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Abstract— This paper derives new results for certain classes of this paper in to provide easily verifiable conditions. Once
of chemical reaction networks, linking structural to dynamical  monotonicity has been established, one may appeal to the
properties. In particular, it investigates their monotonicity and huge body of results in monotone dynamical systems theory

convergence without making assumptions on the structure to deri trivial stat t ina th tofi
(e.g., mass-action kinetics) of the dynamical equations involved, ©© J€rve non-trivial statements concerning the asymptotic

and relying only on stoichiometric constraints. The key ideais Cconvergence of all (or almost all) solutions to steady state.
to find a suitable set of coordinates under which the resulting The intuitive idea of our construction is as follows.

system is cooperative. As a simple example, the paper shows\We associate to each chemical reaction network a labeled
that a phosphorylation/dephosphorylation process, which is qra5h  called the reaction graph, whose vertices are the
involved in many signaling cascades, has a global stability . .
property. reactlo_r_ls, and Whose edges are labeled e|t_heor_f.
A positive edge is drawn between two reactions if there
|. INTRODUCTION is any species which is a product in one reaction and a
The study of the qualitative behavior of chemical reactiomeactant in another; intuitively, the reactions “cooperate”
networks is an area of growing interest, especially in viewith each other. A negative edge is drawn if there is any
of the challenges posed by molecular and systems biologgpecies which is a reactant in both reactions (or a product
One of the goals, in this respect, is the understandingf both reactions); intuitively, the reactions “compete” with
of cell functions at the level of chemical interactions.each other. Suppose that there are no odd-signed closed
This understanding will have an impact on drug desigpaths in the reaction graph. Then, the dynamics on each
as well as on therapeutic treatments. While this is a trulgtoichiometry class can be viewed as a “quotient” dynamics
formidable task which will likely never be completely of a monotone system, whose “states” are the reactions, and
accomplished, it is nevertheless apparent that the complexityus global or almost-global conclusions can be derived by
and high dimensionality of the chemical reaction networksneans of the theory of monotone systems. The existence
typically found in this context calls for the developmentof odd-signed closed paths can be verified, in turn, through
of systematic tools to handle questions such as: What &graph-theoretic condition in another graph, the “species-
the functionality of a specific “pathway” or what is its reaction graph,” which is canonically associated to each
gualitative behavior ? How robust (or insensitive) is thaeaction network.
network to parameter changes ? A conceptual set of tools
in dynamical systems theory, introduced precisely in order ) . o ) )
to answer questions concerning asymptotic dynamics and” chemical reaction networks just a list of chemical
their robustness to parameter variations, is based upon #if@ctionsR;, where the index; takes values inR :=
notion of a monotone system. A monotone system is &l 2,7} Letus consider a set of chemical species
system whose forward flow preserves some order defined én€ {1:2,--.ns} = S which are the compounds taking
the state space (precise definitions are given later). DespR&'t in the reactions. Chemical reactions are denoted as
the fact that chemical and biological systems (for instanc&?!lows:
ecosystem models) were among the most recurrent sources Ri: Y aiSi— Y BiS,
of examples for the rich literature devoted to the subject, a Jj€s Jj€es
clear connection between chemical reaction networks amwehere thew;; and j3;; are nonnegative integers called the
the theory of monotone dynamical systems is still missingstoichiometry coefficients. Notice that the compounds on
In general it is not clear when a chemical reaction networthe left-hand side are usually referred to as the reactants,
gives rise to a monotone system. In fact, one of the purposasd these on the right-hand side are called the products

Il. BASIC DEFINITIONS



of the reaction. Informally speaking the forward arrowfor reversible reactionsR;(S) < 0 for all S such that

means that the transformation of reactants into products;,,...,S;,] € BRQO; symmetrically, ifS;,,...,S;, are
only happens in the direction of the arrow. If also thehe products of reactiogi, R;(S) > 0 for all .S such that
converse transformations may occur, then, the reaction [iS;,,. .., S;,] € ORY,.

reversible and we may sometimes denote it with a double With the above notation, a chemical reaction network is
arrow, as in+. Alternatively, we may decide to include described by the following system of differential equations:
its inverse in the chemical reaction network. Throughout . -
this paper we exclude autocatalytic reactions, i.e. reactions S=TR(S), Se R>o- (4)
(either reversible or not) in which a chemical appears botpjck 4 reference concentratich (for instance the initial
as a reactant and as a product. More formally, there is nQnqition to(4)). Note that
pair (a;, ;) such thato;5;; > 0.

For convenient use later on we arrange the stoichiometry Csy = RLy N ({So} + Im(T))
coefficients in a matrix, calledstoichiometry matrixI’,

defined as follows: is forward invariant for(4). We callCg, the stoichiometry

class associated to the reference concentraignand
Tij = Bij — iy, (1) assume that all stoichiometry classes are compact sets. This
. . . . implies in particular that all solutions gft) are bounded.
forall i € R and allj € S. This will be later used in 5 ;e guestion, one which is the main focus of this paper,

order to write down the differential equation associated 1 \what happens to solutions in each stoichiometry class
the chemical reaction network. '

Next we discuss how the speed of reactions is affected by I1l. PROBLEM FORMULATION
the cpncentrauons of the Fhfferent SPecies. Ea}ch .chem|calln order to state precisely the problem of interest it is
reaction takes place continuously in time with its own o

te which i I funct t th rai t th eful to recall a few definitions concerning the theory
rate which 1s only a function of the concentration o eo{ monotone dynamical systems. We consider autonomous

species taking part to it. This is a natural and fundamemﬁonlinear systems of the for — f(z), where f : R" —

3sztr11m|i>rtllon\} Ir; c[;rd_er ;o gnake ;hls/m?re prieC|se xve nmaﬂ" is a locally Lipschitz vector field, and takes values in
efine the vectoS = [S1, 5, ... 5, ] of species concen- a closed sefX ¢ R™. We assume that a partial orderbe

trations and, as a function of it, the vector of reaction rateg : . : R :
' ' efined onX, viz. a binary relation satisfying the following
R(S) := [R1(S), R2(S),... R, .(9)]. axioms:
In particular, for irreversible reactions, the rate at which o
R, takes place is &! function and satisfies the following ~ ° _Flfeﬂe)_(t'w%" Tz ;” for aIId:c € f .
e lransitvity: x; =~ x2 andzxy =~ r3 = x1 =~ X3, 10r

monotonicity conditions:
all T1,%0,23 € X

ORi(S) _ { >0 if aj; >0 @ o Antisymmetry:z; = zo andzy = 1 = x1 = x5 for
aSj =0 if Q5 = 0. all X1, T2.
Similarly, for reversible reactions we assume: Typically such partial orders will be defined by first in-

troducing a closed pointed conE C R™ of “positive

: vectors” which is the closure of its interior, and calling

- ig :; g” i%iﬂg%’i 28 ®) x1 > xo iff 71— a2 € K. 'Geometric.properties of the
K K ) cone are easily translated into the axioms above. We say

This set of assumptions is very natural and amounts that a system isnonotonef for all z; = x5 and allt > 0

asking that reaction rates increase when reactant concentnge havex(t,z1) = z(t,z2), where z(¢,z;) denotes the

tion is higher, and the same applies to the inverse reacti@olution at timet with initial condition x; (Notice that we

whenever product concentration is higher (provided that thenplicitly assumed forward completeness of the system,

inverse reaction takes place at all). Notice that we didiz. global existence of solutions in the future). If the

not assume any specific expression for the reaction ratgsrtial order is the one induced by the positive orthant (viz.

in particular we do not need to assume mass-action df = RZ,), then we say that the system é®operative

any other kind of kinetics. For technical reasons, relateStronger monotonicity notions are also of interest and are

to certain results on monotone dynamical systems, we alsbtained by defining strict orders as follows; > - iff

need the monotonicity property in (2) and (3) to hold strictlyx; = x5 andx; # x2, or the even stronger notion, > x5

for S in the interior of RYj (this is always the case, for iff z; — 25 € int(K). We say that a system istrongly

instance, if mass-action kinetics are assumed). monotoneif: x; > zo implies x(t,xz1) > =z(t, z2) for all

We also assume that, whenever any of the reactants of 0.

a given irreversible reaction i8, then, the corresponding Testing monotonicity of a system with respect to the partial

reaction does not take place, viz. the reaction rate 8o, order induced by an orthant is particularly simple tor

if Si,,...,S:, are the reactants of reactigh R,;(S) =0 vector fields,z = f(x). The property is in fact equivalent

for all S such that[S;,,...,S;,] € ORY,. Similarly, to the matrix$D f(x)¥ having non-negative off-diagonal

8R1(S) >0 if O[ij>0andﬂij:0

a5,




entries for allz € X, whereDf(x) denotes the Jacobian we draw a positive edge betweéh) € Vg and R; € Vi
and X is some suitably chosen diagonal matrix with  for all S;s such thata;; > 0; formally, we say that
and1 entries (along the diagonaly(canonically identifies (S;, R;) € Ey iff «;; > 0. Intuitively, we draw a positive
the orthant). Alternatively we may check that associatingdge betweerf; € Vg and R; € Vg if S; is a reactant,
to Df(x) a directed graph with signed edges (correspondind hence contributes to, the reacti®). Similarly, we
ing to the signs ofD f(z)), each undirected loop of the draw a negative edge betweé) and everyS; € Vs such
graph contains an even number of negative edges. Dttt 3;; > 0. Formally, this means thatS;, R;) € E_
to the simplicity and physical appeal of this property, asvhenevers;; > 0. Notice that in (5) we decided on purpose
well as the important implications in terms of asymptotido leave the direction of the chemical reaction unspecified.
dynamics which are later summarized, we are interested In fact, the results to follow, will not depend on the specific
providing sufficient conditions for (4) to be cooperative inorientation that one may choose for each of the reactions in
suitably chosen coordinates. To the best of our knowleddghe network and only rely on the fact that all of the products
this problem was first posed in the monograph [9], an¢and similarly all of the reactants) of a given reaction are
some algebraic conditions for its solutions proposed. lfinked to it through edges of the same kind (either positive
this change of coordinates and/or dimensionality reductioor negative) while, at the same time, edges linking reactants
exists, then we say that the chemical reaction network &nd products of a same reaction should have opposite signs.
structurally monotone. The word “structurally” empha- This kind of representation is entirely analogous to a Petri
sizes that monotonicity only depends upon the qualitatividet, at least from a formal point of view.
information provided by the stoichiometry matrix and Next, we illustrate a procedure for deriving from the SR-
not on the particular functional form of the reaction rateggraph areaction graph(R-graph for short), which only
vector R(S) in (4). In this way monotonicity can be inferred involves reactions, yet carries meaningful sign informa-
just by looking at the list of chemical reactions involvedtion on edges. The reaction graph is defined as a triple
in the network, without having to write down equations(VR,E+,E_), whereVy is again a finite set of reactions,
and reaction rates explicitly. It is worth pointing out thatand where E_ and E, are the positive and negative
the change of coordinates we are after is the same fandirected edges of the graph, defined as follows. We let
all possible choices o(S). A weaker but more general {R;, R;} € E_ (i # j) whenever there existS;, € Vg so
approach, for which systematic tools are still not availablehat (S, R;) and (S, R;) both belong either t&_ or E.
is to allow the change of variables to depend upon th8ymmetrically, we let{R;, R;} € E, (i # j) whenever
parameters ofR(S). This is interesting, for instance, if there existsS, € Vs so that(Sy, R;) and (Sk, R;) both
mass-action kinetics are adopted and all the possible choideslong toF_ U E, but have opposite signs. In other words,
of R(S) are then finitely parametrized by a certain numbea signed edge is drawn betwe&n and R; whenever there
of positive kinetic constants. The results discussed extemxists a path of length two in the SR-graph, between the two
those of [3] which were limited to reactions with certainreactions, and the corresponding sigis computed as the
tree topology. oppositeof the product of the signs of the edges included in
IV. GRAPH THEORETICAL PRELIMINARIES the path._At this ;tage the prgcedure d_o_es _not mean ”.‘”Ch’
. .. but we will show in later Sections that it is tied to the sign
_Itis useful for the subsequent developments to eXp"c't%attern of the Jacobian obtained by writing the network in a
illustrate the graphical representations of a CRN that willjiapie set of coordinates. Notice that more than one path
be used throughout the rest of the paper. As a matter gf¢ |onqth2) can exist in the SR-graph between two given
fact, most assumptions in the results to follow can be easi¥4ctions. Accordingly, up to two edges (of opposite signs)
understood in terms of graph theoretic properties. might exist between any pair of reactions in the reaction
We associate to a CRN a “bipartite undirected, —}- raph.

labeled graph,”, i.e. a graph having two types of nodeSefinition We say that a graph (and in particular the R-
and two types of edges, called tpecies-reaction graph g.np) issign consistentif any cycle includes an even
of a chemical reaction network, or “SR-graph” for Sho”'number of negative edges.

Mathematically, such a graph is specified by a quadruplgye natively, sign-consistence may be more easily checked
(Vs, Vi, B, E), whereVs is a finite set of nodes, each p,y, aosigning to each nodetaor — label and verifying that
one associated to a speciésg is a finite set of nodes oyary edge has a sign equal to the product of the signs of the
(disjoint from Vs), each one corresponding to a reaction, e it is attached to. It is well known thata dynamical

]Se|ther |rreverS|t|)(Ie or reversuble; In tI:]e !atter case, th ystem with sign-definite Jacobian is monotone with respect
orward and backward reactions are taken into account o ¥ the partial order induced by some orthant if and only if

once in the graph), whileZ, and E_ are the sets of
positive and negative edges, technically subselgsof V5.
Whenever a certain reactiaR; belongs to the network:

considering the sign of the Jacobian as the incidence matrix
of a graph with signed edges, the corresponding graph is
sign-consistent. This is how the property will be used in the
Zaijgj = Zﬁijgj , (5) following Sections. Eor the time bging we are interestegl in
jes jes purely graph theoretical results which will help us establish-



ing whether sign-consistency holds for the reaction graph ksign-consistentif and only if the following two conditions
checking conditions expressed in terms of the SR-graph. @&e met:
similar procedure can be adopted to definespecies graph 1y g)| simple loops in the SR-graph are e-loops;

(S-graph for short) associated to the network. This is again 2) each node iV (respectivelyiz) is linked to at most
a triple (Vs, E4, E_), defined according to the following two nodes inVg (Vs).

set of rules. We le{S;,S;} € E_ (i # j) whenever there
exists R;, € Vi so that(S;, R;) and (S;, Ri) both belong
either toE_ or E,. Symmetrically, we le{S;,S;} € E,
(¢ # 7) whenever there existB;, € Vi so that(S;, Ry) and

Proof of Proposition 1.We show first the sufficient part
for the case of an R-graph (the proof for S-graph is
entirely analogous). LeG denote the SR-graph andp

(S,, Ry) both belong toE_ U £, but have opposite signs. the reaction graph._We only need to show that e.ach of its
. . simple loops contains an even number of negative edges.

In other words, a signed edge is drawn betwernd 5; This is trivially true for loops of length 2, by virtue of the

whenever there exists a path of length two in the SR-graph Y P 9 Y

between the two species, and the corresponding sigm €*loop condition. LetL be a simple loop i, of length 3

computed as theppositeof the product of the signs of the or h|g_her; we may lift the Ioop .”GR oa IoopL n G by_
) . f%llowmg any length-2 path joining consecutive reactions

edges included in the path. Of course more than one pzaitn L (the lifted loop might not be unique) Moreover, b

(of length 2) can exist in the SR-graph between two given b mig q » DY

. . e ssumption 2, the lifted lood. will be simple (in fact
species. Accordingly, up to two edges (of opposite signs . . ) .
: . : o 0 reaction can be repeated twice, otherwise this would
might exist between any pair of species in the S-graph.

4 . . ; Violate L being simple, and this in turn yields no species
define sign-consistent S-graphs in a manner analogous as . L
can be repeated twice for otherwise it would be connected
done for R-graphs. S . .
t8 at least 3 reactions; hence no edge is repeated twice). As

In order to state the main results for this section, we nee = .
) L a consequence of 1I, is an e-loop and hence, by virtue
the following definitions:

Definition Let L be a simple loop in the SR-graph viz aof the Lemma on e-loops, it contains an even number of
path whose first and last node coincide and with the proper egmentsi, S, 1t. with edges(Sy, k) and (Sy, =) of

that no node and no edge is repeated twice. We sayitist .Ke same sign. Since these.corresponds to negative edges
. . ! - in Ggr, we have thatL contains exactly an even number
ane-loopif letting A be half of its length (viz. the number

of reactions included in the loop) andthe product of the of negative edges; this completes the sufficient part of the

. . : L , proof.
signs of all of |_ts edges, it holds that1)” = o. Otherwise, Conversely, assume that either condition 1. or 2. is violated.
we say thatl, is ano-loop.

This definition is not new, and it plays a major roleIn particular, if condition 1. is violated, this means that

also in the analysis of multistability for chemical reactionthere exist glmple o loops |n.the SR graph PrOJ.ectlng
; : S o .them down inGpg, yields a simple loop inGg with an
networks with mass-action kinetics using “Advanced Defi- . .
) . , . odd number of negative edges, and therefore violates
ciency Theory” ([5]). Its meaning will be clearer thanks to_. . = S .
. . sign-consistence aff z. If condition 2. is violated instead,

the following Lemma:

L . there exists an elemerff; which is linked to more than
Lemma (e-loops characterization)The following facts are L , o )
. : . ) two reactions; let without loss of generality identify three
equivalent for a given loog in the SR-graph:

of them asR;, R, and R3. Consider the loop in thé&'r

1) Lis an e-loop _ graphL = {Ry, R}, { R2, R3}, { R3, Ry }. Lift this loop to

2) L contains an even number of segmeRilsS, 1. With  he following loop inG: L = RyS;R,S;RsS:R1, where
(Sy, R;) and (S, ) being of the same sign for simplicity we only indicated the sequence of nodes

3) L contains an even number of segmesijsi, S: With et along the loop rather than its edges. By the rule used
(2, Ry) and (S, R,) being of the same sign. to compute signs of an edge iz on the basis of the

Proof. Let Ey, Ey, ... E,, be the ordered sequence of edgegorresponding signs iit, it follows that the sign ofL
comprised in the loop. Let(E;) be equal to+1if E£; € E.  can be computed according to-1)* - sign(L). Notice
and -1 if E; € E_. Clearlyn is an even number and we however that each edge is repeated twicd.irTherefore,

may letA = n/2. We have obviously: sign(L) = 1 and as a consequence ifh = —1. Hence,
n N L necessarily contains an odd number of negative edges,
HU(EZ') = H 0(Bap—1)0(Eay) = (—1)N " which violates sign consistence.
i=1 k=1

wheren,, denotes the number of timésy;,_; and £y, have
the same sign (number of permanences). Hence the sign of
the loop equalg—1)* iff n, 1S even. This completes the A possible approach to investigate monotonicity of the

V. ANALYSIS IN REACTION COORDINATES

proof of the Lemma. flow is fulfilled consists in using “reaction” coordinates,
The following Proposition will be used in the subsequeninstead of traditional species coordinates. In particular,
developments: choosing an arbitrary representati¥y of a given stoi-

Proposition 1 The R-graph (respectively the S-Graph) ischiometry class, the system in these coordinates may be



expressed as follows: formulation was precisely motivated by problems arising in
) " the context of chemical kinetics. It is a global convergence
#(t) = R(So+T'z(t)), =€ {z cR" [So+I'z >0}, (6)  reguit which exploits strong monotonicity and translation

wherez; (i € R ) denotes the extent of theth reaction. invariance in order to build a suitable Lyapunov function
Notice that, solutions of (4) are obtained from solutions ofo" the Syjstem-_CaS? 2 on the other hand will be treated
(6) just by lettingS(t) = So + L'z (t). The main results for by exploiting Hirsch’s generic convergence Theorem [7];

this Section are established below: not for the system in reaction coordinates as such, which
Theorem 2. The system in (6) is orthant-cooperative if angheed not have bounded solutions, but for a suitable quotient
only if the R-graph is sign-consistent. system.

Proof. In order to prove the result it is enough to show!heorem 3 Let the system in (6) be strongly monotone
that the sign rule adopted in the definition of edges ofith respect to the partial order induced by some orthant
the R-graph, is coincident with the sign pattern obtainedt- Then, if Case 1. holds, all solutions of (4) converge to
computing the Jacobian in (6). The Jacobian matrix of (63" equilibrium, moreover this equilibrium is unique within
reads as followsZ = DR -T. This is ann, x n, matrix each stoichiometry class. If Case 2. holds, then almost all

and eachr; can be associated to a chemical reaction. Fgiolutions of (4) converge to equilibria, except possibly those
all I # m € R we have 2= = 0 if and only if the corresponding to a zero-measure set of initial conditions.

i i S, ies i roof. Assume that Case 1 holds. In this case it can be
two chemical reactions do not have species in commof00f. ) ] -
Computation of the sign associated to the edge joirflag Shown [1] that KefT) is 1-dimensional, and thus K@ :=

to R,, can be performed according to: sparfv) for some unit vectow belonging to int/x’). Then
all the assumptions of the Main Result in [1] hold for system
[DR - Ty = Z[DR]U L] jm.- (6). Denote the projectiomn, (z) := x — (v'z)v of x on the
jes linear spacev*. By the Main Result in [1] we conclude

_ _ i .
Since[DR];; ~ —[I'];;, the sign associated to an edge caf@tm (x(1)) — z for somez € v, and that this value is
be evaluated according to: uniquely deﬁned gnd mdependent from initial conditions.
Therefore, in original coordinatesi(t) = Sp + I'x(t) =
[DR - T ~ — Z[F]jz[F]jm- So+ T, (2(t)) — So+T'z, ast — +oo, which is therefore
jes the unique globally attractive equilibrium contained in the

. . . __stoichiometry class ofj.
Notlc'e that this is premsely the formula used order'tp defin Case 2, we consider the quotient flawt, [+(0)]) :=
_the sign of gdges in the R-graph. I_-|er_1c_e_, monotonicity hol :Sc(t)], which is obtained by considering the equivalence
if and only if an even number of inhibitions are met alon elation
any cycle of the Jacobian; accordingly, this is true if and
only if the R-graph is sign-consistent.
As pointed out earlier, the change of variables introducedlhis dynamical system has a state-space which can be
so far is not particularly useful if we cannot establish a linkcanonically identified with the stoichiometry class%f (it
between the dynamics of the original chemical reaction neis therefore a compact space), and it is strongly monotone
work and those of the monotone dynamical system obtaingdth respect to the quotient orders defined by:
in the new coordinates. The main technical difficulty in this ; .
respect appears to be the lack of compactness of the stat[ex—l] = (3)lwe] I V21 € 1], F22 € [wa] 1 21 = (>>)Z(27)

space of (6). In particular, even if every solution of (4)Transitivity and reflexivity of the partial order defined in (7)

is by construction confined to a compact set, namely th re easy to prove. We show next that also anti-symmetry

stoichiometry class of the considered initial condition, th%olds In fact, by the transversality betwegnand KefT

corresponding solution in reaction coordinates need not l?ﬁ ) S I
e havelx(] = [z2] and[zs] > [x1] impliesx; —x €
bounded. [21] = [z2] and[zs] = [21] impliesz; — 22+

K andz, — z1 4+ 14! € K for somen{,~L! belonging to

Our subsequent analysis aims at establishing convergeni‘(%,r[r]_ Hence, taking sums and exploiting convexity it

based on monotonicity of (6). Two possibilities appear of, . obtain+l + ~/T ¢ K and thereforeyl + A1 = 0.
interest and will be treated with different techniques; in, .o ) —01'2 JfVI c KoK — {0}0 Thig ndeed
) 0 - .

particular, lettingK, denote the orthant associated to th%hows thafz1] — [22] as desired. Then, by Hirsch's generic

partial order preserved by (6), convergence Theorem [7] we conclude that for almost all

o Kerl'] Nint(K) # 0 initial conditions in the stoichiometry class 6f, solutions

+ Kerll'l N K = {0}. converge to a single equilibrium (not necessarily unique).
The intermediate case, in which the Kernel Bf only Example: single phosphorylation
intersects with the boundary oK appears to be more In molecular systems biology, certain “motifs” or subsys-
challenging, but seems to represent a rather degenerate césms appear repeatedly, and have been the subject of much
not particularly frequent in applications. Case 1, will berecent research. One of the most common is that in which
treated according to a recently obtained result [1], whos® substrateS; is ultimately converted into a produd,

Ty ~ To iff F(Il - IQ) =0.



(As a side remark notice that the S-graph is not sign-

consistent, showing that analysis in species coordinates does

not allow to derive similar conclusions. On the other hand,

eliminating £ and F' would allow proving monotonicity of

a reduced system, but this approach does not help directly

in establishing global convergence properties.) Moreover,
; there exists a non-trivial kernel of the stoichiometry matrix
I' = sparl, 1,1, 1)’. With the orientation of the reactions
chosen in Figure 1, the system turns out to be cooperative
in reaction coordinates, so thét, 1, 1,1] belongs to the
interior of the positive orthant. Strong monotonicity can be
proved by checking irreducibility of the Jacobian matrix in
\;gaction coordinates (by Kamke’s condition [8]) (at least
on the interior of our state space, namély:= {z € R* :
So + Tz € int(R%,)}. It can be proved [2] that-limit
sets for initial conditions inX are again contained iX.
in an “activation” reaction triggered or facilitated by anHence, case 1. holds and this implies global convergence
enzyme E, and, converselyS, is transformed back (or to a unique equilibrium, in each stoichiometry class.
“deactivated”) into the originab;, helped on by the action
of a second enzymé'. This type of reaction is sometimes
called a “futile cycle” and it takes place in signaling We have presented a new method, based on graph-
transduction cascades, bacterial two-component systerf@pological conditions, for analyzing monotonicity of chem-
and a plethora of other processes. The transformations iggl reaction networks with respect to suitable coordinates.
S, into S, and vice versa can take many forms, dependintj is sometimes convenient to adopt reaction coordinates
on how many elementary steps (typically phosphorylationgather than the usual concentration of species as a state for
methylations, or additions of other elementary chemicaur system. In this way, monotonicity with respect to an
groups) are involved, and in what order they take place. Arthant is easily checked and convergence analysis can be
chemical reaction model for such a set of transformatiorasily carried out by using Hirsch's “generic convergence
incorporates intermediate species, compounds correspoii@eorem” or a recently proved result [1] on convergence for
ing to the binding of the enzyme and substrate. The simplesystems which are shift-invariant with respect to a positive

such reaction is modeled by the following reaction networkéfanslation vector. The theory is illustrated through a non-
trivial example arising in chemical kinetics.
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the above reaction is nowveakly reversible(using the [1] D. Angeli and E.D. Sontag, “A global convergence result for strongly

.. . monotone systems with translation invariancgipmitted
language of [6]). This is because the following graph of[2] p. Angeli, P. De Leenheer and E.D. Sontag, “A Petri net approach
complexes associated to the network:

Fig. 1. SR-graph associated to a simple enzymatic reaction: positi

(solid) and negative (dashed) edges
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