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Abstract— Regulation of gene expression is achieved through meaningful dynamics. An application to a model of the
networks of interactions among genes and gene products. segment polarity network dbrosophilauncovers points of

Genetic networks are sometimes described in a qualitative way, -\ |nerapility of the network, as well as regions of robustness
for instance by means of discrete or even Boolean models. . .
to timescale perturbations.

Even when such models accurately reflect the basic structure

of interactions, they are in general not suitablle for robustness 1. ASYNCHRONOUS ALGORITHMS
analysis, as one needs to study the effect of biologically-relevant . . . . .
perturbations on the dynamics of the system. The issues encountered in dynamic analysis of genetic

This work is concerned with the study of the robustness regulatory networks are often similar to features of com-
and fragility of gene regulation networks to variability in  putation in large networks of processors (nodes). Consider a
the timescales of the distinct biological processes involved. It ggolean model for a networkKy, X, ..., Xy of genes and

explores and compares two methods: introducing asynchronous ducts. S h dat that. at h st
updates in a Boolean model, or integrating the Boolean rules gene products. synchronous updates mean that, at each step

in a continuous, piecewise linear model. As an example, the % + 1, the states of all the nodes in the network are updated
segment polarity network of the fruit fly is analyzed. A  simultaneously, according to

theoretical characterization is given of the model’s ability to kil b ok & .

predict the correct development of the segmented embryo, X7 =F(X7, Xy, X)), i=1,...,N

:ztésazg:%nog. the specific timescales of the various regulation where F; is the regulating function for nodet; (in our
example, mRNAs or proteins).
. INTRODUCTION In processor networks performing parallel computation
usually every processor is assigned a set of tasks to be

Biological systems are known to exhibit several rc’busf_)en‘ormed at appointed times, the result of which is then
n roperti llowing them r n ropriatel . ' .
ess properties, allowing them to respond approp atey;‘iymmunlcated to the other nodes in the network [3]. The

perturbations in their environment. Such properties ensu > ta communication and undate amona nodes should take

that the right physiological and regulatory functions ar| to account that each of thpem has its garticular rocessin

accomplished at the right time, despite local variations in an VS P P! 9
te. A perfect synchronization is often not possible, and

organism’s state [2]. The large amounts of experimental dald .
available on biological networks mainly provide informationaSynChronous methods have been developed (as in the work

on their components and interactions [9], [11]. In the absendd Rh -::0:“"‘3 [ﬁ]’tél‘é])-mei T}aVﬁ ?/:/SZigr?VInotutsiz develloptfadr
of quantitative and kinetic information, regulatory networks[aSy chronous metnods ch aflo ere escaies 10

are often described by discrete models, where the interactioirﬁ'%er ogfgeanr;[ ;:2:3:;{?\/8; a\'sv't:(':r;mt::]eougeg’l\'o;ﬁth[d'm]'W;'E:z <\al\z/aech
are given by a set of logical rules [1], [12]. y 9

In this context, we will say that a Boolean model of anode is updated according to its own specific time unit. The

genetic network igobust if it predicts the appropriate gene Updating times of-th node are pre-specified as:
expression patterns with a fairly high frequency (2g85% T =TF + 4 = kv, k€N, (1)
15 tme dynamics. Othemise, the model wil b considereliere 7 1 = L., ¥, are fixed constanis denoting the
fragile, or vulnera'ble to sucr; perturbations. In this paperIme -un|t for_ ea}ch .nodg. Thﬁ." are randomly chosen from
a met1hodology for analyzing the robustnéss of Boolea% uniform distriution in an intervall — ¢, 1 + <], where

; ; .~ “"¢ € (0,1). The constant defines the magnitude of the
models is developed, which couples random perturbations in

o .r?erturbations to the synchronous time unit. Note that the
parameters with ideas from asynchronous parallel processi

or from simple hybrid systems (piecewise linear e uationséseg = 0 reduces to the synchronous model, where every
pie ny y P d iode is updated simultaneoushy; (= --- = ), at the

The resulting stochastic methods provide a way to systerg%me time instantsT* — k, for all i = 1,..., N. Other

aticaII_y investigate '_[he space .Of parameters (time_zscal_e S 8%ributions could be used, but in the present study we chose
effective concentrations), and identify regions of b|olog|callya uniform distribution to avoid imposing extra assumptions

M. Chaves is with the Institute for Systems Theory and Automatic Con®n the var_ious biol_ogical timescales at this e_arly st_age _in
trol, University of Stuttgart, Pfaffenwaldring 9, 70550 Stuttgart, Germangthe analysis - as will be seen, some assumptions will arise

chaves@ist.uni-stuttgart.de . ; ;
E.D. Sontag is with the Department of Mathematics, Rutgers UniversitnaturaIIy later on. At any given time the next nOde(S) to be

Piscataway, NJ 08854 USsontag@math.rutgers.edu . Xipdated is(arej such thatT — min; ({7} > t}, for some
R. Albert is with the Department of Physics and Huck Institutes for thék. The variablesX; are updated according to:

Life Sciences, Pennsylvania State University, University Park, PA 16802

USA ralbert@phys.psu.edu . Xi(TF) = Fi( X1 (78), .., Xn(18:)), )



whereTJ’?i defines the most recent instant when ngdeas Since the initial conditions coincide (i.eX(0) = X(0))
updated, that is and F; € {0,1}, it is easy to see that solutions of (3)
ko 0 e & evolve in the hypercubf, 1]V. Under these conditions, the

i = meaX{Tj TG < T} limiting values “0” and “1” of the continuous variablX;

This algorithm is well adapted to the analysis of the genetitePresent, respectively, “absence of speciemnd “maximal

regulatory networks, as it is well known that the timescale§oncentration of species — thus we can view theX; as

of transcription, translation, and degradation processes céiinensionless variables, scaled to attain their maximal values

vary W|de|y from gene to gene and can be anywhere frorﬁt 1. The continuous dynamICS IS translated/\"]to a Boolean

minutes to hours. For instance, in the example (Section IVRN/OFF response, according @ as soon a; increases

e < Vg, Means that Wingless protein in celis translated above ;, speciesi is considered to be in the ON state;

at a faster rate (shorter time intervals) thaimglessmRNA ~ Otherwise it remains in the OFF state (see also [6]). Thus the

is produced. parametep; defines the fraction of “maximal concentration”
] necessary for a protein or mRNA to effectively perform its
A. Random order algorithm biological function.

For comparison purposes, we briefly describe an algorithm The «; represent different timescales for the different
developed in [4], which guarantees that every node is update@ocesses, and their inverses may be interpreted as half-lives
exactly once during each unit time interval. A random ordesf mRNA or proteins. In fact, they are naturally related to the
of updates for theV nodes is generated as a permutatiofndividual time unitsy;: using Euler's method to discretize
#* of {1,... N}. This permutation is randomly chosen outsystem (3) obtains
of a uniform distribution over the set of alv! possible ~ - “~
permutations, at the beginning of the time uit The Xi(t + At) = Xi(t) + At (=Xi(t) + Fi(X(2)))-
updating times for each node are now written as Now notice that choosing the integrating time interval to
Tik = N(k—1)+ ¢k(i)7 k€N, be SL_Jch thq’a,;At = 1 recovers the discrete asynchronous

algorithm with specific time units
so that¢*(j) < ¢*(i) implies TF < Tf, and node;j is .
updated before nodeat the k-th iteration. Vi =At=o; .

I1l. GLASS-TYPE NETWORKS With this method the structure and relative timescales of the
Qetwork may be analyzed, by randomly varying the half-lives
in a genetic network, based in the work of L. Glass [10]%» @nd the effective ON concentratiofis It is easy to see

is now described. In that paper, Glass introduced a class o2t the steady states of the piecewise linear equations (3)
piecewise linear differential equations that combine logica"® Still those of the Boolean model, since:

rules for the synthesis of products with linear (free) decay. In = gX; “~
this method, each node is represented by two variables, one ~;; — 0 & X=X, =F(X1, Xo,..., Xn),
discrete and one continuous. The interactions among nod1%§ i—1
are still modeled by Boolean functions [10], [7], [6]. The T
notation is as foIIows?A(i denotes the continuous variable V. THE SEGMENT POLARITY GENES IN THE FRUIT FLY

a;sociated .With node, X; its discrete variable, and the The methods above will be applied to the robustness

_dlscrete variable’s Boolean rule I§. The Glass-type model analysis of a Boolean model ddrosophila melanogaster

is then R segment polarity network. This gene network is responsible
dX; S for defining the segmentation of the embryo of the fly. The
dat ai( =X+ Fy(X1, X, ..., XN) ), ©)  pest charzfcterizedgsegment polarity geneg inctemgrail)éd

with o; > ¢ for some fixede > 0, fori = 1,...,N. Ateach (en), wingless(wg), hedgehog(hh), patched(ptc), cubitus

instantt, the discrete variabl&; is defined as a function of interruptus (ci) and sloppy paired (sip), coding for the

the continuous variable according to a threshold value: ~ corresponding proteins, which we will represent by capital
letters EN, WG, HH, PTC, CI and SLP. Two additional

An alternative method for analysis of varying timescale

., N, independently of);.

X;(t) = { 0, )fi(t) <0 (4) proteins,CIA, and CIR, resulting from transformations of
1 Xi(t) > 6; , the proteinCl, also play important roles.

whered; € (0,1).X The discrete variablex; represent the The Boolean model to be analyzed is depicted in Table I,

ON and OFF levels of the nodes in the Boolean modefind was introduced in [1]. (Further robustness analysis was
also developed in [4], [5].) In this model, a parasegment

1We will analyze the behaviors of trajectories of systems of the form (of four cells is considered: the variables are the expression
assuming that trajectories are well-defined. Since the right-hand sides of

equations of these type are discontinuous, it is very difficult to give gener‘laﬁgvels of the segment p0|a”ty genes and proteins (“Sted
existence and uniqueness theorems for solutions of inital-value problengbove) in each of the four cells. The model successfully
One must impose additional aSSumptionS, inSUring that Only a finite numbarescrlbes the tranSItlon from the |n|t|al expreSS|0n pattern (5)
of switches can take place on any finite time interval, and often tools fro .

the theory of differential inclusions must be applied, see for instance [8 O a final pattern two or three deve|0pmental stages later,
[6]. when the embryo has been clearly divided into parasegments



TABLE |

BOOLEAN OF SEGMENT POLARITY GENE PRODUCTS IN THE MODEL

SUBSCRIPTS: = 1,2, 3,4 DENOTE CELL NUMBER

Node Boolean updating function (synchronous algorithm)

S SWRGHD={ ) ey

wg; wg; (k + 1) = (CIA; (k) andSLP; (k) and notCIR;(k))
or [wg; (k) and (CIA; (k) or SLP,(k)) and notCIR; (k)]

WG,  WG;(k+ 1) = wg,; (k)

en; en;(k+ 1) = (WG;_1(k) or WG;+1(k)) and notSLP, (k)

EN;  ENj(k+ 1) = en(k)

hh; hh; (k + 1) = EN;(k) and notCIR; (k)

HH;  HH;(k + 1) = hh;(k)

ptc; ptc; (k + 1) = CIA; (k) and notEN; (k) and notCIR; (k)

PTC; PTCi(k + 1) = ptc;(k) or (PTC;(k) and notHH,_1 (k)
and notHHi_,_l(k:))

Ci; cij(k + 1) = not EN; (k)

Cl; Cli(k + 1) = ci; (k)

ClIA; CIA;(k+ 1) = CI;(k) and [notPTC; (k) or HH;_1 (k)
or HH;4+1 (k) or hhy_1 (k) or hh;41 (k)]

CIR;  CIR;(k + 1) = Cl;(k) and PTC;(k) and notHH,_1 (k)

and notHH; 1 (k) and nothh;_; (k) and nothh;_, (k)

V. RESULTS

Applying the asynchronous algorithm to the segment po-
larity network shows that, when started from the initial wild
type state (5), any of the steady states of the model (Table II)
may occur with a certain probability. The probability of
occurrence of each pattern depends on the range over which
the individual time unitsy; are allowed to vary (see Fig. 1).
For ¢ = 0, the wild type steady state is attained with
probability 100% (corresponding to the synchronous Boolean
model). Ase increases to 0.01 (resp. 0.1) this value decreases
to 60% (resp. 44%). However, further increasesithence
larger time intervals) unexpectedly leads to an increase in
the occurrence of the wild type state, up to 51%:¢et 0.9.
Other final states observed are the broad-striped pattern
(25% — 38%) observed in heat-shock experiments gotd
mutants and the pattern with no segmentatitf{ — 15%)
observed inen hh or wg mutants. Each of the other three
steady states occurs with frequencies less tifan (These
values were obtained from 10000 numerical experiments.)

of about four cells each (see first entry of Table II). We

adopt the notationwg?” or “wg, (k)" to represent the state
of winglessmRNA in the first cell of the parasegment at time
k. Similar notations apply for other mRNAs and proteins. :
Periodic boundary conditions are assumed, meaning the
nodey+1 = node; and node;_1 = nodey. The wild type

initial pattern corresponds to:

we) =1, el =1, hh) =1, ptc) 5 , =1, cif 5, =1, (5)

with the

A complete analysis of the steady states for the Boolea
model (Table 1) is found in [1]. Table Il summarizes these ; BS
results, indicating the expressed nodes in each of the s 0 @—e—e—fégfff/"gNs
steady-states. We note that three of the steady states ag 0
perfectly with experimentally observed states corresponding
to wild type, toptc knockout mutant (broad striped) and to;

remaining nodes zero.

"

- :
= i T
5 0.8}
© i
a H
P i
o 0.6r u\

\,
° S LSS W
5 B
S 0.4r g
Y e -
- ,/ --------- ﬁ --------------
: ’? --------- -aBS
< 0.20!
: | -ANS
— I"’—E’- = i
& =]

0.5 1 1.5 2
Interval length, 2¢

ig. 1. Probability of occurrence of the three most frequent patterns under

en wg or hh knockout mutant (non-segmented) embryoniGariable range of timescales (see Table 11 for notation). Dashed lines/squares
patterns, the latter two corresponding to embryonic lethaépresent asynchronous algorithm results, while solid lines/circles represent

phenotypes (see [1] for appropriate references).

TABLE I

COMPLETE CHARACTERIZATION OF THE MODELS STEADY STATES

ONLY ON (EXPRESSELD NODES ARE INDICATED.

Steady state Expressed nodes
wild type wg,, WGy, eng, ENg, hhy, HHy, PTG 3 4,
(WT) ptc, 4, Ci2,3,4, Cl2,3,4, ClA2 4, CIR3

broad stripes

(BS)

W5 4, WGz 4, €M 2, ENi,2, hhy 2, HH1 2,
ptc; 4, PTCs 4, Ciz4, Cls,a, ClAz4

no segmentation

(NS)

Ci1,2,3,4, Cl1,2,3,4, PTC1,2,3,4, CIR; 2.3 4

wild type variant

wg,, WGy, eng, ENy, hhy, HHy, PTG 23 4,

(WTV) pt02 4 Ci2,374, C|27374, C|A274, C|R3
ectopic wgz, WG, emp, ENg, hhe, HHa, PTG 3 4,
(EC) ptCl 3 Ci1,374, C|17374, C|A173, CIRy
ectopic variant wgz, WG, emp, ENa, hhp, HH2, PTG 2 3 4,
(ECV) ptc; 3, Ci1,3,4, Cl1 3,4, ClA; 3, CIRy

Glass-type model results (out of 1000 runs, with= 0.5, for all 3.

With the random order algorithm, the WT steady state is
reached with a probability of 56%, followed by BS (24%)
and NS (15%). Less frequent are WTV (4.2%) and EC, ECV
(< 1%). To apply the Glass type model in a comparable
way, the scale factors; ' are randomly chosen from a
uniform distribution in intervals of the fornfil — e,1 + ¢],

€ (0,1). Also, to separately study the effect of varying ON
thresholds, in Fig. 1 ali; are fixed at 0.5. With this method,
in contrast to the asynchronous Boolean model, the wild type
pattern occurs with frequencies that decrease monotonically
with e, down to 89% fore = 0.9 (Fig. 1). The next more
frequently achieved patterns are BS (around 6%), NS (3%),
and WTV (1%). To analyze the effect of varyifig, we next
randomly chosey; from the interval0.5, 1.5], and also chose
6; randomly from uniform distributions in the intervalg, 1),
(0,0.5] and [0.5,1). The results are summarized in Table III
and indicate that higher thresholds are not realistic. On the



contrary, small fractions of the maximal concentration (below For the asynchronous algorithm, the probabilities of con-
50%) are already sufficient for a gene or protein to be activeergence to each of the steady states clearly depend on the
(For instance, in [15] a threshold of 10% was used.) distance between the two intervals (see [4]). Convergence to
wild type is betweer®3% and 100%.

For the Glass-type model, two cases can be distinguished.

It is well known that pOSt-translational processes such %r 91 S 05, numerical simulations show that the model
protein conformational changes or complex formation, usyeaches wild type pattern with probability near 100%, even
ally have shorter durations than transcription, translation @hen there is some overlap betweel)q, and Apq. In
mMRNA decay. In this section, a timescale separation amongct, we next theoretically prove th#te wild type pattern
processes is introduced, equivalent to updating proteins fiigt indeed the unique possible steady stafethe hybrid
and mRNAs later. Timescale separation is straightforwardlyystem (3) and initial condition (5), when there is a suitable
implemented in the random order algorithm presented ifistance between the intervals, = ¢ for all i, and a lower
Section II; at thek-th updating step we generate two randonbound oné (Theorem 2). Fo®; > 0.5, we have found no
permutationsgf,, and ¢, within the set of proteins and condition that guarantees convergence to the wild type steady
mMRNAs, respectively. Then th& nodes are updated in the state, and indeed numerical simulations show that, even for

VI. ROBUSTNESS UNDER TIMESCALE SEPARATION

order given by large interval separation, the system may converge to one of
oF = (B, o). the mutant patternsf. .
Theorem 2:Consider system (3), witl¥); = 6 for all
This method shows that the Boolean model is very robust, = 1,..., N, and initial condition (5). Assume that the

in the sense that when started from the wild type initiacaling factorsn; are chosen from intervald, ., and Ap,
condition, the wild type pattern occurs with a frequency ofhat satisfy:

87.5% and only one other steady state is observed, the broad

striped pattern, with a frequency df2.5%. Furthermore, Forall a € Ay and b € Ap: 0<2a <b.  (7)
these freque.nmes are exact, as TOHOWS f'rom a Co.mple}fssume also that one of the following conditions holds:
characterization of the model resulting from incorporation of )

a protein/mRNA timescale separation into the random ordef® ¢ < 1/2 and (1 — 0)* < 0 or equivalently0.382 ~
algorithm. We summarize the results in the next theorem (3-V5)/2<0 <1/

stated without proof, and refer to [4] for more details. b) 6 <1/2 and aere, > iy
Theorem 1:In the random order algorithm with timescalethenwg,(¢) = 0 for all ¢.
separation, letvg} = 0, ptc} = 1, hh) , = 0 andci§ = 1 The differences and similarities between discrete and

(as satisfied by initial condition (5)). Then system divergesontinuous models are illustrated by Theorems 1 and 2.
from the wild type pattern if and only if the permutatign ~ The second (sufficient) condition of Theorem 2 guarantees
satisfies the following sequence among the prot&h<IA, convergence to the wild type steady state for(ak 6 <

CIR andPTC 0.5, but assumes thate:,, > ag,. This is an analog to
CIR; Cls CIA PTG, Theorem 1: ifapr, > aq,, then (starting fronPTC;(0) =
Cl; CIR; ClAg PTG, 6) Cl3(0) =0 and assumingc, = F,, = 1) PTG; increases
Cls ClA; CIR; PTG;. faster tharCls, implying thatPTC; becomes ON faster than

i ] o Cls. Such response prevents the events listed in Theorem 1,
The other proteins may appear in any of the remaining slot§ich would lead to a mutant state. Thus, both discrete and
u N ) ] piecewise linear model predict that the sequencé®dC,
Thus we can compute the exact probability with which the| eypression in the third cell is one of the fundamental
random order algorithm (with timescale separation) leads {§eces in establishing the correct development of embryo
either the wild type or broad stripes pattern: the latter ISegmentation.
simply the fraction of sequences of the form (6) _[4]. ~ Condition (a) (Theorem 2) applies only for3s2 < ¢ <
For the Glass-type and asynchronous algorithms, times p+ does not require any extra conditions to prevent the
separation among processes is implemented by using t‘%’fﬁgle sjump” event described by Theorem 1.
non-overlapping intervals for the scaling factors: Theorem 2 identifies essentially three distinct regions of
7 € A If X, € {wg, en hh, ptc, ci} behavior for the cas#; = 0: (0,(3 — v/5)/2], [(3 —
—1 . v5)/2,1/2], and [1/2,1). To test the performance of the
v, € Apy,  Otherwise . . .

v system and compare it to previous results, we considered two
with, for instance, A s = [0.2,0.6] and A, = [1.4,1.8]. timescale situationsy; € [0.5,1.5] for all ¢, or the timescale
Under these conditions, choosing the facters from a separationA g = [0.2,0.6], Apy = [1.4,1.8]. In each case,
uniform distribution in these intervals, numerical experiments/e randomly assigned valuesg&pfrom uniform distributions
indicate that the two methods respond in mostly similain the intervals(0,1), (0,0.5) and(0.4,0.5). Table lll sum-
ways, with only the wild type and broad stripes patternsnarizes the results for all combinationséfand«; regions.
occurring at steady state when the systems start from (wilthe most general case, allowing a large degree of freedom
type) initial condition (5). in both timescales and concentration thresholds, indicates



TABLE Ill
PROBABILITIES OF CONVERGENCE TO A GIVEN STEADY STATEWITH
DISTINCT CONCENTRATION THRESHOLDS); AND DISTINCT
TIMESCALES o;, IN THE GLASS-TYPE MODEL. (PROBABILITIES

)A(l(t) (resp. >A(O(t)) is monotonically increasing (resp. de-
creasing). In addition, note that discrete variablesan only
switch between 0 and 1 at instants such t@t,,..) = 0:

-~

COMPUTED OUT OF1000SIMULATIONS FOR EACH CASE 1 1—X(t
) tslwitch = to + - h'l ( ( O)) (10)
« 1-6
Steady (0,1) (0.5,1) (0,0.5] (0,0.5] [0.4,0.5] 1. Xt
state aprez > Qcig tsowitch = t+—1In (9 ) (12)
pattern o - @ _
A= Aprr = [0.5, 1.5] From the initial conditions, together with the constant values
WT 456% 57.1% 84.1% 90% 92.6% of SLP, (i = 1,2, 3,4), we can immediately conclude:
BS 27.8%  15.1% 12% 6.2% 7.3% -
NS 244% 258%  0.9% 0.9% 0.05% WQ, 5(t) = WG, 2(t) = 0, (12)
WTV  2.1% 1.9% 2.9% 2.9% 0% ] P
Amrna= [0-270-6], Aprot = [1-47 1-8] eArBA(t) - IE/I\\IS’4(t) - 07
WT 741% 52.7%  96.6% 97.1% 100% hhs 4(¢) = HH3 4(t) =0 (13)
BS 10.8%  3.3% 3.3% 2.8% 0% ’ ’ ’
NS 14.1%  43.9% 0% 0% 0% for all t > 0. Then, becausei; 4(0) = 1 and F,,, =
WTV 1.0% 0% 0.1% 0.1% 0% ’ '
not EN3’4,
a374(t) =1 and 6'374(15) =1—¢ %34 t. (14)

the fragility of the network, with a very high incidence on  Lemma 7.1:Let 0 < tg < t3 < t; and 0 < ty < t3.
mutant patternsé( € (0,1), a; € [0.5,1.5]). Comparing Defines = In 5/ maxy .y o;. AssumeClAg(t) = 0 for
the reasonable results obtained for < 0.5 with the bad ¢ ¢ (ta,t3), andwg,(t) = 0 for ¢ € [0,¢3). Then
performance fo0.5 < #; < 1, we conclude that the optimal (8) wg,(t) =0 for t € [0, 23 + 6);

ON concentratin for proteins or mRNA is below 50% of () WG;(t) = 0 for ¢t € [0, t5 + 6);

maximal concentration. Restrictirg even further to one of () eny(t) = ENy(t) = 0 for ¢ € [0, t5 + 6);

the conditions given in Theorem 2 dramatically increases thg‘d) hhy(t) = HHy(t) = 0 for ¢ € [0, 25 + 6).

probability that the system develops in the correct way.  Aqqume further thaPTCy(t) = 1 for ¢ € (to, t1). Then

VIl. GLASS-TYPE MODEL PROVIDES EXACT (e) PTG (¢t) =1 for all t € (tg,t3 + 9).
CONVERGENCE TO WILD TYPE PATTERN (f) ClA3(t) =0 for all ¢t € (t2,t3 + 9).
In this section we will require that the intervald,qy. Proof: Part (a) follows directly from the fact tha,,, (1) =

and A, do not overlap, by satisfying assumption (7). A0 on [0,3), and from (10). _ o
second assumption is that the effective maximal concentra-10_prove parts (b), (c), and (d), first note that initial
tion is equal for all nodes and satisfigs< 1/2, which is ~conditions together wittwg,(t) = 0 for ¢ € [0, ;) imply
equivalent to:< In 1. Theorem 2 shows that the steady statVGs(t) = 0, én(t) = ENo(1) = 0, and hhy(t) =
representing the broad stripes pattern cannot ever be react#ldz(t) = 0, for ¢t € [0,¢3]. Then, from equations (8)

in system (3) from the initial condition (5), wheh< 1/2 10 (11) we conclude that the corresponding discrete variables

and either of the extra conditions holds. cannot switch from 0 to 1 during an interval of the form
Theorem 3:Consider system (3), with, = ¢ for all i = [0, t3+ ;- In 115). Taking the largest common interval yields

1,...,N, and initial condition (5). Assume that the scalingthe desired results.

factorsa; satisfy (7), and that < 1/2. Thenwg,(t) = 1 To prove parts (e) and (f), assume also tRAIG;(¢) =

andPTC,(¢) = 0 for all ¢. 1 for t € (to,t1). From (13) and part (d), it follows that

This shows that the steady states NS, WTV, EC and ECfynction Fir, does not switch in the intervato, t3 +6) and
cannot ever be reached in system (3) with (5). Fror fact PTG () = 1 for all ¢ in this interval. This, together
Theorems 2 and 3 we conclude that, under the timescamth (13) and part (d) yieldc,, (t) = 0 for (to,t3 + d), SO
separation assumption, the Glass-type model (3) (ita ¢  that CIA; cannot increase in this interval and the discrete

for all i = 1,...,N) can only converge to the wild type level satisfiesCIA;(t) = 0 for all ¢ € (2,13 + J), as we
pattern, when starting from (5), and for appropriétealues wanted to show. [
(Table 111). Corollary 7.2: Let 0 < tg < t3 < t; and0 <ty < t3. If

The proof of Theorem 2 is given next, and the reader iBTGs(t) = 1 for ¢ € (to,t1), ClAz(t) = 0 for ¢ € (t2,13),
referred to [5] for a proof of Theorem 3. We first summarizeandwg, (t) = 0 for ¢ € [0,¢3), thenwg,(¢) = 0 for all ¢.
some useful observations. L&t denote any of the nodes in ~ The proof follows by induction o, settingts = t3 + k¢
the network, and its time rate. Since equations (3) are eithefsee [4]).
of the form dX/dt = a(—X + 1) or dX/dt = —aX, their Proof of Theorem 2The rule forCIA; may be simplified

solutions are continous functions, piecewise combinations d® (by (13)) Fcn, = Clz and [notPTC; or hhy or HHy].
~1 1 From equation (14), we have that
X(t) = 1—(1—X (tg))e >t (8) ) )
S0 S0 (i I =1, for all 1 . 1
() = X(tg)e ottt ©) Cls(¢) or all ¢ > oo ny—y (15)



On the other hand, sincptc;(0) = 1, by continuity of
solutionsptc;(t) = 1 for all ¢ < a—lne This implies
that the Patched protein satisfies

—— 1
PTG(t)=1—e *! 0<t< In =
e, 0
and therefore
O 1 1
PTG(t) = N 1 (16)
1, aPT%lnm<t<ml e
By assumption,aere, > oy, and alsoln ﬁ < Ing L

defmmg a nonempty interval wheFeTQ, is expressed. Now
lett. = 1 In 15 andt, Wln CIA3( ) starts at
zero and must remain so whi@ls = 0, so thatClAs(t) =0
for 0 < t < t.. In the caset., > t,, letting to = t,,
t1 = ln 5, t2 =0, andts = t. in Corollary 7.2, obtains
W (t ) = 0 for all t. This proves item (b) of the theorem,
and part of (a).

To finish the proof of item (a), we assume tiiat-6)2 < 6

and must now consider the cake< t,. Then
0, 0<t<t.
ClAs(t) = { 1— e oom (i=te), te <t <t
ClAz(t,) e%oms (1) - ¢ < ¢ < In,

Oép[

Following equation (10) withty = ¢. and ClAg(to) =0,
ClA; might become expressed at time< ¢, < t,:
1

t te + 1 1
a = lc — i —F,
1—-40

Qiag

but it would then become zero again at (equation (11) with2]

to = tp)
1 . ClAs(t
ty=t, + ——1In Clas(ty)
Qcipg 0

Finally, we show that, even iCIA;(t) = 1 for ¢t € (¢4, 1),

wg; cannot become expressed in this interval. In this interval,

Wg, evolves according taig, (1) = 1—e~ s (*~*a) "andwg,
can switch to 1 at time

tw =tg + i In 1
w — lta oy 1 _ 0
We will show thatt,, > t,, sowgs(t) = 0 in the interval
[0,t). Writing
ClAs(t,) ClAs(t,) 1—6
In —P2/ — 8\ - T Y
Ty "0 g
. CIA(t,) 1-6
= -6 "y
< 1 1
T R
where we have useéﬁg(tp) < 1 and the assumption ah
128 < L. Therefore
ty < t,+ In 1
b= Qlciag 1-46
< 1 1 + L 1 1 <t
—1n n w
Qg 1-0 Qiag 1-6

where we have used the timescale separation assumption (7).
Letting to = t,, to = 0, andt;, = t3 = min{ty, o) In 3} in
the Corollary, obtainsvgs(t) = 0 for all ¢. n

VIIl. CONCLUSIONS

Two alternative methods were discussed for modeling gene
expression networks: asynchronous Boolean methods and
piecewise linear hybrid systems. Unrestricted variability in
timescales or ON levels may lead to significant deviations
from the experimentally observed dynamical behavior thus
suggesting the fragility of the developmental process under
severe perturbations. Both models agree in predicting the
fundamental sequences of gene expression that irreversibly
lead to a deviation from the wild type behavior and to a
convergence to a mutant state. However, a single biologically
justified restriction, that is, separating the timescales of post-
translational and transcription/translation processes, unveils
a remarkable robustness of the Boolean model in predicting
the correct gene expression pattern. The Glass-type system
with time separation, as a model of the segment polarity
gene network, indicates that the topology of the network is
more important than the fine-tuning of the kinetic parameters
[15], since its results are robust for a large region of
parameter (scaling factor, activation threshold) space. This
result underscores the applicability of qualitative modeling
when detailed kinetic information is unavailable.
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