability of Nonlinear I/O Systems

Our subject is the study of stability-type questions for input/output (“i/o”)
systems. We later define more precisely what we mean by “system,” but, in
an intuitive sense, we have in mind the situation represented in Fig. 1, where
the “system” may well represent a component (“module” or “subsystem”)
of a more complex, larger, system. In typical applications of control theory,
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Fig. 2. Plant and controller

our “system” may in turn represent a plant/controller combination (Fig. 2),
where the input u = (u1, u2) incorporates actuator and measurement noises
respectively, as well as disturbances or tracking signals, and where y = (y1, y2)
might consist respectively of some measure of performance (distance to a set
of desired states, tracking error, etc.) and quantities directly available to a
controller.

The goals of our work include:

• Helping develop a “toolkit” of concepts for studying systems via decom-
positions

• The quantification of system response to external signals
• The unification of state-space and input/output stability theories

2.1 Desirable Properties

We wish to formalize the idea of “stability” of the mapping u(·) �→ y(·). Intu-
itively, we look for a concept that encompasses the properties that inputs that
are bounded, “eventually small,” “integrally small,” or convergent, produce
outputs with the respective property:

u
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and, in addition, we will also want to account appropriately for initial states
and transients. A special case is that in which the output y of the system is
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just the internal state. The key notion in our study will be one regarding such
stability from inputs to states; only later do we consider more general outputs.
In terms of states, thus, the properties that we would like to encompass in a
good stability notion include the the convergent-input convergent-state (CICS)
and the bounded-input bounded-state (BIBS) properties.

We should remark that, for simplicity of exposition, we concentrate here
solely on stability notions relative to globally attractive steady states. How-
ever, the general theory allows consideration of more arbitrary attractors (so
that norms get replaced by, for example, distances to certain compact sets),
and one may also consider local versions, as well as robust and/or adaptive
concepts associated to the ones that we will define.

2.2 Merging Two Different Views of Stability

Broadly speaking, there are two main competing approaches to system stabil-
ity: the state-space approach usually associated with the name of Lyapunov,
and the operator approach, of which George Zames was one of the main pro-
ponents and developers and which was the subject of major contributions by
Sandberg, Willems, Safonov, and others. Our objective is in a sense (Fig. 3)
that of merging these “Lyapunov” and “Zames” views of stability. The oper-
ator approach studies the i/o mapping

(x0, u(·)) �→ y(·)
IRn × [Lq(0,+∞)]m → [Lq(0,+∞)]p

(with, for instance, q = 2 or q = ∞, and assuming the operator to be well-
defined and bounded) and has several advantages, such as allowing the use

u(.)

x = f(x,0).

y(.) = F(x(0),u(.))

Fig. 3. Lyapunov state-space and Zames-like external stability
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of Hilbert or Banach space techniques, and elegantly generalizing many prop-
erties of linear systems, especially in the context of robustness analysis, to
certain nonlinear situations. The state-space approach, in contrast, is geared
to the study of systems without inputs, but is better suited to the study of
nonlinear dynamics, and it allows the use of geometric and topological ideas.
The ISS conceptual framework is consistent with, and combines several fea-
tures of, both approaches.

2.3 Technical Assumptions

In order to keep the discussion as informal and simple as possible, we make
the assumption from now on that we are dealing with systems with inputs
and outputs, in the usual sense of control theory [104]:

ẋ(t) = f(x(t), u(t)) , y(t) = h(x(t))

(usually omitting arguments t from now on) with states x(t) taking values
in Euclidean space IRn, inputs (also called “controls” or “disturbances” de-
pending on the context) being measurable locally essentially bounded maps
u(·) : [0,∞) → IRm, and output values y(t) taking values in IRp, for some pos-
itive integers n,m, p. The map f : IRn × IRm → IRn is assumed to be locally
Lipschitz with f(0, 0) = 0, and h : IRn → IRp is continuous with h(0) = 0.
Many of these assumptions can be weakened considerably, and the cited ref-
erences should be consulted for more details. We write x(t, x0, u) to denote
the solution, defined on some maximal interval [0, tmax(x0, u)), for each initial
state x0 and input u. In particular, for systems with no inputs

ẋ(t) = f(x(t)) ,

we write just x(t, x0). The zero-system associated to ẋ = f(x, u) is by defin-
ition the system with no inputs ẋ = f(x, 0). We use |x| to denote Euclidean
norm and ‖u‖, or ‖u‖∞ for emphasis, the (essential) supremum norm (possi-
bly +∞, if u is not bounded) of a function, typically an input or an output.
When only the restriction of a signal to an interval I is relevant, we write
‖uI‖∞ (or just‖uI‖), for instance ‖u[0,T ]‖∞ when I = [0, T ], to denote the
sup norm of that restriction.

2.4 Comparison Function Formalism

A class K∞ function is a function α : IR≥0 → IR≥0 which is continuous,
strictly increasing, unbounded, and satisfies α(0) = 0 (Fig. 4), and a class KL
function is a function β : IR≥0 × IR≥0 → IR≥0 such that β(·, t) ∈ K∞ for each
t and β(r, t) ↘ 0 as t → ∞.
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Fig. 4. K∞-function

2.5 Global Asymptotic Stability

For a system with no inputs ẋ = f(x), there is a well-known notion of global
asymptotic stability (for short from now on, GAS , or “0-GAS” when referring
to the zero-system ẋ = f(x, 0) associated to a given system with inputs ẋ =
f(x, u)) due to Lyapunov, and usually defined in “ε-δ” terms. It is an easy
exercise to show that this standard definition is in fact equivalent to the
following statement:

(∃β ∈ KL) |x(t, x0)| ≤ β (|x0|, t) ∀x0 , ∀ t ≥ 0 .

Observe that, since β decreases on t, we have, in particular:

|x(t, x0)| ≤ β (|x0|, 0) ∀x0 , ∀ t ≥ 0 ,

which provides the Lyapunov-stability or “small overshoot” part of the GAS
definition (because β (|x0|, 0) is small whenever |x0| is small, by continuity of
β(·, 0) and β(0, 0) = 0), while the fact that β → 0 as t → ∞ gives:

|x(t, x0)| ≤ β (|x0|, t) −→
t→∞

0 ∀x0 ,

which is the attractivity (convergence to steady state) part of the GAS defi-
nition.

We also remark a property proved in [102], Proposition 7, namely that for
each β ∈ KL there exist two class K∞ functions α1, α2 such that:

β(r, t) ≤ α2

(
α1(r)e−t

)
∀ s, t ≥ 0 ,

which means that the GAS estimate can be also written in the form:

|x(t, x0)| ≤ α2

(
α1(|x0|)e−t

)

and thus suggests a close analogy between GAS and an exponential stability
estimate |x(t, x0)| ≤ c |x0| e−at.
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x(t) = (2t+2)

u(t) = (2t+2)

1/2

− 1/2

Fig. 5. Diverging state for converging input, for example

2.6 0-GAS Does Not Guarantee Good Behavior
with Respect to Inputs

A linear system in control theory is one for which both f and h are linear
mappings:

ẋ = Ax+Bu , y = Cx

with A ∈ IRn×n, B ∈ IRn×m, and C ∈ IRp×n. It is well-known that a linear sys-
tem is 0-GAS (or “internally stable”) if and only if the matrix A is a Hurwitz
matrix, that is to say, all the eigenvalues of A have negative real parts. Such a
0-GAS linear system automatically satisfies all reasonable input/output sta-
bility properties: bounded inputs result in bounded state trajectories as well as
outputs, inputs converging to zero imply solutions (and outputs) converging
to zero, and so forth; see, e.g., [104]. But the 0-GAS property is not equivalent ,
in general, to input/output, or even input/state, stability of any sort. This
is in general false for nonlinear systems. For a simple example, consider the
following one-dimensional (n = 1) system, with scalar (m = 1) inputs:

ẋ = −x+ (x2 + 1)u .

This system is clearly 0-GAS, since it reduces to ẋ = −x when u ≡ 0. On
the other hand, solutions diverge even for some inputs that converge to zero.
For example, take the control u(t) = (2t+ 2)−1/2 and x0 =

√
2, There results

the unbounded trajectory x(t) = (2t + 2)1/2 (Fig. 5). This is in spite of the
fact that the unforced system is GAS. Thus, the converging-input converging-
state property does not hold. Even worse, the bounded input u ≡ 1 results in
a finite-time explosion. This example is not artificial, as it arises in feedback-
linearization design, as we mention below.

2.7 Gains for Linear Systems

For linear systems, the three most typical ways of defining input/output sta-
bility in terms of operators

{
L2, L∞}→ {L2, L∞}
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are as follows. (In each case, we mean, more precisely, to ask that there should
exist positive c and λ such that the given estimates hold for all t ≥ 0 and all
solutions of ẋ = Ax+Bu with x(0) = x0 and arbitrary inputs u(·).)

“L∞ → L∞” : c |x(t, x0, u)| ≤ |x0| e−λt + sup
s∈[0,t]

|u(s)|

“L2 → L∞” : c |x(t, x0, u)| ≤ |x0| e−λt +
∫ t

0

|u(s)|2 ds

“L2 → L2” : c

∫ t

0

|x(s, x0, u)|2 ds ≤ |x0| +
∫ t

0

|u(s)|2 ds

(the missing case L∞ → L2 is less interesting, being too restrictive). For linear
systems, these are all equivalent in the following sense: if an estimate of one
type exists, then the other two estimates exist too. The actual numerical values
of the constants c, λ appearing in the different estimates are not necessarily
the same: they are associated to the various types of norms on input spaces
and spaces of solutions, such as “H2” and “H∞” gains, see, e.g., [23]. Here
we are discussing only the question of existence of estimates of these types.
It is easy to see that existence of the above estimates is simply equivalent to
the requirement that the A matrix be Hurwitz, that is to say, to 0-GAS, the
asymptotic stability of the unforced system ẋ = Ax.

2.8 Nonlinear Coordinate Changes

A “geometric” view of nonlinear dynamics leads one to adopt the view that

notions of stability should be invariant under (nonlinear) changes of variables

– meaning that if we make a change of variables in a system which is stable
in some technical sense, the system in new coordinates should again be stable
in the same sense. For example, suppose that we start with the exponentially
stable system ẋ = −x, but we make the change of variables y = T (x) and wish
to consider the equation ẏ = f(y) satisfied by the new variable y. Suppose
that T (x) ≈ lnx for large x. If it were the case that the system ẏ = f(y) is
globally exponentially stable (|y(t)| ≤ ce−λt |y(0)| for some positive constants
c, λ), then there would exist some time t0 > 0 so that |y(t0)| ≤ |y(0)|/2 for
all y(0). But ẏ = T ′(x)ẋ ≈ −1 for large y, so y(t0) ≈ y(0) − t0, contradicting
|y(t0)| ≤ |y(0)|/2 for large enough y(0). In conclusion, exponential stability
is not a natural mathematical notion when nonlinear coordinate changes are
allowed. This is why the notion of asymptotic stability is important.

Let us now discuss this fact in somewhat more abstract terms, and see
how it leads us to GAS and, when adding inputs, to ISS. By a change of
coordinates we will mean a map

T : IRn → IRn
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such that the following properties hold: T (0) = 0 (since we want to preserve
the equilibrium at x = 0), T is continuous, and it admits an inverse map
T−1 : IRn → IRn which is well-defined and continuous as well. (In other
words, T is a homeomorphism which fixes the origin. We could also add the
requirement that T should be differentiable, or that it be differentiable at least
for x �= 0, but the discussion to follow does not need this additional condition.)
Now suppose that we start with a system ẋ = f(x) that is exponentially stable:

|x(t, x0)| ≤ c |x0|e−λt ∀ t ≥ 0 (some c, λ > 0)

and we perform a change of variables:

x(t) = T (z(t)) .

We introduce, for this transformation T , the following two functions:

α(r) := min
|x|≥r

|T (x)| and α(r) := max
|x|≤r

|T (x)| ,

which are well-defined because T and its inverse are both continuous, and are
both functions of class K∞ (easy exercise). Then,

α(|x|) ≤ |T (x)| ≤ α(|x|) ∀x ∈ IRn

and therefore, substituting x(t, x0) = T (z(t, z0)) in the exponential stability
estimate:

α(|z(t, z0)|) ≤ c α(|z0|) e−λt

where z0 = T−1(x0). Thus, the estimate in z-coordinates takes the following
form:

|z(t, z0)| ≤ β (|z0|, t)
where β(r, t) = α−1

(
cα
(
re−λt
))

is a function of class KL. (As remarked
earlier, any possible function of class KL can be written in this factored form,
actually.)

In summary, we re-derived the concept of global asymptotic stability sim-
ply by making coordinate changes on globally exponentially stable systems.
So let us see next where these considerations take us when looking at systems
with inputs and starting from the previously reviewed notions of stability for
linear systems. Since there are now inputs, in addition to the state transforma-
tion x(t) = T (z(t)), we must now allow also transformations u(t) = S(v(t)),
where S is a change of variables in the space of input values IRm. Arguing
exactly as for the case of systems without inputs, we arrive to the following
three concepts:

L∞ → L∞ � α (|x(t)|) ≤ β(|x0| , t) + sup
s∈[0,t]

γ(|u(s)|),
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L2 → L∞ � α (|x(t)|) ≤ β(|x0| , t) +
∫ t

0

γ(|u(s)|) ds

L2 → L2 �

∫ t

0

α (|x(s)|) ds ≤ α0(|x0|) +
∫ t

0

γ(|u(s)|) ds .

From now on, we often write x(t) instead of the more cumbersome x(t, x0, u)
and we adopt the convention that, any time that an estimate like the ones
above is presented, an unless otherwise stated, we mean that there should
exist comparison functions (α, α0 ∈ K∞, β ∈ KL) such that the estimates
hold for all inputs and initial states. We will study these three notions one at
a time.

2.9 Input-to-State Stability

The “L∞ → L∞” estimate, under changes of variables, leads us to the first
concept, that of input to state stability (ISS). That is, there should exist some
β ∈ KL and γ ∈ K∞ such that

|x(t)| ≤ β(|x0| , t) + γ (‖u‖∞) (ISS)

holds for all solutions. By “all solutions” we mean that this estimate is valid for
all inputs u(·), all initial conditions x0, and all t ≥ 0. Note that we did not now
include the function “α” in the left-hand side. That is because, redefining β
and γ, one can assume that α is the identity: if α(r) ≤ β(s, t)+γ(t) holds, then
also r ≤ α−1(β(s, t)+γ(t)) ≤ α−1(2β(s, t))+α−1(2γ(t)); since α−1(2β(·, ·)) ∈
KL and α−1(2γ(·)) ∈ K∞, an estimate of the same type, but now with no
“α,” is obtained. In addition, note that the supremum sups∈[0,t] γ(|u(s)|) over
the interval [0, t] is the same as γ(‖u[0,t]‖∞) = γ(sups∈[0,t](|u(s)|)), because
the function γ is increasing, and that we may replace this term by γ(‖u‖∞),
where ‖u‖∞ = sups∈[0,∞) γ(|u(s)|) is the sup norm of the input, because the
solution x(t) depends only on values u(s), s ≤ t (so, we could equally well
consider the input that has values ≡ 0 for all s > t).

It is important to note that a potentially weaker definition might simply
have requested that this condition hold merely for all t ∈ [0, tmax(x0, u)).
However, this definition turns out to be equivalent to the one that we gave.
Indeed, if the estimate holds a priori only on such a maximal interval of
definition, then, since the right-hand is bounded on [0, T ], for any T > 0
(recall that inputs are by definition assumed to be bounded on any bounded
interval), it follows that the maximal solution of x(t, x0, u) is bounded, and
therefore that tmax(x0, u) = +∞ (see, e.g., Proposition C.3.6 in [104]). In other
words, the ISS estimate holds for all t ≥ 0 automatically, if it is required to
hold merely for maximal solutions.

Since, in general, max{a, b} ≤ a + b ≤ max{2a, 2b}, one can restate the
ISS condition in a slightly different manner, namely, asking for the existence
of some β ∈ KL and γ ∈ K∞ (in general different from the ones in the ISS
definition) such that
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Fig. 6. ISS combines overshoot and asymptotic behavior

|x(t)| ≤ max {β(|x0|, t) , γ (‖u‖∞)}

holds for all solutions. Such redefinitions, using “max” instead of sum, will be
possible as well for each of the other concepts to be introduced later; we will
use whichever form is more convenient in each context, leaving implicit the
equivalence with the alternative formulation.

Intuitively, the definition of ISS requires that, for t large, the size of the
state must be bounded by some function of the sup norm – that is to say, the
amplitude, – of inputs (because β(|x0| , t) → 0 as t → ∞). On the other hand,
the β(|x0| , 0) term may dominate for small t, and this serves to quantify the
magnitude of the transient (overshoot) behavior as a function of the size of
the initial state x0 (Fig. 6). The ISS superposition theorem, discussed later,
shows that ISS is, in a precise mathematical sense, the conjunction of two
properties, one of them dealing with asymptotic bounds on |x0| as a function
of the magnitude of the input, and the other one providing a transient term
obtained when one ignores inputs.

2.10 Linear Case, for Comparison

For internally stable linear systems ẋ = Ax+Bu, the variation of parameters
formula gives immediately the following inequality:

|x(t)| ≤ β(t) |x0| + γ‖u‖∞ ,

where

β(t) = ‖etA‖ → 0 and γ = ‖B‖
∫ ∞

0

‖esA‖ds < ∞ .

This is a particular case of the ISS estimate, |x(t)| ≤ β(|x0|, t) + γ (‖u‖∞),
with linear comparison functions.
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2.11 Feedback Redesign

The notion of ISS arose originally as a way to precisely formulate, and then
answer, the following question. Suppose that, as in many problems in control
theory, a system ẋ = f(x, u) has been stabilized by means of a feedback
law u = k(x) (Fig. 7), that is to say, k was chosen such that the origin
of the closed-loop system ẋ = f(x, k(x)) is globally asymptotically stable.
(See, e.g., [103] for a discussion of mathematical aspects of state feedback
stabilization.) Typically, the design of k was performed by ignoring the effect
of possible input disturbances d(·) (also called actuator disturbances). These
“disturbances” might represent true noise or perhaps errors in the calculation
of the value k(x) by a physical controller, or modeling uncertainty in the
controller or the system itself. What is the effect of considering disturbances?
In order to analyze the problem, we incorporate d into the model, and study
the new system ẋ = f(x, k(x) + d), where d is seen as an input (Fig. 8). We
then ask what is the effect of d on the behavior of the system.

Disturbances d may well destabilize the system, and the problem may arise
even when using a routine technique for control design, feedback linearization.
To appreciate this issue, we take the following very simple example. We are
given the system

ẋ = f(x, u) = x+ (x2 + 1)u .

�

� ẋ = f(x, u)

u = k(x)

u x

Fig. 7. Feedback stabilization, closed-loop system ẋ = f(x, k(x))

�

v

�

�

u x

ẋ = f(x, v)

u = k(x)

��d

Fig. 8. Actuator disturbances, closed-loop system ẋ = f(x, k(x) + d)
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In order to stabilize it, we first substitute u = ũ
x2+1 (a preliminary feedback

transformation), rendering the system linear with respect to the new input ũ:
ẋ = x+ ũ, and then we use ũ = −2x in order to obtain the closed-loop system
ẋ = −x. In other words, in terms of the original input u, we use the feedback
law:

k(x) =
−2x
x2 + 1

so that f(x, k(x)) = −x. This is a GAS system. Next, let us analyze the effect
of the disturbance input d. The system ẋ = f(x, k(x) + d) is:

ẋ = −x+ (x2 + 1) d .

As seen before, this system has solutions which diverge to infinity even for
inputs d that converge to zero; moreover, the constant input d ≡ 1 results
in solutions that explode in finite time. Thus k(x) = −2x

x2+1 was not a good
feedback law, in the sense that its performance degraded drastically once that
we took into account actuator disturbances.

The key observation for what follows is that, if we add a correction term
“−x” to the above formula for k(x), so that we now have:

k̃(x) =
−2x
x2 + 1

−x

then the system ẋ = f(x, k̃(x) + d) with disturbance d as input becomes,
instead:

ẋ = − 2x − x3 + (x2 + 1) d

and this system is much better behaved: it is still GAS when there are no
disturbances (it reduces to ẋ = −2x− x3) but, in addition, it is ISS (easy to
verify directly, or appealing to some of the characterizations mentioned later).
Intuitively, for large x, the term −x3 serves to dominate the term (x2 + 1)d,
for all bounded disturbances d(·), and this prevents the state from getting too
large.

2.12 A Feedback Redesign Theorem for Actuator Disturbances

This example is an instance of a general result, which says that, whenever
there is some feedback law that stabilizes a system, there is also a (possibly
different) feedback so that the system with external input d (Fig. 9) is ISS.

Theorem 2.1. [99] Consider a system affine in controls

ẋ = f(x, u) = g0(x) +
m∑
i=1

uigi(x) (g0(0) = 0)

and suppose that there is some differentiable feedback law u = k(x) so that
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�

�
� ẋ = f(x, u)

u = k̃(x)

��d

Fig. 9. Different feedback ISS-stabilizes

ẋ = f(x, k(x))

has x = 0 as a GAS equilibrium. Then, there is a feedback law u = k̃(x) such
that

ẋ = f(x, k̃(x) + d)

is ISS with input d(·).

The proof is very easy, once that the appropriate technical machinery has
been introduced: one starts by considering a smooth Lyapunov function V for
global asymptotic stability of the origin in the system ẋ = f(x, k(x)) (such a
V always exists, by classical converse theorems); then k̂(x) := −(LGV (x))T =
−(∇V (x)G(x))T , where G is the matrix function whose columns are the gi,
i = 1, . . . ,m and T indicates transpose, provides the necessary correction
term to add to k. This term has the same degree of smoothness as the vector
fields making up the original system. Somewhat less than differentiability of
the original k is enough for this argument: continuity is enough. However,
if no continuous feedback stabilizer exists, then no smooth V can be found.
(Continuous stabilization of nonlinear systems is basically equivalent to the
existence of what are called smooth control-Lyapunov functions, see, e.g.,
[103].) In that case, if only discontinuous stabilizers are available, the result
can still be generalized, see [79], but the situation is harder to analyze, since
even the notion of “solution” of the closed-loop system ẋ = f(x, k(x)) has to
be carefully defined.

There is also a redefinition procedure for systems that are not affine on
inputs, but the result as stated above is false in that generality, and is much
less interesting; see [101] for a discussion.

The above feedback redesign theorem is merely the beginning of the story.
See for instance the book [60], and the references given later, for many further
developments on the subjects of recursive feedback design, the “backstepping”
approach, and other far-reaching extensions.
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3 Equivalences for ISS

Mathematical concepts are useful when they are “natural” in the sense that
they can be equivalently stated in many different forms. As it turns out, ISS
can be shown to be equivalent to several other notions, including asymptotic
gain, existence of robustness margins, dissipativity, and an energy-like stability
estimate. We review these next.

3.1 Nonlinear Superposition Principle

Clearly, if a system is ISS, then the system with no inputs ẋ = f(x, 0) is GAS:
the term ‖u‖∞ vanishes, leaving precisely the GAS property. In particular,
then, the system ẋ = f(x, u) is 0-stable, meaning that the origin of the system
without inputs ẋ = f(x, 0) is stable in the sense of Lyapunov: for each ε > 0,
there is some δ > 0 such that |x0| < δ implies |x(t, x0)| < ε. (In comparison-
function language, one can restate 0-stability as: there is some γ ∈ K such
that |x(t, x0)| ≤ γ(|x0|) holds for all small x0.)

On the other hand, since β(|x0| , t) → 0 as t → ∞, for t large one has that
the first term in the ISS estimate |x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)} vanishes.
Thus an ISS system satisfies the following asymptotic gain property (“AG”):
there is some γ ∈ K∞ so that:

lim
t→+∞

|x(t, x0, u)| ≤ γ (‖u‖∞) ∀x0, u(·) (AG)

(see Fig. 10). In words, for all large enough t, the trajectory exists, and it
gets arbitrarily close to a sphere whose radius is proportional, in a possibly
nonlinear way quantified by the function γ, to the amplitude of the input. In
the language of robust control, the estimate (AG) would be called an “ultimate
boundedness” condition; it is a generalization of attractivity (all trajectories
converge to zero, for a system ẋ = f(x) with no inputs) to the case of systems
with inputs; the “lim sup” is required since the limit of x(t) as t → ∞ may
well not exist. From now on (and analogously when defining other properties),
we will just say “the system is AG” instead of the more cumbersome “satisfies
the AG property.”

Fig. 10. Asymptotic gain property
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Observe that, since only large values of t matter in the limsup, one can
equally well consider merely tails of the input u when computing its sup norm.
In other words, one may replace γ(‖u‖∞) by γ(limt→+∞ |u(t)|), or (since γ is
increasing), limt→+∞γ(|u(t)|).

The surprising fact is that these two necessary conditions are also sufficient.
We call this the ISS superposition theorem:

Theorem 3.1. [110] A system is ISS if and only if it is 0-stable and AG.

This result is nontrivial. The basic difficulty is in establishing uniform con-
vergence estimates for the states, i.e., in constructing the β function in the ISS
estimate, independently of the particular input. As in optimal control theory,
one would like to appeal to compactness arguments (using weak topologies
on inputs), but there is no convexity to allow this. The proof hinges upon a
lemma given in [110], which may be interpreted [41] as a relaxation theorem
for differential inclusions, relating global asymptotic stability of an inclusion
ẋ ∈ F (x) to global asymptotic stability of its convexification.

A minor variation of the above superposition theorem is as follows. Let us
consider the limit property (LIM):

inf
t≥0

|x(t, x0, u)| ≤ γ(‖u‖∞) ∀x0, u(·) (LIM)

(for some γ ∈ K∞).

Theorem 3.2. [110] A system is ISS if and only if it is 0-stable and LIM.

3.2 Robust Stability

Let us call a system robustly stable if it admits a margin of stability ρ, by
which we mean some smooth function ρ ∈ K∞ which is such that the system

ẋ = g(x, d) := f(x, dρ(|x|))

is GAS uniformly in this sense: for some β ∈ KL,

|x(t, x0, d)| ≤ β(|x0| , t)

for all possible d(·) : [0,∞) → [−1, 1]m. An alternative way to interpret this
concept (cf. [109]) is as uniform global asymptotic stability of the origin with
respect to all possible time-varying feedback laws ∆ bounded by ρ: |∆(t, x)| ≤
ρ(|x|). In other words, the system

ẋ = f(x,∆(t, x))

(Fig. 11) is stable uniformly over all such perturbations ∆. In contrast to the
ISS definition, which deals with all possible “open-loop” inputs, the present
notion of robust stability asks about all possible closed-loop interconnections.
One may think of∆ as representing uncertainty in the dynamics of the original
system, for example.
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Fig. 11. Margin of robustness

Theorem 3.3. [109] A system is ISS if and only if it is robustly stable.

Intuitively, the ISS estimate |x(t)| ≤ max {β(|x0|, t), γ (‖u‖∞)} tells us
that the β term dominates as long as |u(t)| $ |x(t)| for all t, but |u(t)| $ |x(t)|
amounts to u(t) = d(t).ρ(|x(t)|) with an appropriate function ρ. This is an
instance of a “small gain” argument, about which we will say more later.

One analog for linear systems is as follows: if A is a Hurwitz matrix, then
A+Q is also Hurwitz, for all small enough perturbations Q; note that when
Q is a nonsingular matrix, |Qx| is a K∞ function of |x|.

3.3 Dissipation

Another characterization of ISS is as a dissipation notion stated in terms of
a Lyapunov-like function.

We will say that a continuous function V : IRn → IR is a storage function
if it is positive definite, that is, V (0) = 0 and V (x) > 0 for x �= 0, and
proper, that is, V (x) → ∞ as |x| → ∞. This last property is equivalent to the
requirement that the sets V −1([0, A]) should be compact subsets of IRn, for
each A > 0, and in the engineering literature it is usual to call such functions
radially unbounded . It is an easy exercise to show that V : IRn → IR is a
storage function if and only if there exist α, α ∈ K∞ such that

α(|x|) ≤ V (x) ≤ α(|x|) ∀x ∈ IRn

(the lower bound amounts to properness and V (x) > 0 for x �= 0, while the
upper bound guarantees V (0) = 0). We also use this notation: V̇ : IRn×IRm →
IR is the function:

V̇ (x, u) := ∇V (x).f(x, u)

which provides, when evaluated at (x(t), u(t)), the derivative dV/dt along
solutions of ẋ = f(x, u).

An ISS-Lyapunov function for ẋ = f(x, u) is by definition a smooth storage
function V for which there exist functions γ, α ∈ K∞ so that

V̇ (x, u) ≤ −α(|x|) + γ(|u|) ∀x, u . (L-ISS)
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In other words, an ISS-Lyapunov function is a smooth (and proper and
positive definite) solution of a partial differential inequality of this form, for
appropriate α, γ. Integrating, an equivalent statement is that, along all tra-
jectories of the system, there holds the following dissipation inequality:

V (x(t2)) − V (x(t1)) ≤
∫ t2

t1

w(u(s), x(s)) ds

where, using the terminology of [126], the “supply” function is w(u, x) =
γ(|u|)−α(|x|). Note that, for systems with no inputs, an ISS-Lyapunov func-
tion is precisely the same as a Lyapunov function in the usual sense. Massera’s
Theorem says that GAS is equivalent to the existence of smooth Lyapunov
functions; the following theorem provides a generalization to ISS:

Theorem 3.4. [109] A system is ISS if and only if it admits a smooth ISS-
Lyapunov function.

Since −α(|x|) ≤ −α(α−1(V (x))), the ISS-Lyapunov condition can be re-
stated as

V̇ (x, u) ≤ −α̃(V (x)) + γ(|u|) ∀x, u
for some α̃ ∈ K∞. In fact, one may strengthen this a bit [93]: for any ISS
system, there is a always a smooth ISS-Lyapunov function satisfying the “ex-
ponential” estimate V̇ (x, u) ≤ −V (x) + γ(|u|).

The sufficiency of the ISS-Lyapunov condition is easy to show, and was
already in the original paper [99]. A sketch of proof is as follows, assuming
for simplicity a dissipation estimate in the form V̇ (x, u) ≤ −α(V (x))+γ(|u|).
Given any x and u, either α(V (x)) ≤ 2γ(|u|) or V̇ ≤ −α(V )/2. From here,
one deduces by a comparison theorem that, along all solutions,

V (x(t)) ≤ max
{
β(V (x0), t) , α−1(2γ(‖u‖∞))

}
,

where we have defined the KL function β(s, t) as the solution y(t) of the initial
value problem

ẏ = −1
2
α(y) + γ(u) , y(0) = s .

Finally, an ISS estimate is obtained from V (x0) ≤ α(x0).
The proof of the converse part of the theorem is much harder. It is based

upon first showing that ISS implies robust stability in the sense already dis-
cussed, and then obtaining a converse Lyapunov theorem for robust stability
for the system ẋ = f(x, dρ(|x|)) = g(x, d), which is asymptotically stable uni-
formly on all Lebesgue-measurable functions d(·) : IR≥0 → B(0, 1). This last
theorem was given in [73], and is basically a theorem on Lyapunov functions
for differential inclusions. A classical result of Massera [84] for differential
equations becomes a special case.
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3.4 Using “Energy” Estimates Instead of Amplitudes

In linear control theory, H∞ theory studies L2 → L2 induced norms. We
already saw that, under coordinate changes, we are led to the following type
of estimate:

∫ t

0

α (|x(s)|)) ds ≤ α0(|x0|) +
∫ t

0

γ(|u(s)|) ds

along all solutions, and for some α, α0, γ ∈ K∞. More precisely, let us say,
just for the purposes of the next theorem, that a system satisfies an integral–
integral estimate if for every initial state x0 and input u, the solution x(t, x0, u)
is defined for all t > 0 and an estimate as above holds. (In contrast to ISS, we
now have to explicitly demand that tmax = ∞.)

Theorem 3.5. [102] A system is ISS if and only if it satisfies an integral–
integral estimate.

This theorem is quite easy, in view of previous results. A sketch of proof
is as follows. If the system is ISS, then there is an ISS-Lyapunov function
satisfying V̇ (x, u) ≤ −V (x) + γ(|u|), so, integrating along any solution we
obtain
∫ t

0

V (x(s)) ds ≤
∫ t

0

V (x(s)) ds + V (x(t)) ≤ V (x(0)) +
∫ t

0

γ(|u(s)|) ds

and thus an integral–integral estimate holds. Conversely, if such an estimate
holds, one can prove that ẋ = f(x, 0) is stable and that an asymptotic gain
exists. We show here just the “limit property” inft≥0 |x(t)| ≤ θ(‖u‖∞). Indeed,
let θ := α−1 ◦ γ. Pick any x0 and u, and suppose that inft≥0 |x(t)| > (α−1 ◦
γ)(‖u‖), so that there is some ε > 0 so that α(x(t)) ≥ ε + γ(|u(t)|) for all
t ≥ 0. Then,

∫ t
0
α(x(s))ds ≥ εt +

∫ t
0
γ(|u(s)|)ds, which implies α0(|x0|) >

εt for all t, a contradiction. Therefore, the LIM property holds with this
choice of θ.

4 Cascade Interconnections

One of the main features of the ISS property is that it behaves well under
composition: a cascade (Fig. 12) of ISS systems is again ISS, see [99]. In
this section, we will sketch how the cascade result can also be seen as a
consequence of the dissipation characterization of ISS, and how this suggests
a more general feedback result. We will not provide any details of the rich
theory of ISS small-gain theorems, and their use in nonlinear feedback design,
for which the references should be consulted, but we will present a very simple
example to illustrate the ideas. We consider a cascade as follows:
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Fig. 12. Cascade
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Fig. 13. Adding a feedback to the cascade

ż = f(z, x),
ẋ = g(x, u),

where each of the two subsystems is assumed to be ISS. Each system admits
an ISS-Lyapunov function Vi. But, moreover, it is always possible (see [106])
to redefine the Vi’s so that the comparison functions for both are matched in
the following way:

V̇1(z, x) ≤ θ(|x|) − α(|z|),
V̇2(x, u) ≤ θ̃(|u|) − 2θ(|x|) .

Now it is obvious why the full system is ISS: we simply use V := V1 + V2 as
an ISS-Lyapunov function for the cascade:

V̇ ((x, z), u) ≤ θ̃(|u|) − θ(|x|) − α(|z|) .
Of course, in the special case in which the x-subsystem has no inputs, we have
also proved that the cascade of a GAS and an ISS system is GAS.

More generally, one may allow a “small gain” feedback as well (Fig. 13).
That is, we allow inputs u = k(z) as long as they are small enough:

|k(z)| ≤ θ̃−1((1 − ε)α(|z|)) .
The claim is that the closed-loop system

ż = f(z, x)
ẋ = g(x, k(x))

is GAS. This follows because the same V is a Lyapunov function for the
closed-loop system; for (x, z) �= 0:

θ̃(|u|) ≤ (1 − ε)α(|z|) � V̇ (x, z) ≤ −θ(|x|) − εα(|z|) < 0 . �
A much more interesting version of this result, resulting in a composite system
with inputs being itself ISS, is the ISS small-gain theorem due to Jiang, Teel,
and Praly [53].
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4.1 An Example of Stabilization Using the ISS Cascade Approach

We consider a model of a rigid body in 3-space (Fig. 14), controlled by two
torques acting along principal axes. This is a simple model of a satellite con-
trolled by an opposing jet pair. If we denote by ω = (ω1, ω2, ω3) the angular
velocity of a body-attached frame with respect to inertial coordinates, and let
I = diag(I1, I2, I3) be the principal moments of inertia, the equations are:

Iω̇ =

⎛
⎝ 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎠ Iω +

⎛
⎝0 0

1 0
0 1

⎞
⎠u

Ignoring kinematics, we just look at angular momenta, and we look for a
feedback law to globally stabilize this system to ω = 0. Under feedback and
coordinate transformations, one can bring this into the following form of a
system in IR3 with controls in IR2:

ẋ1 = x2x3,

ẋ2 = u1,

ẋ3 = u2 .

(We assume that I2 �= I3, and use these transformations: (I2 − I3)x1=I1ω1,
x2=ω2, x3=ω3, I2ũ1=(I3−I1)ω1ω2 +u1, I3ũ2=(I1−I2)ω1ω3 +u2.) Our claim
is that the following feedback law globally stabilizes the system:

u1 = −x1 − x2 − x2x3

u2 = −x3 + x2
1 + 2x1x2x3 .

Indeed, as done in [18] for the corresponding local problem, we make the
following transformations: z2 := x1+x2, z3 := x3−x2

1, so the system becomes:

Fig. 14. Rigid body
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ẋ1 = −x3
1 + α(x1, z2, z3) (degx1

α ≤ 2),
ż2 = −z2,
ż3 = −z3 .

Now, the x1-subsystem is easily seen to be ISS, and the z1, z2 subsystem is
clearly GAS, so the cascade is GAS. Moreover, a similar construction produces
a feedback robust with respect to input disturbances.

5 Integral Input-to-State Stability

We have seen that several different properties, including “integral to integral”
stability, dissipation, robust stability margins, and asymptotic gain proper-
ties, all turned out to be exactly equivalent to input to state stability. Thus,
it would appear to be difficult to find a general and interesting concept of
nonlinear stability that is truly distinct from ISS. One such concept, however,
does arise when considering a mixed notion which combines the “energy” of
the input with the amplitude of the state. It is obtained from the “L2 → L∞”
gain estimate, under coordinate changes, and it provides a genuinely new
concept [102].

A system is said to be integral-input to state stable (iISS) provided that
there exist α, γ ∈ K∞ and β ∈ KL such that the estimate

α (|x(t)|) ≤ β(|x0| , t) +
∫ t

0

γ(|u(s)|) ds (iISS)

holds along all solutions. Just as with ISS, we could state this property merely
for all times t ∈ tmax(x0, u), but, since the right-hand side is bounded on each
interval [0, t] (because, recall, inputs are by definition assumed to be bounded
on each finite interval), it is automatically true that tmax(x0, u) = +∞ if such
an estimate holds along maximal solutions. So forward-completeness can be
assumed with no loss of generality.

5.1 Other Mixed Notions

We argued that changes of variables transformed linear “finite L2 gain” es-
timates into an “integral to integral” property, which we then found to be
equivalent to the ISS property. On the other hand, finite operator gain from
Lp to Lq, with p �= q both finite, lead one naturally to the following type of
“weak integral to integral” mixed estimate:

∫ t

0

α(|x(s)|) ds ≤ κ(|x0|) + α

(∫ t

0

γ(|u(s)|) ds
)

for appropriate K∞ functions (note the additional “α”). See [12] for more
discussion on how this estimate is reached, as well as the following result:
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Theorem 5.1. [12] A system satisfies a weak integral to integral estimate if
and only if it is iISS.

Another interesting variant is found when considering mixed integral/
supremum estimates:

α(|x(t)| ≤ β(|x0|, t) +
∫ t

0

γ1(|u(s)|) ds + γ2(‖u‖∞)

for suitable β ∈ KL and α, γi ∈ K∞. One then has:

Theorem 5.2. [12] A system satisfies a mixed estimate if and only if it is
iISS.

5.2 Dissipation Characterization of iISS

There is an amazingly elegant characterization of iISS, as follows. Recall that
by a storage function we mean a continuous V : IRn → IR which is positive
definite and proper. Following [11], we will say that a smooth storage function
V is an iISS-Lyapunov function for the system ẋ = f(x, u) if there are a
γ ∈ K∞ and an α : [0,+∞) → [0,+∞) which is merely positive definite (that
is, α(0) = 0 and α(r) > 0 for r > 0) such that the inequality:

V̇ (x, u) ≤ −α(|x|) + γ(|u|) (L-iISS)

holds for all (x, u) ∈ IRn × IRm. By contrast, recall that an ISS-Lyapunov
function is required to satisfy an estimate of the same form but where α is
required to be of class K∞; since every K∞ function is positive definite, an
ISS-Lyapunov function is also an iISS-Lyapunov function.

Theorem 5.3. [11] A system is iISS if and only if it admits a smooth iISS-
Lyapunov function.

Since an ISS-Lyapunov function is also an iISS one, ISS implies iISS. How-
ever, iISS is a strictly weaker property than ISS, because α may be bounded
in the iISS-Lyapunov estimate, which means that V may increase, and the
state become unbounded, even under bounded inputs, so long as γ(|u(t)|) is
larger than the range of α. This is also clear from the iISS definition, since a
constant input with |u(t)| = r results in a term in the right-hand side that
grows like rt. As a concrete example using a nontrivial V , consider the system

ẋ = −tan−1x + u,

which is not ISS, since u(t) ≡ π/2 results in unbounded trajectories. This
system is nonetheless iISS: if we pick V (x) = x tan−1x, then

V̇ ≤ −(tan−1 |x|)2 + 2 |u|
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so V is an iISS-Lyapunov function. An interesting general class of examples
is given by bilinear systems

ẋ =

(
A+

m∑
i=1

uiAi

)
x + Bu

for which the matrix A is Hurwitz. Such systems are always iISS (see [102]),
but they are not in general ISS. For instance, in the case whenB = 0, bounded-
ness of trajectories for all constant inputs already implies that A+

∑m
i=1 uiAi

must have all eigenvalues with nonpositive real part, for all u ∈ IRm, which is
a condition involving the matrices Ai (for example, ẋ = −x + ux is iISS but
it is not ISS).

The notion of iISS is useful in situations where an appropriate notion of
detectability can be verified using LaSalle-type arguments. There follow two
examples of theorems along these lines.

Theorem 5.4. [11] A system is iISS if and only if it is 0-GAS and there is
a smooth storage function V such that, for some σ ∈ K∞:

V̇ (x, u) ≤ σ(|u|)

for all (x, u).

The sufficiency part of this result follows from the observation that the 0-
GAS property by itself already implies the existence of a smooth and positive
definite, but not necessarily proper, function V0 such that V̇0 ≤ γ0(|u|) −
α0(|x|) for all (x, u), for some γ0 ∈ K∞ and positive definite α0 (if V0 were
proper, then it would be an iISS-Lyapunov function). Now one uses V0 + V
as an iISS-Lyapunov function (V provides properness).

Theorem 5.5. [11] A system is iISS if and only if there exists an output func-
tion y = h(x) (continuous and with h(0) = 0) which provides zero-detectability
(u ≡ 0 and y ≡ 0 ⇒ x(t) → 0) and dissipativity in the following sense: there
exists a storage function V and σ ∈ K∞, α positive definite, so that:

V̇ (x, u) ≤ σ(|u|) − α(h(x))

holds for all (x, u).

The paper [12] contains several additional characterizations of iISS.

5.3 Superposition Principles for iISS

We now discuss asymptotic gain characterizations for iISS.
We will say that a system is bounded energy weakly converging state (BE-

WCS) if there exists some σ ∈ K∞ so that the following implication holds:
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∫ +∞

0

σ(|u(s)|) ds < +∞ ⇒ lim inf
t→+∞

|x(t, x0, u)| = 0 (BEWCS)

(more precisely: if the integral is finite, then tmax(x0, u) = +∞ and the liminf
is zero), and that it is bounded energy frequently bounded state (BEFBS) if
there exists some σ ∈ K∞ so that the following implication holds:
∫ +∞

0

σ(|u(s)|) ds < +∞ ⇒ lim inf
t→+∞

|x(t, x0, u)| < +∞ (BEFBS)

(again, meaning that tmax(x0, u) = +∞ and the liminf is finite).

Theorem 5.6. [6] The following three properties are equivalent for any given
system ẋ = f(x, u):

• The system is iISS
• The system is BEWCS and 0-stable
• The system is BEFBS and 0-GAS

These characterizations can be obtained as consequences of characteriza-
tions of input/output to state stability (IOSS), cf. Sect. 8.4. The key obser-
vation is that a system is iISS with input gain (the function appearing in the
integral) σ if and only if the following auxiliary system is IOSS with respect
to the “error” output y = e:

ẋ = f(x, u)
ė = σ(|u|) .

The proof of this equivalence is trivial, so we include it here. If the system is
iISS, then:

α(|x(t, x0, u)|) ≤ β(|x0| , t) +
∫ t

0

σ(|u(s)|) ds = β(|x0| , t) + e(t) − e(0)

≤ β(|x0| , t) + 2‖y[0,t]‖∞

and, conversely, if it is IOSS, then for any x0 and picking e(0) = 0, we have:

|x(t, x0, u)| ≤ β(|(x0, 0)| , t) + γ(‖u‖∞) + ‖y[0,t]‖∞

≤ β(|x0| , t) + γ(‖u‖∞) +
∫ t

0

σ(|u|) ds .

5.4 Cascades Involving iISS Systems

We have seen that cascades of ISS systems are ISS, and, in particular, any
system of the form:

ẋ = f(x, z)
ż = g(z)
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for which the x-subsystem is ISS when z is viewed as an input and the g-
subsystem is GAS, is necessarily GAS. This is one of the most useful prop-
erties of the ISS notion, as it allows proving stability of complex systems
by a decomposition approach. The iISS property on the first subsystem, in
contrast, is not strong enough to guarantee that the cascade is GAS. As an
illustration, consider the following system:

ẋ = −sat(x) + xz,

ż = −z3 ,

where sat(x) := sgn(x)min{1, |x|}. It is easy to see that the x-subsystem with
input z is iISS, and the z-subsystem is clearly GAS. On the other hand [13],
if we pick z(0) = 1 and any x(0) ≥ 3, then x(t) ≥ e(

√
1+2t−1), so x(t) → ∞

as t → ∞; so the complete system is not GAS. However, under additional
conditions, it is possible to obtain a cascade result for a system of the above
form. One such result is as follows.

Theorem 5.7. [13] Suppose that the x-subsystem is iISS and affine in z,
and that the z-subsystem is GAS and locally exponentially stable. Then, the
cascade is GAS.

Note that the counterexample shown above is so that the x-subsystem is
indeed affine in z, but the exponential stability property fails. This theorem
is a consequence of a more general result, which is a bit technical to state.
We first need to introduce two concepts. The first one qualifies the speed of
convergence in the GAS property, and serves to relax exponential stability:
we say that the system ż = g(z) is GAS(α), for a given α ∈ K∞, if there exists
a class-K∞ function θ(·) and a positive constant k > 0 so that

|z(t)| ≤ α
(
e−ktθ(|z0|)

)
holds for all z0. (Recall that GAS is always equivalent to the existence of some
α and θ like this.) The second concept is used to characterize the function γ
appearing in the integral in the right-hand side of the iISS estimate, which
we call the “iISS gain” of the system: given any α ∈ K∞, we say that the
function γ is “class-Hα” if it is of class K and it also satisfies:

∫ 1

0

(γ(α(s))
s

ds < ∞ .

The main result says that if the same α can be used in both definitions, then
the cascade is GAS:

Theorem 5.8. [13] Suppose that the x-subsystem is iISS with a class-Hα

iISS gain, and that the z-subsystem is GAS(α). Then, the cascade is GAS.

See [13] for various corollaries of this general fact, which are based upon
checking that the hypotheses are always satisfied, for example for the above-
mentioned case of x- subsystem affine in z and exponentially stable z- sub-
system.
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5.5 An iISS Example

As an example of the application of iISS ideas, we consider as in [11] a robotic
device studied by Angeli in [3]. This is a manipulator with one rotational and
one linear actuator (Fig. 15). A simple model is obtained considering the arm
as a segment with mass M and length L, and the hand as a material point
with mass m. The equations for such a system are four-dimensional, using
as state variables angular position and velocity θ, θ̇ and linear extension and
velocity r, ṙ, and they follow from the second order equation

(mr2 +ML2/3) θ̈ + 2mrṙθ̇ = τ

mr̈ −mrθ̇2 = F ,

where the controls are the torque τ and linear force F . We write the state
as (q, q̇), with q = (θ, r), We wish to study the standard tracking feedback
controller with equations

τ = −k1θ̇ − k2(θ − θd) , F = −k3ṙ − k4(r − rd)

where qd, rd are the desired trajectories. It is well-known that, for constant
tracking signals qd, rd, one obtains convergence: q̇ → 0 and q → qd as t → ∞.
In the spirit of the ISS approach, however, it is natural to ask what is the
sensitivity of the design to additive measurement noise, or equivalently, since
these errors are potentially arbitrary functions, what is the effect of time-
varying tracking signals. One could ask if the system is ISS, and indeed the
paper [83] proposed the reformulation of tracking problems using ISS as a way
to characterize performance.

It turns out that, for this example, even bounded signals may destabilize
the system, by a sort of “nonlinear resonance” effect, so the system cannot be
ISS (not even bounded-input bounded-state) with respect to qd and rd. Fig. 16
plots a numerical example of a de-stabilizing input; the corresponding r(t)-
component is in Fig. 17. To be precise, the figures show the “r” component of
the state of a certain solution which corresponds to the shown input; see [11]

θ

r F

τ

m

M

Fig. 15. A linear/rotational actuated arm
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Fig. 16. Destabilizing input

Fig. 17. Corresponding r(·)

for details on how this input and trajectory were calculated. Thus, the question
arises of how to qualitatively formulate the fact that some other inputs are not
destabilizing. We now show that iISS provides one answer to this question,

In summary, we wish to show that the closed loop system

(mr2 +ML2/3)θ̈ + 2mrṙθ̇ = u1 − k1θ̇ − k2θ,

mr̈ −mrθ̇2 = u2 − k3ṙ − k4r,

with states (q, q̇), q = (θ, r), and u = (k2θd, k4rd) is iISS.
In order to do so, we consider the mechanical energy of the system:

V (q, z) :=
1
2
q̇TH(q)q̇ +

1
2
qTKq

and note [11] the following passivity-type estimate:

d

dt
V (q(t), q̇(t)) ≤ −c1|q̇(t)|2 + c2 |u(t)|2

for sufficiently small c1 > 0 and large c2 > 0. Taking q̇ as an output, the
system is zero-detectable and dissipative, since u ≡ 0 and q̇ ≡ 0 imply q ≡ 0,
and hence, appealing to the given dissipation characterizations, we know that
it is indeed iISS.
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6 Input to State Stability with Respect to Input
Derivatives

The ISS property imposes a very strong requirement, in that stable behavior
must hold with respect to totally arbitrary inputs. Often, on the other hand,
only stability with respect to specific classes of signals is expected. An example
is in regulation problems, where disturbance rejection is usually formulated in
terms of signals generated by a given finite-dimensional exosystem. Another
example is that of parameter drift in adaptive control systems, where bounds
on rates of change of parameters (which we may see as inputs) are imposed.
This question motivated the work in [10] on ISS notions in which one asks,
roughly, that x(t) should be small provided that u and its derivatives of some
fixed order be small, but not necessarily when just u is small. The precise
definition is as follows.

For any given nonnegative integer k, we say that the system ẋ = f(x, u) is
differentiably k-ISS (DkISS) if there exist β ∈ KL and γi ∈ K∞, i = 0, . . . , k,
such that the estimate:

|x(t, x0, u)| ≤ β(|x0| , t) +
k∑
i=0

γi

(
‖u(i)‖∞

)
(DkISS)

holds for all x0, all inputs u ∈ W k,∞, and all t ∈ tmax(x0, u). (By W k,∞ we are
denoting the Sobolev space of functions u: [0,∞)→IRm for which the (k−1)st
derivative u(k−1) exists and is locally Lipschitz, which means in particular that
u(k) exists almost everywhere and is locally essentially bounded.) As with the
ISS property, forward completeness is automatic, so one can simply say “for
all t” in the definition. Notice that D0ISS is the same as plain ISS, and that,
for every k, DkISS implies Dk+1ISS.

6.1 Cascades Involving the DkISS Property

Consider any cascade as follows:

ẋ = f(x, z)
ż = g(z, u)

where we assume that g is smooth. The following result generalizes the fact
that cascading ISS and GAS subsystems gives a GAS system.

Theorem 6.1. [10] If each subsystem is DkISS, then the cascade is DkISS.
In particular the cascade of a DkISS and a GAS system is GAS.

Actually, somewhat less is enough: the x-subsystem need only be Dk+1ISS,
and we may allow the input to appear in this subsystem.

It is not difficult to see that a system is D1ISS if and only if the following
system:
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ẋ = f(x, z)
ż = −z + u

is ISS, and recursively one can obtain a similar characterization of DkISS.
More generally, a system is DkISS if and only if it is Dk−1ISS when cascaded
with any ISS “smoothly invertible filter” as defined in [10]. Also very useful is
a close relationship with the IOSS concept studied in Sect. 8.2. Consider the
following auxiliary system with input u and output y:

ẋ = f(x, u0)
u̇0 = u1

...
...

u̇k−1 = uk

y = [u0, u1, . . . , uk−1].

Theorem 6.2. [10] The auxiliary system is IOSS if and only if the original
system is DkISS.

The paper [10] also discusses some relations between the notion of D1ISS
and ISS, for systems of the special form ẋ = f(x + u), which are of interest
when studying observation uncertainty.

6.2 Dissipation Characterization of DkISS

Theorem 6.3. [10] A system is D1ISS if and only if there exists a smooth
function V (x, u) such that, for some α, δ0, δ1, α1, α2 ∈ K∞,

α1(|x| + |u|) ≤ V (x, u) ≤ α2(|x| + |u|)

and

DxV (x, u) f(x, u) +DuV (x, u)u̇ ≤ −α(|x|) + δ0(|u|) + δ1(|u̇|)

for all (x, u, u̇) ∈ IRn × IRm × IRm.

Notice that “u̇” is just a dummy variable in the above expression. Analo-
gous characterizations hold for DkISS.

6.3 Superposition Principle for DkISS

We will say that a forward-complete system satisfies the k-asymptotic gain (k-
AG) property if there are some γ0, γ1, . . . , γk ∈ K so that, for all u ∈ W k,∞,
and all x0, the estimate

lim
t→∞

|x(t, ξ, u)| ≤ γ0(‖u‖∞) + γ1(‖u̇‖∞) + . . .+ γk(‖u(k)‖∞)

holds.

Theorem 6.4. [10] A system is DkISS if and only if it is 0-stable and k-AG.
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6.4 A Counter-Example Showing that D1ISS �= ISS

Consider the following system:

ẋ = ‖x‖2 U(θ)′ ΦU(θ)x,

where x ∈ IR2, and u = θ(·) is the input,

U(θ) =
[

sin(θ) cos(θ)
− cos(θ) sin(θ)

]
,

and where Φ is any 2×2 Hurwitz matrix such that Φ′+Φ has a strictly positive
real eigenvalue. It is shown in [10] that this system is not forward complete,
and in particular it is not ISS, but that it is D1ISS. This latter fact is shown
by proving, through the construction of an explicit ISS-Lyapunov function,
that the cascaded system

ẋ = ‖x‖2 U(θ)′ ΦU(θ)x, θ̇ = −θ + u

is ISS.
It is still an open question if D2ISS is strictly weaker than D1ISS, and

more generally Dk+1ISS than DkISS for each k.

7 Input-to-Output Stability

Until now, we only discussed stability of states with respect to inputs. For
systems with outputs ẋ = f(x, u), y = h(x), if we simply replace states by
outputs in the left-hand side of the estimate defining ISS, we then arrive to
the notion of input-to-output stability (IOS): there exist some β ∈ KL and
γ ∈ K∞ such that

|y(t)| ≤ β(|x0| , t) + γ (‖u‖∞) (IOS)

holds for all solutions, where y(t) = h(x(t, x0, u)). By “all solutions” we mean
that this estimate is valid for all inputs u(·), all initial conditions x0, and
all t ≥ 0, and we are imposing as a requirement that the system be forward
complete, i.e., tmax(x0, u) = ∞ for all initial states x0 and inputs u. As earlier,
x(t), and hence y(t) = h(x(t)), depend only on past inputs (“causality”), so
we could have used just as well simply the supremum of |u(s)| for s ≤ t in the
estimate.

We will say that a system is bounded-input bounded-state stable (BIBS) if,
for some σ ∈ K∞, the following estimate:

|x(t)| ≤ max {σ(|x0|), σ(‖u‖∞)}

holds along all solutions. (Note that forward completeness is a consequence
of this inequality, even if it is only required on maximal intervals, since the
state is upper bounded by the right-hand side expression.)
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We define an IOS-Lyapunov function as any smooth function V : IRn →
IR≥0 so that, for some αi ∈ K∞:

α1(|h(x)|) ≤ V (x) ≤ α2(|x|) ∀ x ∈ IRn, u ∈ IRm

and, for all x, u:

V (x) > α3(|u|) ⇒ ∇V (x) f(x, u) < 0 .

Theorem 7.1. [113] A BIBS system is IOS if and only if it admits an IOS-
Lyapunov function.

A concept related to IOS is as follows. We call a system robustly output
stable (ROS) if it is BIBS and there is some smooth λ ∈ K∞ such that

ẋ = g(x, d) := f(x, dλ(|y|)) , y = h(x)

is globally output-asymptotically stable uniformly with respect to all d(·) :
[0,∞) → [−1, 1]m: for some β ∈ KL,

|y(t, x0, d)| ≤ β(|x0| , t)

for all solutions. Then, IOS implies ROS, but the converse does not hold in
general [112]. We have the following dissipation characterization of ROS:

Theorem 7.2. [113] A system is ROS if and only if it is BIBS and there are
α1, α2 ∈ K∞, χ ∈ K, and α3 ∈ KL, and a smooth function V : IRn → IR, so
that

α1(|h(x)|) ≤ V (x) ≤ α2(|x|)
and

|h(x)| ≥ χ(|u|) ⇒ V̇ ≤ −α3(V (x), |x|)
for all (x, u).

The area of partial stability studies stability of a subset of variables in
a system ẋ = f(x). Letting y = h(x) select the variables of interest, one
may view partial stability as a special case of output stability, for systems
with no inputs. Note that, for systems with no inputs, the partial differential
inequality for IOS reduces to ∇V (x) f(x) < 0 for all nonzero x, and that for
ROS to V̇ ≤ −α3(V (x), |x|). In this way, the results in [113] provide a far-
reaching generalization of, and converse theorems to, sufficient conditions [125]
for partial stability.

There is also a superposition principle for IOS. We will say that a forward-
complete system satisfies the output asymptotic gain (OAG) property if

lim
t→∞

|y(t)| ≤ γ(‖u‖∞) (OAG)

for some γ ∈ K∞ and all solutions. One would like to have a characterization of
IOS in terms of OAG, which is an analog of the AG gain property in the state
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case, and a stability property. Let us define a system to be output-Lagrange
stable (OL) if it satisfies an estimate, for some σ ∈ K∞:

|y(t)| ≤ σ(|y(0)|) + σ(‖u‖∞)

along all solutions. Under this assumption, we recover a separation principle:

Theorem 7.3. [6] An OL system is OAG if and only if it is IOS.

Observe that the OL property asks that the output be uniformly bounded
in terms of the amplitudes of the input and of the initial output (not of the
initial state), which makes this property a very strong constraint. If we weaken
the assumption to an estimate of the type

|y(t)| ≤ σ(|x0|) + σ(‖u‖∞)

then IOS implies the conjunction of OL and this property, but the converse
fails, as shown by the following counter-example, a system with no inputs:

ẋ1 = −x2 |x2| , ẋ2 = x1 |x2| , y = x2 .

The set of equilibria is {x2 = 0}, and trajectories are half circles traveled
counterclockwise. We have that |y(t)| ≤ |x(0)| for all solutions, and y(t) → 0
as t → ∞, so both properties hold. However, there is no possible IOS estimate
|y(t)| ≤ β(|x0| , t), since, in particular, for a state of the form x(0) = (1, ε),
the time it takes for y(·) to enter an ε-neighborhood of 0 goes to ∞ as ε → 0;
see [6] for more discussion.

8 Detectability and Observability Notions

Recall (see [104] for precise definitions) that an observer for a given system
with inputs and outputs ẋ = f(x, u), y = h(x) is another system which,
using only information provided by past input and output signals, provides an
asymptotic (i.e., valid as t → ∞) estimate x̂(t) of the state x(t) of the system of
interest (Fig. 18). One may think of the observer as a physical system or as an
algorithm implemented by a digital computer. The problem of state estimation
is one of the most important and central topics in control theory, and it arises

� �

�
�u y

x
x̂

Fig. 18. Observer provides estimate x̂ of state x; x̂(t) − x(t) → 0 as t → ∞
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in signal processing applications (Kalman filters) as well as when solving the
problem of stabilization based on partial information. It is well understood for
linear systems, but, a huge amount of research notwithstanding, the theory
of observers is not as developed in general.

We will not say much about the general problem of building observers,
which is closely related to “incremental” ISS-like notions, a subject not yet
studied enough, but will focus on an associated but easier question. When
the ultimate goal is that of stabilization to an equilibrium, let us say x = 0
in Euclidean space, sometimes a weaker type of estimate suffices: it may be
enough to obtain a norm-estimator which provides merely an upper bound
on the norm |x(t)| of the state x(t); see [50, 57, 93]. Before defining norm-
estimators, and studying their existence, we need to introduce an appropriate
notion of detectability.

8.1 Detectability

Suppose that an observer exists, for a given system. Since x0 = 0 is an equi-
librium for ẋ = f(x, 0), and also h(0) = 0, the solution x(t) ≡ 0 is consistent
with u ≡ 0 and y ≡ 0. Thus, the estimation property x̂(t) − x(t) → 0 implies
that x̂(t) → 0. Now consider any state x0 for which u ≡ 0 and y ≡ 0, that
is, so that h(x(t, x0, 0)) ≡ 0. The observer output, which can only depend
on u and y, must be the same x̂ as when x0 = 0, so x̂(t) → 0; then, using
once again the definition of observer x̂(t) − x(t, x0, 0) → 0, we conclude that
x(t, x0, 0) → 0. In summary, a necessary condition for the existence of an
observer is that the “subsystem” of ẋ = f(x, u), y = h(x) consisting of those
states for which u ≡ 0 produces the output y ≡ 0 must have x = 0 as a GAS
state (Fig. 19); one says in that case that the system is zero-detectable. (For
linear systems, zero-detectability is equivalent to detectability or “asymptotic
observability” [104]: two trajectories which produce the same output must ap-
proach each other. But this equivalence need not hold for nonlinear systems.)
In a nonlinear context, zero-detectability is not “well-posed” enough: to get
a well-behaved notion, one should add explicit requirements to ask that small
inputs and outputs imply that internal states are small too (Fig. 20), and that
inputs and outputs converging to zero as t → ∞ implies that states do, too
(Fig. 21), These properties are needed so that “small” errors in measurements
of inputs and outputs processed by the observer give rise to small errors.
Furthermore, one should impose asymptotic bounds on states as a function

� �u ≡ 0
⇒ x → 0

y ≡ 0

Fig. 19. Zero-detectability
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� �u ≈ 0
⇒ x ≈ 0

y ≈ 0

Fig. 20. Small inputs and outputs imply small states

� �u → 0
⇒ x → 0

y → 0

Fig. 21. Converging inputs and outputs imply convergent states

of input/output bounds, and it is desirable to quantify “overshoot” (transient
behavior). This leads us to the following notion.

8.2 Dualizing ISS to OSS and IOSS

A system is input/output to state stable (IOSS) if, for some β ∈ KL and
γu, γy ∈ K∞,

x(t) ≤ β(|x0|, t) + γ1

(
‖u[0,t]‖∞

)
+ γ2

(
‖y[0,t]‖∞

)
(IOSS)

for all initial states and inputs, and all t ∈ [0, Tξ,u). Just as ISS is stronger
than 0-GAS, IOSS is stronger than zero-detectability. A special case is when
one has no inputs, output to state stability:

|x(t, x0)| ≤ β(|x0|, t) + γ
(
‖y|[0,t]‖∞

)

and this is formally “dual” to ISS, simply replacing inputs u by outputs in
the ISS definition. This duality is only superficial, however, as there seems to
be no useful way to obtain theorems for OSS by dualizing ISS results. (Note
that the outputs y depend on the state, not vice versa.)

8.3 Lyapunov-Like Characterization of IOSS

To formulate a dissipation characterization, we define an IOSS-Lyapunov func-
tion as a smooth storage function so that

∇V (x) f(x, u) ≤ −α1(|x|) + α2(|u|) + α3(|y|)

for all x ∈ IRn, u ∈ IRm, y ∈ IRp. The main result is:

Theorem 8.1. [65] A system is IOSS if and only if it admits an IOSS-
Lyapunov function.
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8.4 Superposition Principles for IOSS

Just as for ISS and IOS, there are asymptotic gain characterizations of in-
put/output to state stability.

We say that a system satisfies the IO-asymptotic gain (IO-AG) property
if:

lim
t↗tmax(x0,u)

|x(t, x0, u)| ≤ γu(‖u‖∞) + γy(‖y‖∞) ∀x0, u(·) (IO-AG)

(for some γu, γy), and the IO-limit (IO-LIM) property if:

inf
t≥0

|x(t, x0, u)| ≤ γu(‖u‖∞) + γy(‖y‖∞) ∀x0, u(·) (IO-LIM)

(for some γu, γy), where sup norms and inf are taken over [0, tmax(x0, u)). We
also define the notion of zero-input local stability modulo outputs (0-LS) as
follows:

(∀ ε > 0) (∃ δε) max{|x0|, ‖y[0,t]‖∞} ≤ δε ⇒ |x(t, x0, 0)| ≤ ε . (0-LS)

This is a notion of marginal local detectability; for linear systems, it amounts
to marginal stability of the unobservable eigenvalues. We have the following
result.

Theorem 8.2. [6] The following three properties are equivalent for any given
system ẋ = f(x, u):

• The system is IOSS
• The system is IO-AG and zero-input O-LS
• The system is IO-LIM and zero-input O-LS

Several other characterizations can also be found in [6].

8.5 Norm-Estimators

We define a state-norm-estimator (or state-norm-observer) for a given system
as another system

ż = g(z, u, y) , with output k : IR� × IRp → IR≥0

evolving in some Euclidean space IR�, and driven by the inputs and outputs
of the original system. We ask that the output k should be IOS with respect
to the inputs u and y, and the true state should be asymptotically bounded in
norm by some function of the norm of the estimator output, with a transient
(overshoot) which depends on both initial states. Formally:

• There are γ̂1, γ̂2 ∈ K and β̂ ∈ KL so that, for each initial state z0 ∈ IR�,
and inputs u and y, and every t in the interval of definition of the solution
z(·, z0,u,y)

k (z(t, z0,u,y),y(t)) ≤ β̂(|z0| , t) + γ̂1

(
‖u|[0,t]‖

)
+ γ̂2

(
‖y|[0,t]‖

)
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• There are ρ ∈ K, β ∈ KL so that, for all initial states x0 and z0 of the
system and observer, and every input u

|x(t, x0,u)| ≤ β(|x0| + |z0| , t) + ρ
(
k
(
z(t, z0,u,yx0,u),yx0,u(t)

))

for all t ∈ [0, tmax(x0,u)), where yx0,u(t) = y(t, x0,u)

Theorem 8.3. [65] A system admits a state-norm-estimator if and only if it
is IOSS.

8.6 A Remark on Observers and Incremental IOSS

As mentioned earlier, for linear systems, “zero-detectability” and detectability
coincide, where the latter is the property that every pair of distinct states is
asymptotically distinguishable. The following is an ISS-type definition of de-
tectability: we say that a system is incrementally (or Lipschitz) input/output-
to-state stable (i-IOSS) if there exist γ1, γ2 ∈ K and β ∈ KL such that, for
any two initial states x0 and z0, and any two inputs u1 and u2,

|x(t, x0, u1)−x(t, z0, u2)| ≤ max {β(|x0−z0| , t), γ1(‖∆u‖), γ2(‖∆y‖)} (i-IOSS)

where ∆u = (u1−u2), ∆y = (yx0,u1−yz0,u2)[0,t], for all t in the common do-
main of definition. It is easy to see that i-IOSS implies IOSS, but the converse
does not hold in general. The notion of incremental-IOSS was introduced
in [111]. A particular case is that in which h(x) ≡ 0, in which case we have
the following notion: a system is incrementally ISS (i-ISS) if there holds an
estimate of the following form:

|x(t, x0, u1)−x(t, z0, u2)| ≤ max {β(|x0−z0| , t), γ1(‖∆u‖)} (i-ISS)

where ∆u = u1 − u2, for all t in the common domain of definition. Several
properties of the i-ISS notion were explored in [4], including the fact that i-ISS
is preserved under cascades. Specializing even more, when there are no inputs
one obtains the property incremental GAS (i-GAS). This last property can
be characterized in Lyapunov terms using the converse Lyapunov result given
in [73] for stability with respect to (not necessarily compact) sets, since it
coincides with stability with respect to the diagonal of the system consisting
of two parallel copies of the same system. Indeed, i-GAS is equivalent to asking
that the system:

ẋ = f(x)
ż = f(z)

be asymptotically stable with respect to {(x, z) | x = z}. A sufficient condition
for i-ISS in dissipation terms, using a similar idea, was given in [4].

As recalled earlier, an observer is another dynamical system, which
processes inputs and outputs of the original system, and produces an esti-
mate x̂(t) of the state x(t): x(t)−x̂(t) → 0 as t → ∞, and this difference (the
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ẋ=f(x,u)
y=h(x)

u(t)

ud(t)

yd(t)

x̂(t)observer

y(t)

Fig. 22. Observer with perturbations in measurements

estimation error) should be small if it starts small (see [104], Chap. 6). As
with zero-detectability, it is more natural in the ISS paradigm to ask that
the estimation error x(t)−x̂(t) should be small even if the measurements of
inputs and outputs received by the observer are corrupted by noise. Writing
ud and yd for the input and output measurement noise respectively, we have
the situation shown pictorially in Fig. 22 (see [111] for a precise definition).
Existence of an observer implies that the system is i-IOSS [111]. The converse
and more interesting problem of building observers under IOSS assumptions
is still a largely unsolved, although much progress has been made for systems
with special structures, cf. [16, 57].

8.7 Variations of IOSS

The terminology IOSS was introduced in [111], and the name arises from the
view of IOSS as “stability from the i/o data to the state.” It combines the
“strong” observability from [99] with ISS; and was called simply “detectabil-
ity” in [98], where it was formulated in an input/output language and applied
to controller parameterization, and it was called “strong unboundedness ob-
servability” in [53] (more precisely, this paper allowed for an additive nonneg-
ative constant in the estimate). IOSS is related to other ISS-like formalisms
for observers, see, e.g., [37, 75, 77, 92]. Both IOSS and its incremental variant
are very closely related to the OSS-type detectability notions pursued in [59];
see also the emphasis on ISS guarantees for observers in [82].

The dissipation characterization amounts to a Willems’-type dissipation
inequality (d/dt)V (x(t))≤−σ1(|x(t)|)+σ2(|y(t)|)+σ3(|u(t)|) holding along
all trajectories. There have been other suggestions that one should define
“detectability” in dissipation terms; see, e.g., [76], where detectability was de-
fined by the requirement that there exist a differentiable storage function V
as here, but with the special choice σ2(r) := r2 (and no inputs), or as in [85],
which asked for a weaker the dissipation inequality:

x �= 0 ⇒ d

dt
V (x(t)) < σ2(|y(t)|)
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(again, with no inputs), not requiring the “margin” of stability −σ1(|x(t)|).
Observe also that, asking that along all trajectories there holds the estimate

d

dt
V (x(t)) ≤ −σ1(|x(t)|) + σ2(|y(t)|) + σ3(|u(t)|)

means that V satisfies a partial differential inequality (PDI):

max
u∈IRm

{∇V (x) · f(x, u) + σ1(|x|) − σ2(|h(x)|) − σ3(|u|)} ≤ 0

which is same as the Hamilton–Jacobi inequality

g0(x) +
1
4

m∑
i=1

(∇V (x) · gi(x))2 + σ1(|x|) − σ2(|h(x)|) ≤ 0

in the special case of quadratic input “cost” σ3(r) = r2 and systems ẋ =
f(x, u) affine in controls

ẋ = g0(x) +
m∑
i=1

ui gi(x)

(just replace the right-hand side in the PDI by the maximum value, obtained
at ui = (1/2)∇V (x) · gi(x)). Thus the converse result amounts to providing
necessary and sufficient conditions for existence of a smooth (and proper and
positive definite) solution V to the PDI. In this context, it is worth remark-
ing that the mere existence of a lower semicontinuous V (interpreted in an
appropriate weak sense) implies the existence of a C∞ solution (possibly with
different comparison functions); see [64].

8.8 Norm-Observability

There are many notions of observability for nonlinear systems (see, e.g., [104],
Chap. 6); here we briefly mention one such notion given in an ISS style, which
was presented in [34]. More precisely, we define “norm-observability”, which
concerns the ability to determine an upper bound on norms, rather than
the precise value of the state (an “incremental” version would correspond to
true observability). We do so imposing a bound on the norm of the state in
terms of the norms of the output and the input, and imposing an additional
requirement which says, loosely speaking, that the term describing the effects
of initial conditions can be chosen to decay arbitrarily fast.

A system ẋ = f(x, u), y = h(x) is small-time initial-state norm-observable
if:

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x0| ≤ γ(‖y[0,τ ]‖∞) + χ(‖u[0,τ ]‖∞) ∀x0, u ,

it is small-time final-state norm-observable if:



Input to State Stability 201

∀ τ > 0 ∃ γ, χ ∈ K∞ such that |x(τ)| ≤ γ(‖y[0,τ ]‖∞) + χ(‖u[0,τ ]‖∞) ∀x0, u ,

and is small-time-KL norm-observable if for every ε > 0 and every ν ∈ K,
there exist γ, χ ∈ K∞ and a β ∈ KL so that β(r, ε) ≤ ν(r) for all r ≥ 0 (i.e.,
β can be chosen to decay arbitrarily fast in the second argument) such that
the IOSS estimate:

|x(t)| ≤ β(|x0| , t) + γ(‖y[0,t]‖∞) + χ(‖u[0,t]‖∞) ∀x0, u, t ≥ 0

holds along all solutions.

Theorem 8.4. [34] The following notions are equivalent:

• Small-time initial-state norm-observability
• Small-time final-state norm-observability
• Small-time-KL norm-observability

To be precise, the equivalences assume unboundedness observability (UO),
which means that for each trajectory defined on some maximal interval
tmax < ∞, the output becomes unbounded as t ↗ tmax, as well as a simi-
lar property for the reversed-time system. The unboundedness observability
property is strictly weaker than forward completeness, which is the property
that each trajectory is defined for all t ≥ 0; see [9, 53], the latter especially
for complete Lyapunov characterizations of the UO property. Similarly, one
can prove equivalences among other definitions, such as asking “∃ τ” instead
of “∀ τ ,” and one may obtain Lyapunov-like characterizations; the results
are used in the derivation of LaSalle-like theorems for verifying stability of
switched systems in [34].

9 The Fundamental Relationship Among ISS, IOS,
and IOSS

The definitions of the basic ISS-like concepts are consistent and related in an
elegant conceptual manner, as follows:

A system is ISS if and only if it is both IOS and IOSS.

In informal terms, we can say that:

external stability and detectability ⇐⇒ internal stability

as it is the case for linear systems. Intuitively, we have the three possible
signals in Fig. 23. The basic idea of the proof is as follows. Suppose that
external stability and detectability hold, and take an input so that u → 0.
Then y → 0 (by external stability), and this then implies that x → 0 (by
detectability). Conversely, if the system is internally stable, then we prove i/o
stability and detectability. Suppose that u → 0. By internal stability, x → 0,
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� �x → 0u → 0 y → 0

Fig. 23. Convergent input, state, and/or output

�
�
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Fig. 24. System with error and measurement outputs ẋ = f(x, u), y = h(x), w =
g(x)

and this gives y(t) → 0 (i/o stability). Detectability is even easier: if both
u(t) → 0 and y(t) → 0, then in particular u → 0, so x → 0 by internal
stability. The proof that ISS is equivalent to the conjunction of IOS and IOSS
must keep careful track of the estimates, but the idea is similar.

10 Systems with Separate Error and Measurement
Outputs

We next turn to a topic which was mentioned in [105] as a suggestion for
further work, but for which still only incomplete results are available. We
will assume that there are two types of outputs (Fig. 24), which we think of,
respectively as an “error” y = h(x) to be kept small, as in the IOS notion,
and a “measurement” w = g(x) which provides information about the state,
as in the IOSS notion.

Several ISS-type formulations of the central concept in regulator theory,
namely the idea of using the size of w in order to bound y, were given in [38],
and are as follows.

10.1 Input-Measurement-to-Error Stability

We will say that a system is input-measurement-to-error stable (IMES) if there
are β ∈ KL, σ ∈ K, and γ ∈ K such that the following estimate holds:

|y(t)| ≤ β(|x0| , t) + σ
(
‖w[0,t]‖∞

)
+ γ(‖u‖∞) (IMES)

for all t ∈ tmax(x0, u), for all solutions, where we are writing y(t)
= h(x(t, x0, u)) and w(t) = g(x(t, x0, u)). Special cases are all the previous
concepts:
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• When h(x) = x, so y = x, and we view w as the output, we recover IOSS
• When the output g = 0, that is w ≡ 0, we recover IOS
• If both y = x and g = 0, we recover ISS

The goal of obtaining general theorems for IMES which will specialize to all
known theorems for ISS, IOS, and IOSS is so far unattained. We only know
of several partial results, to be discussed next.

For simplicity from now on, we restrict to the case of systems with no
inputs ẋ = f(x), y = h(x), w = g(x), and we say that a system is measurement
to error stable (MES) if an IMES estimate holds, i.e., for suitable β ∈ KL and
γ ∈ K:

|y(t)| ≤ β(|x0| , t) + γ
(
‖w[0,t]‖∞

)
for all t ∈ [0, Tmax) and for all solutions.

In order to present a dissipation-like version of MES, it is convenient to
introduce the following concept. We will say that a system is relatively error-
stable (RES) if the following property holds, for some ρ ∈ K and β ∈ KL:

|y(t)| > ρ(|w(t)|) on [0, T ] ⇒ |y(t)| ≤ β(|x0| , t) on [0, T ] (RES)

along all solutions and for all T < tmax(x0, u). In words: while the error is
much larger than the estimate provided by the measurement, the error must
decrease asymptotically, with an overshoot controlled by the magnitude of the
initial state. This property, together with the closely related notion of stability
in three measures (SIT), was introduced and studied in [38]. It is easy to see
that MES implies RES, but that the converse is false. In order to obtain a
converse, one requires an additional concept: we say a system satisfies the
relative measurement to error boundedness (RMEB) property if it admits an
estimate of the following form, for some σi ∈ K:

|y(t)| ≤ max
{
σ1(|h(x0)|), σ2

(
‖w[0,t]‖∞

)}
(RMEB)

along all solutions. For forward complete systems, and assuming RMEB, RES
is equivalent to MES [38].

10.2 Review: Viscosity Subdifferentials

So far, no smooth dissipation characterization of any of these properties is
available. In order to state a nonsmooth characterization, we first review a
notion of weak differential. For any function V : IRn → IR and any point
p ∈ IRn in its domain, one says that a vector ζ is a viscosity subgradient of
V at p if the following property holds: there is some function ϕ : IRn → IR,
differentiable at zero and with ∇ϕ(0) = ζ (that is, ϕ(h) = ζ · h+ o(h)), such
that

V (p+ h) ≥ V (p) + ϕ(h)

for each h in a neighborhood of 0 ∈ IRn. In other words, a viscosity subgradient
is a gradient (tangent slopes) of any supporting C1 function. One denotes then
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Fig. 25. ∂DV (0) = [−1, 1]

Fig. 26. ∂DV (0) = ∅

∂DV (p) := {all viscosity subgradients of V at p}. As an illustration, Fig. 25
shows a case where ∂DV (0) = [−1, 1], for the function V (x) = |x|, and Fig. 26
an example where ∂DV (0) = ∅, for V (x) = −|x|. In particular, if V is differ-
entiable at p, then ∂DV (p) = {∇V (p)}.

10.3 RES-Lyapunov Functions

The lower semicontinuous V is an RES-Lyapunov function if:

• There exist α1 and α2 ∈ K∞ so, on the set C := {p : |h(p)| > ρ(|g(p)|)},
it holds that

α1(|h(p)|) ≤ V (p) ≤ α2(|p|)
• For some continuous positive definite α3 : IR≥0 → IR≥0, on the set C there

holds the estimate

ζ · f(x) ≤ −α3(V (p)) ∀ ζ ∈ ∂DV (p)

(when V is differentiable, this is just ∇V · f(x) ≤ −α3(V (p)))

One can show (cf. [38]) that this estimate is equivalent to the existence of a
locally Lipschitz, positive definite α̃3 such that, for all trajectories:

x(t) ∈ C on [0, t1] ⇒ V (x(t)) − V (x(0)) ≤ −
∫ t

0

α̃3(V (x(s))) ds .
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� �⇒ u → 0
⇒ x → 0

y → 0

Fig. 27. Inverse of IOS property: small output implies input (and state) small

Theorem 10.1. [38] A forward-complete system is RES if and only if it
admits an RES-Lyapunov function.

As a corollary, we have that, for RMEB systems, MES is equivalent to the
existence of such a lower semicontinuous RES Lyapunov function.

11 Output to Input Stability and Minimum-Phase

We now mention a nonlinear “well-posed” version of Bode’s minimum phase
systems, which relates to the usual notion (cf. [42]) in the same manner as
ISS relates to zero-GAS. We need to say, roughly, what it means for the
“inverse system” to be ISS (Fig. 27). The paper [71] defines a smooth system
as output to input stable (OIS) if there exists an integer N > 0, and functions
β ∈ KL and γ ∈ K∞, so that, for every initial state x0 and every (N−1)-times
continuously differentiable input u, the inequality:

|u(t)| + |x(t)| ≤ β(|x0|, t) + γ
(
‖yN[0,t]‖∞

)

holds for all t ∈ tmax(x0, u), where “yN” lists y as well as its first N derivatives
(and we use supremum norm, as usual). See [71] for relationships to OSS, an
interpretation in terms of an ISS property imposed on the “zero dynamics”
of the system, and connections to relative degree, as well as an application to
adaptive control.

12 Response to Constant and Periodic Inputs

Systems ẋ = f(x, u) that are ISS have certain noteworthy properties when
subject to constant or, more generally periodic, inputs, which we now discuss.
Let V be an ISS-Lyapunov function which satisfies the inequality V̇ (x, u) ≤
−V (x) + γ(|u|) for all x, u, for some γ ∈ K∞.

To start with, suppose that ū is any fixed bounded input, and let a :=
γ(‖ū‖∞), pick any initial state x0, and consider the solution x(t) = x(t, x0, ū)
for this input. Letting v(t) := V (x(t)), we have that v̇(t) + v(t) ≤ a so, using
et as an integrating factor, we have that v(t) ≤ a+ e−t(v(0)− a) for all t ≥ 0.
In particular, if v(0) ≤ a it will follow that v(t) ≤ a for all t ≥ 0, that is
to say, the sublevel set K := {x | V (x) ≤ a} is a forward-invariant set for
this input: if x0 ∈ K then x(t) = x(t, x0, ū) ∈ K for all t ≥ 0. Therefore
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MT : x0 �→ x(T, x0, ū) is a continuous mapping from K into K, for each
fixed T > 0, and thus, provided that K has a fixed-point property (every
continuous map M : K → K has some fixed point), we conclude that for
each T > 0 there exists some state x0 such that x(T, x0, ū) = x0. The set K
indeed has the fixed-point property, as does any sublevel set of a Lyapunov
function. To see this, we note that V is a Lyapunov function for the zero-input
system ẋ = f(x, 0), and thus, if B is any ball which includes K in its interior,
then the map Q : B → K which sends any ξ ∈ B into x(tξ, ξ), where tξ is
the first time such that x(t, ξ) ∈ K, is continuous (because the vector field is
transversal to the boundary of K since ∇V (x).f(x, 0) < 0), and is the identity
on K (that is, Q is a topological retraction). A fixed point of the composition
M ◦Q : B → B is a fixed point of M .

Now suppose that ū is periodic of period T , ū(t+ T ) = ū(t) for all t ≥ 0,
and pick any x0 which is a fixed point for MT . Then the solution x(t, x0, ū) is
periodic of period T as well. In other words, for each periodic input, there is a
solution of the same period . In particular, if ū is constant, we may pick for each
h > 0 a state xh so that x(h, xh, ū) = xh, and therefore, picking a convergent
subsequence xh → x̄ gives that 0 = (1/h)(x(h, xh, ū) − xh) → f(x̄, ū), so
f(x̄, ū) = 0. Thus we also have the conclusion that for each constant input,
there is a steady state.

13 A Remark Concerning ISS and H∞ Gains

We derived the “integral to integral” version of ISS when starting from H∞-
gains, that is, L2-induced operator norms. In an abstract manner, one can
reverse the argument, as this result shows:

Theorem 13.1. [33] Assume n �= 4, 5. If the system ẋ = f(x, u) is ISS, then,
under a coordinate change, for all solutions one has:∫ t

0

|x(s)|2 ds ≤ |x0|2 +
∫ t

0

|u(s)|2 ds .

(A particular case of this is that global exponential stability is equivalent to
global asymptotic stability, under such nonsmooth coordinate changes. This
would seem to contradict Center Manifold theory, but recall that our “coordi-
nate changes” are not necessarily smooth at the origin, so dimensions of stable
and unstable manifolds need not be preserved.) It is still an open question if
the theorem generalizes to n = 4 or 5. A sketch of proof is as follows.

Let us suppose that the system ẋ = f(x, u) is ISS. We choose a “robustness
margin” ρ ∈ K∞, i.e., a K∞ function with the property that the closed-loop
system ẋ = f(x, dρ(|x|)) is GAS uniformly with respect to all disturbances
such that ‖d‖∞ ≤ 1. We next pick a smooth, proper, positive definite storage
function V so that

∇V (x)·f(x, dρ(|x|)) ≤ −V (x) ∀x, d
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(such a function always exists, by the results already mentioned). Now suppose
that we have been able to find a coordinate change so that V (x) = |x|2, that
is, a T so that W (z) := V (T−1(z)) = |z|2 with z = T (x). Then, whenever
|u|≤ρ(|x|), we have

d |z|2 /dt = Ẇ (z) = V̇ (x) ≤ −V (x) = − |z|2 .

It follows that, if χ ∈ K∞ is so that |T (x)| ≤ χ(ρ(|x|)), and

α(r) := max
|u|≤r,|z|≤χ(r)

d |z|2 /dt

then:
d |z|2

dt
≤ − |z|2 + α(|u|) = − |z|2 + v

(where we denote by v the input in new coordinates).
Integrating, one obtains

∫
|z|2 ≤ |z0|2 +

∫
|v|2, and this gives the L2 es-

timate as wanted. The critical technical step, thus, is to show that, up to
coordinate changes, every Lyapunov function V is quadratic. That fact is
shown as follows. First notice that the level set S := {V (x) = 1} is homo-
topically equivalent to S

n−1 (this is well-known: S × IR ( S because IR is
contractible, and S × IR is homeomorphic to IRn \ {0} ( S

n−1 via the flow of
ẋ = f(x, 0)). Thus, {V (x) = 1} is diffeomorphic to S

n−1, provided n �= 4, 5.
(In dimensions n = 1, 2, 3 this is proved directly; for n ≥ 6 the sublevel set
{V (x) < 1} is a compact, connected smooth manifold with a simply connected
boundary, and results on h-cobordism theory due to Smale and Milnor show
the diffeomorphism to a ball. Observe that results on the generalized Poincaré
conjecture would give a homeomorphism, for n �= 4.) Finally, we consider the
normed gradient flow:

ẋ =
∇V (x)′

|∇V (x)|2

and take the new variable

z :=
√
V (x) θ(x′)

where x′ is the translate via the flow back into the level set, and θ : {V = 1} (
{|z| = 1} is the given diffeomorphism, see Fig. 28. (Actually, this sketch is not
quite correct: one needs to make a slight adjustment in order to obtain also
continuity and differentiability at the origin; the actual coordinate change is
z = γ(V (x))θ(x′), so W (z) = γ(|z|), for a suitable γ.)

14 Two Sample Applications

For applications of ISS notions, the reader is encouraged to consult textbooks
such as [27,43,44,58,60,66,96], as well as articles in journals as well as Proceed-
ings of the various IEEE Conferences on Decision and Control. We highlight
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Fig. 28. Making level sets into spheres

next a couple of applications picked quite arbitrarily from the literature. They
are chosen as illustrations of the range of possibilities afforded by the ISS view-
point.

The paper [63] provides a new observer suitable for output-feedback stabi-
lization, and applies the design to the stabilization of surge and the magnitude
of the first stall mode, in the single-mode approximation of the Moore–Greitzer
PDE axial compressor model used in jet engine studies. The equations are as
follows:

φ̇ = −ψ + 3
2φ+ 1

2 − 1
2 (φ+ 1)3 − 3(φ+ 1)R

ψ̇ =
1
β2

(φ+ 1 − u)

Ṙ = σR(−2φ− φ2 −R) (R ≥ 0)

where φ denotes the mass flow relative to a setpoint, ψ the pressure rise
relative to the setpoint, and R the magnitude of the first stall mode. The
objective is to stabilize this system, using only y = ψ.

The systematic use of ISS-type properties is central to the analysis: taking
the magnitude of the first stall mode as evolving through uncertain dynamics,
the authors require that their estimator have an error that is ISS with respect
to this unmodeled dynamics, and that the first mode be IOS with respect to
mass flow deviation from its setpoint; an ISS small-gain theorem is then used
to complete the design. Abstractly, their general framework in [63] is roughly
as follows. One is given a system with the block structure:

ẋ = f(x, z, u)
ż = g(x, z)

and only an output y = h(x) is available for stabilization. The z-subsystem (R
in the application) is unknown (robust design). The authors construct a state-
feedback u = k(x) and a reduced-order observer that produces an estimate x̂
so that:

• The error e = x− x̂ is ISS with respect to z
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noisy channel

u = y yẋ = f(x, y)
y = h(x)

ż = f(z, y+d)

Fig. 29. Synchronized systems

• The system ẋ = f(x, z, k(x̂)) = F (x, z, e) is ISS with respect to both e
and z

• The system ż = g(x, z) is ISS with respect to x

Combining with a small-gain condition, the stability of the entire system is
guaranteed.

A completely different application, in signal processing, can be found in [4],
dealing with the topic of synchronized chaotic systems, which arises in the
study of secure communications. A “master-slave” configuration is studied,
where a second copy of the system (receiver) is driven by an output from the
first (Fig. 29). The main objective is to show that states synchronize:

|x(t) − z(t)| ≤ max{β(|x0 − z0|, t) , ‖d‖}

This can be shown, provided that the system is incrementally ISS, in the sense
discussed in Sect. 8.6.

One particular example is given by the Lorentz attractor:

ẋ1 = −βx1 + sat(x2)sat(x3),
ẋ2 = σ(x3 − x2),
ẋ3 = −x3 + u,

y = ρx2 − x1x2,

where β = 8/3, σ = 10, ρ = 28 (the saturation function, sat(r) = r for |r| < 1
and sat(r) = sign(r) otherwise, is inserted for technical reasons and does
not affect the application). Preservation of the i-ISS property under cascades
implies that this system (easily to be seen a cascade of i-ISS subsystems) is
i-ISS. The paper [4] provides simulations of the impressive behavior of this
algorithm.

15 Additional Discussion and References

The paper [99] presented the definition of ISS, established the result on
feedback redefinition to obtain ISS with respect to actuator errors, and pro-
vided the sufficiency test in terms of ISS-Lyapunov functions. The necessity
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of this Lyapunov-like characterization is from [109], which also introduced the
“small gain” connection to margins of robustness; the existence of Lyapunov
functions then followed from the general result in [73]. The asymptotic gain
characterizations of ISS are from [110]. (Generalizations to finite-dimensional
and infinite-dimensional differential inclusions result in new relaxation theo-
rems, see [41] and [39], as well as [81] for applications to switched systems.)
Asymptotic gain notions appeared also in [20, 114]. Small-gain theorems for
ISS and IOS notions originated with [53]. See [40] for an abstract version of
such results.

The notion of ISS for time-varying systems appears in the context of as-
ymptotic tracking problems, see, e.g., [124]. In [24], one can find further results
on Lyapunov characterizations of the ISS property for time-varying (and in
particular periodic) systems, as well as a small-gain theorem based on these
ideas. See also [78].

Coprime factorizations are the basis of the parameterization of controllers
in the Youla approach. As a matter of fact, as the paper’s title indicates,
their study was the original motivation for the introduction of the notion of
ISS in [99]. Some further work can be found in [98], see also [28], but much
remains to be done.

One may of course also study the notion of ISS for discrete-time systems.
Many ISS results for continuous time systems, and in particular the Lyapunov
characterization and ISS small gain theorems, can be extended to the discrete
time case; see [52, 55, 56, 61, 67]. Discrete-time iISS systems are the subject
of [2], who proves the very surprising result that, in the discrete-time case,
iISS is actually no different than global asymptotic stability of the unforced
system (this is very far from true in the continuous-time case, of course); see
also [74].

Questions of sampling, relating ISS properties of continuous and discrete-
time systems, have been also studied, see [119] which shows that ISS is recov-
ered under sufficiently fast sampling, as well as the papers [86,87,90].

The paper [5] introduces a notion of ISS where one merely requires good
behavior on a generic (open dense) subset of the state space. Properties of this
type are of interest in “almost-global” stabilization problems, where there are
topological constraints on what may be achieved by controllers. The area is
still largely undeveloped, and there are several open problems mentioned in
that reference.

More generally than the question of actuator ISS, one can ask when, given
a system ẋ = f(x, d, u), is there a feedback law u = k(x) such that the system
ẋ = f(x, d, k(x)) becomes ISS (or iISS, etc) with respect to d. One approach
to this problem is in terms of control-Lyapunov function (“cLf”) methods,
and concerns necessary and sufficient cLf conditions, for the existence of such
(possibly dynamic) feedback laws. See for example [120], which deals primarily
with systems of the form ẋ = f(x, d) + g(x)u (affine in control, and control
vector fields are independent of disturbances) and with assigning precise upper
bounds to the “nonlinear gain” obtained in terms of d.



Input to State Stability 211

A problem of decentralized robust output-feedback control with distur-
bance attenuation for a class of large-scale dynamic systems, achieving ISS
and iISS properties, is studied in [49].

Partial asymptotic stability for differential equations is a particular case
of output stability (IOS when there are no inputs) in our sense; see [125] for a
survey of the area, as well as the book [94], which contains a converse theorem
for a restricted type of output stability. The subject of IOS is also related to
the topic of “stability in two measures” (see, e.g., [68]), in the sense that
one asks for stability of one “measure” of the state (h(x)) relative to initial
conditions measured in another one (the norm of the state).

A useful variation of the notion of ISS is obtained when one studies stability
with respect to a closed subset K of the state space IRn, but not necessarily
K = {0}. One may generalize the various definitions of ISS, IOS, IOSS, etc.
For instance, the definition of ISS becomes

|x(t, x0, u)|K ≤ β(|x0|K , t) + γ(‖u‖∞) ,

where |x|K denotes the distance from x to the set K. (The special case when
u ≡ 0 implies in particular that the set K must be invariant for the unforced
system.) The equivalence of various alternative definitions can be given in
much the same way as the equivalence for the particular case K = {0} (at
least for compact K), since the general results in [73] are already formulated
for set stability; see [108] for details. The interest in ISS with respect to sets
arises in various contexts, such as the design of robust control laws, where
the set K might correspond to equilibria for different parameter values, or
problems of so-called “practical stabilization,” concerned with stabilization
to a prescribed neighborhood of the origin. See [107] for a theorem relating
practical stabilization and ISS with respect to compact attractors.

Perhaps the most interesting set of open problems concerns the construc-
tion of feedback laws that provide ISS stability with respect to observation
errors. Actuator errors are far better understood (cf. [99]), but save for the case
of special structures studied in [27], the one-dimensional case (see, e.g., [25])
and the counterexample [26], little is known of this fundamental question.
Recent work analyzing the effect of small observation errors (see [103]) might
provide good pointers to useful directions of research (indeed, see [69] for
some preliminary remarks in that direction). For special classes of systems,
even output feedback ISS with respect to observation errors is possible, cf. [88].

A stochastic counterpart of the problem of ISS stabilization is proposed
and solved in [22], formulated as a question of stochastic disturbance attenu-
ation with respect to noise covariance. The paper [21], for a class of systems
that can be put in output-feedback form (controller canonical form with an
added stochastic output injection term), produces, via appropriate clf’s, sto-
chastic ISS behavior (“NSS” = noise to state stability, meaning that solutions
converge in probability to a residual set whose radius is proportional to bounds
on covariances). Stochastic ISS properties are treated in [123].
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For a class of block strict-feedback systems including output feedback form
systems, the paper [48] provided a global regulation result via nonlinear output
feedback, assuming that the zero dynamics are iISS, thus generalizing the ISS-
like minimum-phase condition in the previous [47], which in turn had removed
the more restrictive assumption that system nonlinearities depend only on the
output. See also [45] for iISS and ISS-stabilizing state and output feedback
controllers for systems on strict-feedback or output-feedback forms.

For a class of systems including “Euler-Lagrange” models, the paper [17]
provides a general result on global output feedback stabilization with a distur-
bance attenuation property. The notion of OSS and the results on unbounded
observability both play a key role in the proof of correctness of the design.

An ISS result for the feedback interconnection of a linear block and a
nonlinear element (“Lurie systems”) is provided in [14], and an example is
worked out concerning boundedness for negative resistance oscillators, such
as the van der Pol oscillator.

The authors of [15] obtain robust tracking controllers with disturbance
attenuation for a class of systems in strict-feedback form with structurally
(non-parametric) unknown dynamics, using neural-network based approxima-
tions. One of the key assumptions is an ISS minimum phase condition, when
external disturbances are included as inputs to the zero dynamics.

Output-feedback robust stabilization both in the ISS and iISS sense is stud-
ied, for large-scale systems with strongly nonlinear interconnections, in [51],
using decentralized controllers.

Both ISS and iISS properties have been featured in the analysis of the per-
formance of switching controllers, cf. [36]. The paper [35] dealt with hybrid
control strategies for nonlinear systems with large-scale uncertainty, using a
logic-based switching among a family of lower-level controllers, each of which
is designed by finding an iISS-stabilizing control law for an appropriate system
with disturbance inputs. The authors provide a result on stability and finite
time switching termination for their controllers. The dissipation characteriza-
tions of ISS and of iISS were extended to a class of hybrid switched systems
in [80].

A nonstandard application of IOSS, or more precisely of an MES prop-
erty for turbulent kinetic energy and dissipation, was the method for
destabilization of pipe flows (to enhance mixing) studied in [1]. The au-
thors used the wall velocity as inputs (blowing/suction actuators are assumed
distributed on the pipe wall) and pressure differences across the pipe as
outputs (using pressure sensors to measure). Detectability in the sense of
IOSS provided a useful way to express the energy estimates required by the
controller.

The papers [115, 116] introduced the notion of “formation input-to-state
stability” in order to characterize the internal stability of leader-follower vehi-
cle formations. There, and in related papers by other authors (e.g., [91]), ISS
is used as a framework in which to systematically quantify the performance
of swarm formations under time-varying signals (leader or enemy to be fol-
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lowed, noise in observation, actuator errors); in this context, the state x in
the ISS estimate is in reality a measure of formation error. Thus, in terms of
the original data of the problem, this formation ISS is an instance not of ISS
itself, but rather of input/output stability (IOS), in which a function of state
variables is used in estimates.

For results concerning averaging for ISS systems, see [89], and see [19]
for singular perturbation issues in this context. See [97] for a notion which
is in some sense close to IMES. Neural-net control techniques using ISS are
mentioned in [95]. There are ISS-small gain theorems for certain infinite di-
mensional classes of systems such as delay systems, see [117].
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