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Abstract—The proper function of many biological systems typical regulation problems in engineering, where the goal
requires that external perturbations be detected, allowing the may be to attenuate the effect of a disturbance as much
system to adapt to these environmental changes. It is now well as possible, in biological systems, sensing changes in the

established that this dual detection and adaptation requires . . - L.
that the system have an internal model in the feedback loop. input signals may be equally important for achieving proper

In this paper we relax the requirement that the response of the ~ C€ll function [13]. This “signal detection” property has been
system adapt perfectly, but instead allow regulation to within ~ characterized and used in conjunction with adaptation to

a neighborhood of zero. We show that linear systems with the show the IMP in linear and nonlinear systems [19]. Another
ability to detect input signals and approximately adapt require - nqrtant distinction of biological systems is that, in many
an approximate model of the input. We illustrate our results the studv of biol . Hall | " bl
by analyzing two well-studied biological systems. cases, the stu yo_ lology 1s essentually an ana ysIs pro_ em
rather than a design problem. Therefore, while an engineer
. INTRODUCTION should aim to design a control system with no less than
. perfect regulation, such a concept may not necessarily be
Many problems in control can be framed as outpUfgieyant in analyzing biological systems, where the system
regulation problems where _the goal is to o_Irlve th_e output cgnly adapts partially [13], [14]. Although biological systems
_asystem to zero _for_a particular class of input signals. -_rhﬁlay be modeled with simplifying assumptions that lead
internal model principle (IMP) states that such regulatiog, perfect adaptation, relaxation of these assumptions may

can only be achieved if the system contains an “inteMale|q an output that only adapts to within some tolerable
model” of the input being regulated. The IMP was orlgmallyr‘,:lnge of the desired value.

derived for linear systems [5], and related regulation prob- 1" jight of the above discussion, this paper investigates
lems for nonlinear systems have been considered in [6]{8h¢ properties of a linear system that adapts approximately,
[11]. While output regulation is usually referred to in the siher than perfectly, to a given class of input. We first
context of engineering problems, it is crucial for the propepoyige a formal definition of signal detection and then
functioning of many biological organisms. Biological sys-oytend the IMP and the work in [19] to show that a

tems must be able to detect changes in their environmegiisiem with signal detection and approximate adaptation
and adjust their internal states acc_ordmgly — @ Procesdyst contain an “approximate” model of the input. We then
commonly referred to as “homeostasis” or “adaptation.” Fojjystrate our findings by considering two different models
example, ;uccessful chgmotams (movement.towards hi perfectly-adapting systems in biology that only approx-
concentrations of chemical attractant) Bf coli depends imately adapt when key assumptions are relaxed: a model

on the ability of the bacteria to adapt to step changes i he' chemoattractant-induced responseDidtyostelium
chemoattractant [1], [3]. This adaptation property has be&hy) and a general receptor modification system such as
shown to require integral control, achieved in coli via  iha one found irE. coli 2], [9].

receptor methylation, and hence the existence of an internal
model of a step input [23]. Other examples in biology in Il. THEORY
which the role of feedback control systems is to achieve \we first describe a “signal detection” property, and then

adaptation include blood calcium regulation [4], neurongjjiscuss approximate adaptation and its internal model im-
control of the prefrontal cortex [17], tryptophan regulatioryications.

in E. coli [20], and theDictyosteliumchemotactic response _ _
to step changes in chemoattractant [22]. A. Signal Detection

Some important distinctions between biological and engi- To define signal detection, we first recall the following
neering systems must be taken into account when studyinpgtations:

biological systems in the context of regulation. Unlike 1) The function f(z) = O(g(z)) asz — = if there
Xi h th < .
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3) The functionf(z) = Q(g(x)) asx — xo if 3C >0 (Fig. 1). Denote the Laplace transform of the input as
such that/ f(z)| > Clg(x)| asx — =o. U(s) = 0(s)/n(s) wheref(s) = c(adj(sI — A))z,o and

Definition 1. A system has the ability to “detect” an inputﬂ(s) = det(s] — A). ThenUS, = (p(s)0(5))/(¢(s)7(s)).

signal u(t) if

M) = Q u(t

/0 = () [ % 5 s il < K
ast — 0, wherey(™ (t) is thenth derivative of the output
y(t) of the system and is the relative degree of the system.
The relative degree of a system is defined as the number Fig. 1. Exosystem and system
of times the output of the system must be differentiated to
be dependent on the input (for a more precise definition of First, denoter = w 7wy where the roots ofr. have
relative degree, see [10]). For linear systems, the relatisdrictly positive real parts, and the roots of have zero
degree equals the difference between the degree of ttesl parts. Furthermore, denote

denominator and numerator polynomials of the transfer r
function. We assume here that the input is applied at time o = st 1_[(32 + w?)h,
zero. i=1

The signal detection property implies that the system'80 that there aré, zero roots ofr andr pairs of nonzero
initial response to an input, determined byrith derivative, iMaginary axis roots at = +jw;, i = {1,2,...,r}, each
is of the same order of magnitude of the input; the systef¢Peated; times. We now have
udetects”_ thg _input. the that, for linear systems, _this U(5)5.(s) = p(5)0(s) 1)
property is trivially satisfied by a nonzero transfer function. € 4 sto H;‘:l(sz + w)big(s)

B. Approximate Adaptation and Signal Detection Imply arffor approximate adaptation, the output must at least be
Approximate Internal Model bounded. Thus, must contain the unstable roots,

In this section, we define approximate adaption for a clag 7 In addition, repeated imaginary axis roots in the
of systems and then show that an approximately adaptignominator of (1) cause unbounded outputs; therefore,

system with signal detection must contain an approximaf®Ust cancel enough of these roots so that, at most, single
model of the input in an appropriate sense. copies of the imaginary axis roots exist. Thus, we denote

. ) ) p = T Top1, Where
Definition 2. An e-parameterized system, denotéd with

T

input u(¢) and outputy(¢) is one that takes the form o = s*o H<32 + W)k
& = f(z,u,¢) i=1
y = h(z,€) andk; > ¢;—1,i=1{0,...,r}, is the total number of pairs
o N of imaginary axis roots of(s) that correspond to imaginary
with initial condition z(0) = 0. axis roots ofr(s). This yields
This definition simply describes a general class of linear p1(s)0(s)
or nonlinear systems while highlighting a particular param- U(5)Se(s) = sto—ko [TI_, (s + w2)li—kig(s)" @)

eter of interest (note thatmay be a vector). We now restrict ) )
our attention to linear systems and the requirements for If & > £ for all 7 > 0, the FVT applies and we have

approximate adaptation of a linear system. perfect adaptation. If; — k; = 1 for somes, then

2 2\k;—4;
Definition 3. The e-parameterized systerii. adapts ap- U(s)S.(s) = p1(s)0(s) Hi:kizéi(s +wi)
proximately to a class of inputg, where eachu(t) € U is ‘ 8 Lie, —p,=1 (82 +w?)a(s)

generated by an exosystemeonsisting of where we have assumed without loss of generality that

Ty = Ay, u=cty, |zwl| <1, ReN[A] >0, Vi Ly — ko = 1 (otherwise B simply equals 0 in (3) below)
and it is understood that the products are over indices

wherew is scalar, if there exists a functio'(¢) = O(¢)  corresponding to nonzero imaginary axis roots. By partial
(ase — 0) such that for alku(t) € U, limsup,_ . [¥(t)| < fraction expansion,

K (e).
" A, A B C
Assume an-parameterized systei, has transfer func- U (5)5¢(s) = > Pl e el G o)
tion Y(s)/U(s) = Sc(s) = p(s)/q(s) wherep and ¢ ibi—ki=1

®3)

are polynomials and the degree pfis less than or equal
to the degree of;. The roots ofg are assumed to have o ok g . .
strictly negative real parts. Our goal is to achiéyét)| <, _ [k, >0, (—wi +wi)™ " pr(jwi)0(jw:)

K(e) ast — oo for all possible initial conditions of” (Jwi)fo=ko(25wi) [To.p, =1 mps (—@F + w2)q(jw:)

where

P =



and

g, u(t) ———————»
[Lik,>e, (wi)*i=4ip1(0)6(0) (t) 20 » (1)
Hi:&—kizl (%‘2)&1(0)
Becausg; is assumed to have stable roots, the contribution
of C'/q(s) to the output eventually dies out. Thus,

y(t) ~ B+ Z 2Re(A;) cos(w;t) + 2Im(A;) sin(w;t)

B =

YiIM ¢

Fig. 2. Internal model decomposition &f,
ast — oo and

WOl < 1Bl + Z IRe(A:)] + [Im(A,)] explicitly in the denominator of the system in the feedback

il —k;=1 . .
loop, an exact model of the input does not exist due to the
<|B|+4 4 Z |Ai- cancellation of some roots afby the roots of the numerator
il —hi=1 corresponding to the indices> 0 for which ¢; — k; = 1.

Note that|A;| and|B| scale linearly with¥ and hence with However, asp;(jw;) — 0 for thesei, jw; become roots
[zuoll < 1. Defining Ko (p1(0)) := supy,,, <1 |B] where of pi(s) and cancel the numerator roots in the limit. When
wo = 0, and K;(p1(jwi)) := 4supy,, <1 |4l for i # 0, this happens, the roots of are no longer cancelled, and

we have the system contains a model of all input&) € /. Thus,
ydl < D Kilpi(jwr)) by taking e := p; (jw) and
itikizl b1 Lis g (5 + w)s"0—
for all admissible initial conditions of. Although not ex- Yim,e = L (& + w2yt and
plicitly stated,p; (jw;) is a function ofe. Thus, ifp; (jw;) = ikizts ; :
O(e), for all i, then definingK(e) := > K;(p1(jw:)), Y=
A 211, (52 + w?)ki—Ligho—to”
implies that|y(¢)| < K(e) = O(¢) and therefore the system P2 1 )ik, >0, i
adapts approximately. Thus, we have proved the followinghere
lemma. Py = b

. . [Tio,—p=a (s* + %2) 7
Lemma 1. A linear e-parameterized system adapts approx- . o ]
imately to inputs in clas# if (i) the poles of inputs in class W& havelime .o Xns.c = ¥y with ¥y being capable of

U with strictly positive real parts are contained as zeros ofe€nerating all inputs ig/. D
the system, (ii) all but at most one copy of each imaginary-
axis pole of the input is cancelled_by the syste_m, and (iii) X 1]
p1(jw;) = O(e) as e — 0 for all imaginary axis poles U > "l a] Y
jw; of the input that are not fully cancelled by zeros of the
system.
. . bIL: (52+w,) Lo—ko
The first two conditions guarantee boundedness of the ili—ki=1 i
output, and the third condition guarantees that the output 7p1 ik, >0, (82 + w?)ki—ti

satisfies the requirement for approximate adaptation. Also
note that if (i) holds and all imaginary-axis poles of therig. 3. Internal model decomposition of a linear, approximately adapting
input are contained as zeros of the system, then the systéyatem.

adapts perfectly.

Definition 4. An e-parameterized systed. is said to have C. Example: Step-input-adaptation
an “approximate” internal model @f, where||ug|| < 1 for

I . For a single step inputl/(s) = 1/s, so ¢, = 1 and
f"‘" ue u, it |t.can be decomposed into the SyStem showgm(s) = 1. Let us first consider perfect adaptation which
in Fig. 2, andlim._.o X1 =: ¥ can generate all inputs

requiresky, > 1 by Lemma 1. Assume for this example
u(t) € U wheny(t) = 0. that ¢(s) = s + a, wherea > 0 is constant. Because the
degree ofp must be less than or equal to the degreey of
and ko > 1, we must haveyy = ¢y = 1 andp;(s) must be
a constants yielding p(s) = 8s. Thus

Proof. Assume the linear systeti, adapts approximately 5(s) = Bs/(s + o). )

to input clasg/, wheree will be defined below. By Lemma 1 In terms of Figure 2%, = 8 andXp, = a/(8s) which is

and by writingq/p = a+0b/p as in [19], we can decompose capable of generating step inputs. An example response is
Y. into the feedback loop of Fig. 3. Thoughis written shown in Figure 4A.

Theorem 1. A linear e-parameterized system that is able to
detect and adapt approximately to inputs in claseontains
an approximate model @f.



2 2 . .
A B then the system simplifies to
16 16
. 1.4] 14 E = —kfeE + keC
g2 § 12 .
g £ I=—k_ I+ kC
< 08 <08 .
06 06 R* - 7k_TIR* + kT-RTE,
0.4] 04
where E+ and I have been incorporated into the constants
--== [ e .
o Cmewe L oo a3+ s k. andk;. After a change of variables [22], we have
Fig. 4. Adaptation examples for a step input with= 2 anda = 5. e=—etc
Panel A shows the perfect adaptation case when0, and panel B shows i = —qi +ac
approximate adaptation withy (0) = 0.25. The dashed line indicates the
pre-stimulus steady-state level. r=—0ir+e

where « and g are constants. We definE to be the
For approximate adaptation, we negg = ¢ — 1, so linearization of this system about the steady-state values

ko must be zero ang(s) = p; (s). Because the degree of €0 = i = ¢o andro = 1/f3, where thec subscript on is
p must be less than or equal to the degreeyofve have dropped to emphasize thatis perfectly adapting, as will

p(s) = Bs + p1(0), where is a constant. Thus, be seen below. The transfer function franto r is
S
Sis)=(1-«a ,
s(s) = 222 m0) © = 0 G e )

. . where v = ¢of8. The system has the signal detection
For the feedback decomposition of Figuree2z= p1(0) S0 onery provided that - 1. Also, 3 can be described

that condition (iii) of Lemma 1 is satisfied;q = (3, in terms of the feedback of Fig. 2 with

(1/8) (e — p1(0)/85) 1—a

EIM,e: ’ D— and
s +p0)/B TS tatyst(atyta)

and X = a/(0s). An example response is shown in Sy = ar

Figure 4B. (1-a)s

Consideringl/ to be the class of step input; adapts

o o perfectly to/ due to the differentiator in the numerator

A. Excitation-Inhibition Model of S(s), and an internal model d¥ is evident from the
In Dictyosteliumcells, the activation of key signaling integrator inX ;.

molecules involved in chemoattractant sensing can be mod-

eled by the system shown in Figure 5 [15], [16], [22].

This system is described by the following set of differential

IIl. BIOLOGICAL EXAMPLES

equations: Now, we relax the initial assumptions on the excitation
dE and inhibition rates taCk./k_. = Ce; and Ck;/k_; =
dt —k-oE + ke(Er — E)C Ces. Following the same analysis as above, the system after
dl i
== kT + ki(Ip — I)C the change of variables becomes
dR* é=—e+c— eypec (6)
at —h BT+ by (R = RO)E i = —ai + ac — expaic (7
7 =—0ir+e (8)
B where p = k2_/(k.k.). Denote the linearization of this
/’k system about a chemoattractant concentratica ¢, and
q k the corresponding steady-state values:,of, andr by X,
C R kr R* (we use the subscript to indicate dependence on both
\ T - parameters; and e;). The transfer function frone to r
k, .
i is
1 —a
5.(6) s (1_&61060) + apco(ea —€1)
Fig. 5. Model of the activation of a response regulatBr via e\s) =
chemoattractant-driven excitation and inhibition enzymes as found in the (8 +1+ elpco)(s + a(l + ezpco))(s + 7)
chemotactic system dbictyostelium[16], [22]. The systen®, has the signal detection property, and appli-

cation of the FVT reveals thai. only adapts approximately
If we assumel' <« k_./k., C < k_;/k;, andRp > R, to step inputs. Decomposition into the feedback loop of



Figure 2 results in (kay, < D andkys, < DL). For example, the component

( La of dR/dt due to the excitation enzyme is
1+o(i))
o = k_1ErD 1
P 2+ (I+a+y+o1)s+ (a+v+ay+o(l)) m:k—lET oo /D1
K K\
and =k_1Er(1— l];[E +0< 2\)@) )
ay+o(l . . .
Yie = 7 +oll) Under saturationX s, /D ~ 0, and the right-hand side
(ﬁﬁ)) s+ o(1) becomesk_i Er. However, if we relax this assumption

by linearizing K,,,/D aboutD = D, large, we obtain
where the o(1) terms are asej,ea — 0. Because Ky,/D ~ —De, Wheree = ky,/DZ. Note that this

lim,. .0 Xpr.e = Y WhereX, can generate all inputs @Pproximation retains the dep_endence(bns_imilar calcu-
.lm‘l*‘a f(? ﬂ” h IMl : M €an g - NPY'S ations for the reactions involving L results in the system
in U (defined as the class of step inputk), contains an  gefined by the following set of differential equations:

approximate model d¥/. We can say that. “almost” has IR

an integrator. = = k-1Br(1+ De) —kilr-arR—krR- L+ k—rRL
The response of the excitation-inhibition system to a stepyrr,

input in C' is shown in Figure 6. Figure 6A is under the g

original assumptions, and Figure 6B is under the relaxed 4D _ —k_1\Er(1+ De) + kiIr-onR— kgD - L+ k_gDL

=k_oFEr(1+ DLe) — kolr -a2gRL + k+R-L — k_RL

assumptions. When the assumptions are relaxed, the syste&rgtL

only adapts approximately. el —k_2Ep(14 DLe) 4+ kolr - agRL 4+ kgD - L — k_4DL
A os B Using the constrainDL = Ry — R — RL — D and the
change of variablest = o R + aoRT and B = (R +
o - RL)/(kiI7) as in [9], the system becomes
060 060 dA
~ o0s8 - 058 E = —a1(L)A + (ao(L) — 60&2]€1]€72ET1T)B
054 054 + eET(a1k71 — Ozgkfz)D + b1 Ap + cask_oET Ry
050 -7 R % =—-A—¢ek_2ErB+ EET(k71 — kfz)D
’ * wTwme(secs)D ¥ S ’ ” 407"“9(5330 ” . + AO + 6k72RTET/(kIIT)
dD

Fig. 6. Step response of the excitation-inhibition system under the original ——
assumptions of [22] (panel A) and after relaxing these assumptions (panel dt
B). The dashed line indicates the pre-stimulus steady-state level of where 4, GO(L) al(L) andb, are defined in [9] and
Parameters used are = 0.5, 8 = 2, pe; = 0, pe2 = 0.025, and a ! ! !
step fromec =0.1to c = 1.

= a2A + a3B + (a4(L) — 6k71ET)D + as

ag = kl.[TOzl/(Oll — O[Q)

_ 041062(7431]T)2 ke k]
B. Adaptation by Receptor Modification as = Qo — oy —d™14T
A general model of adaptation via the modification of a4(L) = —kqL — k_q
receptors, such as that found in the signal transduction as = k_qRp —k_1Fyp.

pathway ofE. coli, is shown in Figure 7 [2], [9]. Typically,
Defining ¥, to be the linearization of this system about

I I L = Ly and steady-state concentrations Af B, and D,

NS the transfer function oE. is

A(s s(bs +o0(1)) + o(1
R 5u(s) = A ____s(bato(1)) +o(1)
L(s) s2+s(a; +0(1)) +ap+o(1)
k_r| |kr k_a| |ka where b3 is defined in [9] and theo(1) terms are as
P P e — 0. This system has the signal detection property, and
‘\k:y decomposingS.(s) into the feedback loop of Fig. 2 gives
RL — — _  » DL b 1
Ty zy = ol
I T s+ ay + 0(1)
= B ag + o(1)
Fig. 7. General model of adaptation via receptor modification taken from IM,e —
[9]. Both the modified and unmodified form of the receptor can bind ligand. sa(b3 * 0(1)) * 0(1)
Such a scheme is found in the signal transduction pathway. abli. Y= bfo
3S

the excitation reaction is assumed to operate at saturatioith lim._.oXn . = Y. BecauseXp, is capable of



generating step inputd;. has an approximate model of thewith internal stability [12], [21]; however, the focus of

input class consisting of step inputs. Also note thats)
approaches the perfectly adapting system in [9¢ as 0.

such work is on controller design rather than the effect
of system parameters on regulation as studied here. The

The response of the receptor-modification system to IMP has been shown for the related regulator problem with
step input in ligand is shown in Figure 8. Figure 8A depicténternal stability [5], and an obvious extension of this work
the response of the system when the excitation reactiorssthe study of approximate adaptation and its internal model
are assumed at saturation, and the response when timgplications in nonlinear systems.

assumption is relaxed is shown in Figure 8B. It is clear that
under saturation, perfect adaptation is achieved. Howeve i
when the excitation reactions do no operate under comple

saturation, adaptation is only achieved within an order.of [2]

(3]
(4]
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Fig. 8. Step response of the four-state receptor modification model WheI[’|8]
the excitation reactions are assumed under saturation (panel A) and when
this assumption is slightly relaxed (panel B). The dashed line indicates tth
pre-stimulus steady-state activity level. 1

[20]

V. CONCLUSIONS 1]
Adaptation to environmental changes is a key property

of many biological systems, and assumptions are usuali{?]
made when modeling these systems to highlight perfect
adaptation. It is plausible that real cells, however, do ngi3]
adapt perfectly but rather to within some tolerable range of
the steady-state adaptation level [13], [14]. We have shovxfg[h]
that a system with such an approximate adaptation property
as well as a signal detection property must contain an
approximate model of the input being adapted to within th[elS]
same order of precision. This is an extension of the internal
model principle under the assumption that perfect regulatidiél
is not required. We have illustrated this concept by consider-
ing two published models of perfectly adapting biological
systems: the excitation-inhibition model used to describﬁn
chemoattractant-induced signaling Dictyostelium [22],
and the four-state receptor modification model which can
be used to model adaptation i coli [9]. In both cases, [18]
perfect adaptation is achieved through simplifying assump-
tions. When relaxed, these assumptions yield systems thad]
do not adapt perfectly, but only partially. In both cases

20
rearrangement of the system shows the presence of Tan]
approximate internal model.

Observe that the approximate adaptation condition is fol21l
mally similar to an input to output stability [18] condition, [22]
uniform on the initial states of the system and exosystem,
whene is seen as an input (and admits, when seen in th%t?’]
light, an obvious generalization to time-varyifyy There
is also a close relation to almost disturbance decoupling
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