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Abstract— The proper function of many biological systems
requires that external perturbations be detected, allowing the
system to adapt to these environmental changes. It is now well
established that this dual detection and adaptation requires
that the system have an internal model in the feedback loop.
In this paper we relax the requirement that the response of the
system adapt perfectly, but instead allow regulation to within
a neighborhood of zero. We show that linear systems with the
ability to detect input signals and approximately adapt require
an approximate model of the input. We illustrate our results
by analyzing two well-studied biological systems.

I. I NTRODUCTION

Many problems in control can be framed as output
regulation problems where the goal is to drive the output of
a system to zero for a particular class of input signals. The
internal model principle (IMP) states that such regulation
can only be achieved if the system contains an “internal
model” of the input being regulated. The IMP was originally
derived for linear systems [5], and related regulation prob-
lems for nonlinear systems have been considered in [6]–[8],
[11]. While output regulation is usually referred to in the
context of engineering problems, it is crucial for the proper
functioning of many biological organisms. Biological sys-
tems must be able to detect changes in their environment
and adjust their internal states accordingly — a process
commonly referred to as “homeostasis” or “adaptation.” For
example, successful chemotaxis (movement towards high
concentrations of chemical attractant) ofE. coli depends
on the ability of the bacteria to adapt to step changes in
chemoattractant [1], [3]. This adaptation property has been
shown to require integral control, achieved inE. coli via
receptor methylation, and hence the existence of an internal
model of a step input [23]. Other examples in biology in
which the role of feedback control systems is to achieve
adaptation include blood calcium regulation [4], neuronal
control of the prefrontal cortex [17], tryptophan regulation
in E. coli [20], and theDictyosteliumchemotactic response
to step changes in chemoattractant [22].

Some important distinctions between biological and engi-
neering systems must be taken into account when studying
biological systems in the context of regulation. Unlike
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typical regulation problems in engineering, where the goal
may be to attenuate the effect of a disturbance as much
as possible, in biological systems, sensing changes in the
input signals may be equally important for achieving proper
cell function [13]. This “signal detection” property has been
characterized and used in conjunction with adaptation to
show the IMP in linear and nonlinear systems [19]. Another
important distinction of biological systems is that, in many
cases, the study of biology is essentially an analysis problem
rather than a design problem. Therefore, while an engineer
should aim to design a control system with no less than
perfect regulation, such a concept may not necessarily be
relevant in analyzing biological systems, where the system
only adapts partially [13], [14]. Although biological systems
may be modeled with simplifying assumptions that lead
to perfect adaptation, relaxation of these assumptions may
yield an output that only adapts to within some tolerable
range of the desired value.

In light of the above discussion, this paper investigates
the properties of a linear system that adapts approximately,
rather than perfectly, to a given class of input. We first
provide a formal definition of signal detection and then
extend the IMP and the work in [19] to show that a
system with signal detection and approximate adaptation
must contain an “approximate” model of the input. We then
illustrate our findings by considering two different models
of perfectly-adapting systems in biology that only approx-
imately adapt when key assumptions are relaxed: a model
of the chemoattractant-induced response ofDictyostelium
[22], and a general receptor modification system such as
the one found inE. coli [2], [9].

II. T HEORY

We first describe a “signal detection” property, and then
discuss approximate adaptation and its internal model im-
plications.

A. Signal Detection

To define signal detection, we first recall the following
notations:

1) The functionf(x) = O(g(x)) as x → x0 if there
exists aC > 0 such that|f(x)| ≤ C|g(x)| asx → x0.

2) The functionf(x) = o(g(x)) as x → x0 if ∀ε > 0,
|f(x)| ≤ ε|g(x)|, asx → x0.



3) The functionf(x) = Ω(g(x)) asx → x0 if ∃C > 0
such that|f(x)| ≥ C|g(x)| asx → x0.

Definition 1. A system has the ability to “detect” an input
signalu(t) if

y(n)(t) = Ω(u(t))

as t → 0, wherey(n)(t) is thenth derivative of the output
y(t) of the system andn is the relative degree of the system.
The relative degree of a system is defined as the number
of times the output of the system must be differentiated to
be dependent on the input (for a more precise definition of
relative degree, see [10]). For linear systems, the relative
degree equals the difference between the degree of the
denominator and numerator polynomials of the transfer
function. We assume here that the input is applied at time
zero.

The signal detection property implies that the system’s
initial response to an input, determined by itsnth derivative,
is of the same order of magnitude of the input; the system
“detects” the input. Note that, for linear systems, this
property is trivially satisfied by a nonzero transfer function.

B. Approximate Adaptation and Signal Detection Imply an
Approximate Internal Model

In this section, we define approximate adaption for a class
of systems and then show that an approximately adapting
system with signal detection must contain an approximate
model of the input in an appropriate sense.

Definition 2. An ε-parameterized system, denotedΣε, with
input u(t) and outputy(t) is one that takes the form

ẋ = f(x, u, ε)
y = h(x, ε)

with initial condition x(0) = x0.

This definition simply describes a general class of linear
or nonlinear systems while highlighting a particular param-
eter of interest (note thatε may be a vector). We now restrict
our attention to linear systems and the requirements for
approximate adaptation of a linear system.

Definition 3. The ε-parameterized systemΣε adapts ap-
proximately to a class of inputsU , where eachu(t) ∈ U is
generated by an exosystemΓ consisting of

ẋu = Axu, u = cxu, ‖xu0‖ ≤ 1, Reλi[A] ≥ 0, ∀i
whereu is scalar, if there exists a functionK(ε) = O(ε)
(asε → 0) such that for allu(t) ∈ U , lim supt→∞ |y(t)| ≤
K(ε).

Assume anε-parameterized systemΣε has transfer func-
tion Y (s)/U(s) = Sε(s) = p(s)/q(s) where p and q
are polynomials and the degree ofp is less than or equal
to the degree ofq. The roots ofq are assumed to have
strictly negative real parts. Our goal is to achieve|y(t)| ≤
K(ε) as t → ∞ for all possible initial conditions ofΓ

(Fig. 1). Denote the Laplace transform of the input as
U(s) = θ(s)/π(s) where θ(s) = c(adj(sI − A))xu0 and
π(s) = det(sI −A). ThenUSε = (p(s)θ(s))/(q(s)π(s)).

|y(t)| ≤ K(ε)Γ Σ
u(t)

Fig. 1. Exosystem and system

First, denoteπ = π+π0 where the roots ofπ+ have
strictly positive real parts, and the roots ofπ0 have zero
real parts. Furthermore, denote

π0 = s`0

r∏

i=1

(s2 + ω2
i )`i ,

so that there arè0 zero roots ofπ andr pairs of nonzero
imaginary axis roots ats = ±jωi, i = {1, 2, . . . , r}, each
repeated̀ i times. We now have

U(s)Sε(s) =
p(s)θ(s)

π+s`0
∏r

i=1(s2 + ω2
i )`iq(s)

. (1)

For approximate adaptation, the output must at least be
bounded. Thus,p must contain the unstable rootsπ+

of π. In addition, repeated imaginary axis roots in the
denominator of (1) cause unbounded outputs; therefore,p
must cancel enough of these roots so that, at most, single
copies of the imaginary axis roots exist. Thus, we denote
p = π+π̂0p1, where

π̂0 = sk0

r∏

i=1

(s2 + ω2
i )ki

andki ≥ `i−1, i = {0, . . . , r}, is the total number of pairs
of imaginary axis roots ofp(s) that correspond to imaginary
axis roots ofπ(s). This yields

U(s)Sε(s) =
p1(s)θ(s)

s`0−k0
∏r

i=1(s2 + ω2
i )`i−kiq(s)

. (2)

If ki ≥ `i for all i ≥ 0, the FVT applies and we have
perfect adaptation. If̀i − ki = 1 for somei, then

U(s)Sε(s) =
p1(s)θ(s)

∏
i:ki≥`i

(s2 + ω2
i )ki−`i

s
∏

i:`i−ki=1(s2 + ω2
i )q(s)

,

where we have assumed without loss of generality that
`0 − k0 = 1 (otherwiseB simply equals 0 in (3) below)
and it is understood that the products are over indices
corresponding to nonzero imaginary axis roots. By partial
fraction expansion,

U(s)Sε(s) =
∑

i:`i−ki=1

{
Ai

s− jωi
+

A∗i
s + jωi

}
+

B

s
+

C

q(s)
,

(3)
where

Ai =

∏
n:kn≥`n

(−ω2
i + ω2

n)kn−`np1(jωi)θ(jωi)
(jωi)`0−k0(2jωi)

∏
n:`n−kn=1,n 6=i(−ω2

i + ω2
n)q(jωi)



and

B =

∏
i:ki≥`i

(ω2
i )ki−`ip1(0)θ(0)∏

i:`i−ki=1(ω
2
i )q(0)

.

Becauseq is assumed to have stable roots, the contribution
of C/q(s) to the output eventually dies out. Thus,

y(t) ≈ B +
∑

i:`i−ki=1

2Re(Ai) cos(ωit) + 2Im(Ai) sin(ωit)

as t →∞ and

|y(t)| ≤ |B|+ 2
∑

i:`i−ki=1

|Re(Ai)|+ |Im(Ai)|

≤ |B|+ 4
∑

i:`i−ki=1

|Ai|.

Note that|Ai| and|B| scale linearly withθ and hence with
‖xu0‖ ≤ 1. Defining K0(p1(0)) := sup‖xu0‖≤1 |B| where
ω0 = 0, andKi(p1(jωi)) := 4 sup‖xu0‖≤1 |Ai| for i 6= 0,
we have

|y(t)| ≤
∑

i:`i−ki=1

Ki(p1(jωi))

for all admissible initial conditions ofΓ. Although not ex-
plicitly stated,p1(jωi) is a function ofε. Thus, ifp1(jωi) =
O(ε), for all i, then definingK(ε) :=

∑
Ki(p1(jωi)),

implies that|y(t)| ≤ K(ε) = O(ε) and therefore the system
adapts approximately. Thus, we have proved the following
lemma.

Lemma 1. A linear ε-parameterized system adapts approx-
imately to inputs in classU if (i) the poles of inputs in class
U with strictly positive real parts are contained as zeros of
the system, (ii) all but at most one copy of each imaginary-
axis pole of the input is cancelled by the system, and (iii)
p1(jωi) = O(ε) as ε → 0 for all imaginary axis poles
jωi of the input that are not fully cancelled by zeros of the
system.

The first two conditions guarantee boundedness of the
output, and the third condition guarantees that the output
satisfies the requirement for approximate adaptation. Also
note that if (i) holds and all imaginary-axis poles of the
input are contained as zeros of the system, then the system
adapts perfectly.

Definition 4. An ε-parameterized systemΣε is said to have
an “approximate” internal model ofU , where‖u0‖ ≤ 1 for
all u ∈ U , if it can be decomposed into the system shown
in Fig. 2, andlimε→0 ΣIM,ε =: ΣIM can generate all inputs
u(t) ∈ U wheny(t) = 0.

Theorem 1. A linear ε-parameterized system that is able to
detect and adapt approximately to inputs in classU contains
an approximate model ofU .

Proof. Assume the linear systemΣε adapts approximately
to input classU , whereε will be defined below. By Lemma 1
and by writingq/p = a+b/p as in [19], we can decompose
Σε into the feedback loop of Fig. 3. Thoughπ is written

u(t)
y(t)

ΣIM,ε

Σ0

Fig. 2. Internal model decomposition ofΣε

explicitly in the denominator of the system in the feedback
loop, an exact model of the input does not exist due to the
cancellation of some roots ofπ by the roots of the numerator
corresponding to the indicesi ≥ 0 for which `i − ki = 1.
However, asp1(jωi) → 0 for thesei, jωi become roots
of p1(s) and cancel the numerator roots in the limit. When
this happens, the roots ofπ are no longer cancelled, and
the system contains a model of all inputsu(t) ∈ U . Thus,
by taking ε := p1(jω) and

ΣIM,ε :=
b
∏

i:`i−ki=1(s
2 + ω2

i )s`0−k0

πp1

∏
i:ki≥`i

(s2 + ω2
i )ki−`i

, and

ΣIM :=
b

πp2

∏
i:ki≥`i

(s2 + ω2
i )ki−`isk0−`0

,

where
p2 =

p1∏
i:`i−ki=1(s2 + ω2

i )
,

we havelimε→0 ΣIM,ε = ΣIM with ΣIM being capable of
generating all inputs inU .

yu
-

+

b
∏

i:`i−ki=1(s
2 + ω2

i )s
`0−k0

πp1

∏
i:ki≥`i

(s2 + ω2
i )

ki−`i

1
a

Fig. 3. Internal model decomposition of a linear, approximately adapting
system.

C. Example: Step-inputε-adaptation

For a single step input,U(s) = 1/s, so `0 = 1 and
π0(s) = 1. Let us first consider perfect adaptation which
requiresk0 ≥ 1 by Lemma 1. Assume for this example
that q(s) = s + α, whereα > 0 is constant. Because the
degree ofp must be less than or equal to the degree ofq
andk0 ≥ 1, we must havek0 = `0 = 1 andp1(s) must be
a constantβ yielding p(s) = βs. Thus

S(s) = βs/(s + α). (4)

In terms of Figure 2,Σ0 = β andΣIM = α/(βs) which is
capable of generating step inputs. An example response is
shown in Figure 4A.
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Fig. 4. Adaptation examples for a step input withβ = 2 and α = 5.
Panel A shows the perfect adaptation case whenε = 0, and panel B shows
approximate adaptation withp1(0) = 0.25. The dashed line indicates the
pre-stimulus steady-state level.

For approximate adaptation, we needk0 = `0 − 1, so
k0 must be zero andp(s) = p1(s). Because the degree of
p must be less than or equal to the degree ofq, we have
p(s) = βs + p1(0), whereβ is a constant. Thus,

S(s) =
βs + p1(0)

s + α
. (5)

For the feedback decomposition of Figure 2,ε = p1(0) so
that condition (iii) of Lemma 1 is satisfied,Σ0 = β,

ΣIM,ε =
(1/β)(α− p1(0)/β)

s + p1(0)/β
,

and ΣIM = α/(βs). An example response is shown in
Figure 4B.

III. B IOLOGICAL EXAMPLES

A. Excitation-Inhibition Model

In Dictyosteliumcells, the activation of key signaling
molecules involved in chemoattractant sensing can be mod-
eled by the system shown in Figure 5 [15], [16], [22].
This system is described by the following set of differential
equations:

dE

dt
= −k−eE + ke(ET − E)C

dI

dt
= −k−iI + ki(IT − I)C

dR∗

dt
= −k−rR

∗I + kr(RT −R∗)E

E

C R R
∗

I

kr

k
−r

ke

ki

Fig. 5. Model of the activation of a response regulatorR via
chemoattractant-driven excitation and inhibition enzymes as found in the
chemotactic system ofDictyostelium[16], [22].

If we assumeC ¿ k−e/ke, C ¿ k−i/ki, andRT À R,

then the system simplifies to

Ė = −k−eE + keC

İ = −k−iI + kiC

Ṙ∗ = −k−rIR∗ + krRT E,

whereET andIT have been incorporated into the constants
ke andki. After a change of variables [22], we have

ė = −e + c

i̇ = −αi + αc

ṙ = −βir + e

where α and β are constants. We defineΣ to be the
linearization of this system about the steady-state values
e0 = i0 = c0 andr0 = 1/β, where theε subscript onΣ is
dropped to emphasize thatΣ is perfectly adapting, as will
be seen below. The transfer function fromc to r is

S(s) = (1− α)
s

(s + α)(s + 1)(s + γ)
,

where γ = c0β. The system has the signal detection
property provided thatα 6= 1. Also, Σ can be described
in terms of the feedback of Fig. 2 with

Σ0 =
1− α

s2 + (1 + α + γ)s + (α + γ + αγ)
and

ΣIM =
αγ

(1− α)s
.

ConsideringU to be the class of step inputs,Σ adapts
perfectly to U due to the differentiator in the numerator
of S(s), and an internal model ofU is evident from the
integrator inΣIM .

Now, we relax the initial assumptions on the excitation
and inhibition rates toCke/k−e = Cε1 and Cki/k−i =
Cε2. Following the same analysis as above, the system after
the change of variables becomes

ė = −e + c− ε1ρec (6)

i̇ = −αi + αc− ε2ραic (7)

ṙ = −βir + e (8)

where ρ = k2
−e/(kekr). Denote the linearization of this

system about a chemoattractant concentrationc = c0 and
the corresponding steady-state values ofe, i, andr by Σε

(we use the subscriptε to indicate dependence on both
parametersε1 and ε2). The transfer function fromc to r
is

Sε(s) =
s
(

1−α
1+ε1ρc0

)
+ αρc0(ε2 − ε1)

(s + 1 + ε1ρc0)(s + α(1 + ε2ρc0))(s + γ)

The systemΣε has the signal detection property, and appli-
cation of the FVT reveals thatΣε only adapts approximately
to step inputs. Decomposition into the feedback loop of



Figure 2 results in

Σ0 =

(
1−α

1+o(1)

)

s2 + (1 + α + γ + o(1))s + (α + γ + αγ + o(1))

and

ΣIM,ε =
αγ + o(1)(

1−α
1+o(1)

)
s + o(1)

where the o(1) terms are asε1, ε2 → 0. Because
limε1,ε2→0 ΣIM,ε = ΣIM whereΣIM can generate all inputs
in U (defined as the class of step inputs),Σε contains an
approximate model ofU . We can say thatΣε “almost” has
an integrator.

The response of the excitation-inhibition system to a step
input in C is shown in Figure 6. Figure 6A is under the
original assumptions, and Figure 6B is under the relaxed
assumptions. When the assumptions are relaxed, the system
only adapts approximately.
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Fig. 6. Step response of the excitation-inhibition system under the original
assumptions of [22] (panel A) and after relaxing these assumptions (panel
B). The dashed line indicates the pre-stimulus steady-state level ofr.
Parameters used areα = 0.5, β = 2, ρε1 = 0, ρε2 = 0.025, and a
step fromc = 0.1 to c = 1.

B. Adaptation by Receptor Modification

A general model of adaptation via the modification of
receptors, such as that found in the signal transduction
pathway ofE. coli, is shown in Figure 7 [2], [9]. Typically,

R + L

I I

E E

D + L

k1

k
−1

RL

k
−r kr

E E

k
−2

k2

I I

DL

k
−d kd

Fig. 7. General model of adaptation via receptor modification taken from
[9]. Both the modified and unmodified form of the receptor can bind ligand.
Such a scheme is found in the signal transduction pathway ofE. coli.

the excitation reaction is assumed to operate at saturation

(kME
¿ D andkME

¿ DL). For example, the component
of dR/dt due to the excitation enzyme is

k−1ET D

kME
+ D

= k−1ET

(
1

kME
/D + 1

)

= k−1ET (1− KME

D
+ o

(
KME

D

)2

).

Under saturation,KME
/D ≈ 0, and the right-hand side

becomesk−1ET . However, if we relax this assumption
by linearizing KME

/D about D = D0 large, we obtain
KME

/D ≈ −Dε, where ε = kME
/D2

0. Note that this
approximation retains the dependence onD. Similar calcu-
lations for the reactions involvingDL results in the system
defined by the following set of differential equations:

dR

dt
= k−1ET (1 + Dε)− k1IT · α1R− krR · L + k−rRL

dRL

dt
= k−2ET (1 + DLε)− k2IT · α2RL + krR · L− k−rRL

dD

dt
= −k−1ET (1 + Dε) + k1IT · α1R− kdD · L + k−dDL

dDL

dt
= −k−2ET (1 + DLε) + k2IT · α2RL + kdD · L− k−dDL

Using the constraintDL = RT − R − RL − D and the
change of variablesA = α1R + α2RT and B = (R +
RL)/(k1IT ) as in [9], the system becomes

dA

dt
= −a1(L)A + (a0(L)− εα2k1k−2ET IT )B

+ εET (α1k−1 − α2k−2)D + b1A0 + εα2k−2ET RT

dB

dt
= −A− εk−2ET B + εET (k−1 − k−2)D

+ A0 + εk−2RT ET /(k1IT )

dD

dt
= a2A + a3B + (a4(L)− εk−1ET )D + a5

whereA0, a0(L), a1(L), andb1 are defined in [9] and

a2 = k1IT α1/(α1 − α2)

a3 =
α1α2(k1IT )2

α2 − α1
− k−dk1IT

a4(L) = −kdL− k−d

a5 = k−dRT − k−1ET .

Defining Σε to be the linearization of this system about
L = L0 and steady-state concentrations ofA, B, and D,
the transfer function ofΣε is

Sε(s) =
A(s)
L(s)

=
s(b3 + o(1)) + o(1)

s2 + s(a1 + o(1)) + a0 + o(1)

where b3 is defined in [9] and theo(1) terms are as
ε → 0. This system has the signal detection property, and
decomposingSε(s) into the feedback loop of Fig. 2 gives

Σ0 =
b3 + o(1)

s + a1 + o(1)

ΣIM,ε =
a0 + o(1)

s(b3 + o(1)) + o(1)

ΣIM =
a0

b3s

with limε→0 ΣIM,ε = ΣIM . BecauseΣIM is capable of



generating step inputs,Σε has an approximate model of the
input class consisting of step inputs. Also note thatSε(s)
approaches the perfectly adapting system in [9] asε → 0.

The response of the receptor-modification system to a
step input in ligand is shown in Figure 8. Figure 8A depicts
the response of the system when the excitation reactions
are assumed at saturation, and the response when this
assumption is relaxed is shown in Figure 8B. It is clear that
under saturation, perfect adaptation is achieved. However,
when the excitation reactions do no operate under complete
saturation, adaptation is only achieved within an order ofε.
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Fig. 8. Step response of the four-state receptor modification model when
the excitation reactions are assumed under saturation (panel A) and when
this assumption is slightly relaxed (panel B). The dashed line indicates the
pre-stimulus steady-state activity level.

IV. CONCLUSIONS

Adaptation to environmental changes is a key property
of many biological systems, and assumptions are usually
made when modeling these systems to highlight perfect
adaptation. It is plausible that real cells, however, do not
adapt perfectly but rather to within some tolerable range of
the steady-state adaptation level [13], [14]. We have shown
that a system with such an approximate adaptation property
as well as a signal detection property must contain an
approximate model of the input being adapted to within the
same order of precision. This is an extension of the internal
model principle under the assumption that perfect regulation
is not required. We have illustrated this concept by consider-
ing two published models of perfectly adapting biological
systems: the excitation-inhibition model used to describe
chemoattractant-induced signaling inDictyostelium [22],
and the four-state receptor modification model which can
be used to model adaptation inE. coli [9]. In both cases,
perfect adaptation is achieved through simplifying assump-
tions. When relaxed, these assumptions yield systems that
do not adapt perfectly, but only partially. In both cases,
rearrangement of the system shows the presence of an
approximate internal model.

Observe that the approximate adaptation condition is for-
mally similar to an input to output stability [18] condition,
uniform on the initial states of the system and exosystem,
when ε is seen as an input (and admits, when seen in that
light, an obvious generalization to time-varyingε). There
is also a close relation to almost disturbance decoupling

with internal stability [12], [21]; however, the focus of
such work is on controller design rather than the effect
of system parameters on regulation as studied here. The
IMP has been shown for the related regulator problem with
internal stability [5], and an obvious extension of this work
is the study of approximate adaptation and its internal model
implications in nonlinear systems.
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