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Abstract— Regulation of gene expression is achieved through
networks of interactions among genes and gene products.
Genetic networks are sometimes described in a qualitative way,
for instance by means of discrete or even Boolean models.
Even when such models accurately reflect the basic structure
of interactions, they are in general not suitable for robustness
analysis, as one needs to study the effect of biologically-relevant
perturbations on the dynamics of the system.

This work is concerned with the study of the robustness
and fragility of gene regulation networks to variability in
the timescales of the distinct biological processes involved. It
explores and compares two methods: introducing asynchronous
updates in a Boolean model, or integrating the Boolean rules
in a continuous, piecewise linear model. As an example, the
segment polarity network of the fruit fly is analyzed. A
theoretical characterization is given of the model’s ability to
predict the correct development of the segmented embryo,
in terms of the specific timescales of the various regulation
interactions.

I. I NTRODUCTION

Biological systems are known to exhibit several robust-
ness properties, allowing them to respond appropriately to
perturbations in their environment. Such properties ensure
that the right physiological and regulatory functions are
accomplished at the right time, despite local variations in an
organism’s state [2]. The large amounts of experimental data
available on biological networks mainly provide information
on their components and interactions [9], [11]. In the absence
of quantitative and kinetic information, regulatory networks
are often described by discrete models, where the interactions
are given by a set of logical rules [1], [12].

In this context, we will say that a Boolean model of a
genetic network isrobust, if it predicts the appropriate gene
expression patterns with a fairly high frequency (eg,≥ 85%
of experiments), when subject to random perturbations in
its time dynamics. Otherwise, the model will be considered
fragile, or vulnerable to such perturbations. In this paper,
a methodology for analyzing the robustness of Boolean
models is developed, which couples random perturbations in
parameters with ideas from asynchronous parallel processing,
or from simple hybrid systems (piecewise linear equations).
The resulting stochastic methods provide a way to system-
atically investigate the space of parameters (timescales and
effective concentrations), and identify regions of biologically
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meaningful dynamics. An application to a model of the
segment polarity network ofDrosophila uncovers points of
vulnerability of the network, as well as regions of robustness
to timescale perturbations.

II. A SYNCHRONOUS ALGORITHMS

The issues encountered in dynamic analysis of genetic
regulatory networks are often similar to features of com-
putation in large networks of processors (nodes). Consider a
Boolean model for a networkX1, X2, . . ., XN of genes and
gene products. Synchronous updates mean that, at each step
k + 1, the states of all the nodes in the network are updated
simultaneously, according to

Xk+1
i = Fi(Xk

1 , Xk
2 , . . . , Xk

N ), i = 1, . . . , N

where Fi is the regulating function for nodeXi (in our
example, mRNAs or proteins).

In processor networks performing parallel computation
usually every processor is assigned a set of tasks to be
performed at appointed times, the result of which is then
communicated to the other nodes in the network [3]. The
data communication and update among nodes should take
into account that each of them has its particular processing
rate. A perfect synchronization is often not possible, and
asynchronous methods have been developed (as in the work
of R. Thomas [13], [14]). We have also previously developed
asynchronous methods which allow different timescales for
the different processes within the network [4]. Here we
introduce an alternative asynchronous algorithm where each
node is updated according to its own specific time unit. The
updating times ofi-th node are pre-specified as:

T k+1
i = T k

i + γi = kγi, k ∈ N, (1)

where γi, i = 1, . . . , N , are fixed constants denoting the
time unit for each node. Theγi are randomly chosen from
a uniform distribution in an interval[1 − ε, 1 + ε], where
ε ∈ (0, 1). The constantε defines the magnitude of the
perturbations to the synchronous time unit. Note that the
caseε = 0 reduces to the synchronous model, where every
node is updated simultaneously (γ1 = · · · = γN ), at the
same time instants:T k

i = k, for all i = 1, . . . , N . Other
distributions could be used, but in the present study we chose
a uniform distribution to avoid imposing extra assumptions
on the various biological timescales at this early stage in
the analysis - as will be seen, some assumptions will arise
naturally later on. At any given timet, the next node(s) to be
updated is(are)i such thatT k

i = minj,`{T `
j ≥ t}, for some

k. The variablesXi are updated according to:

Xi(T k
i ) = Fi( X1(τk

1i), . . . , XN (τk
Ni) ), (2)



whereτk
ji defines the most recent instant when nodej was

updated, that is

τk
ji = max

`
{T `

j : T `
j < T k

i }.

This algorithm is well adapted to the analysis of the genetic
regulatory networks, as it is well known that the timescales
of transcription, translation, and degradation processes can
vary widely from gene to gene and can be anywhere from
minutes to hours. For instance, in the example (Section IV),
γWGi < γwgi

means that Wingless protein in celli is translated
at a faster rate (shorter time intervals) thanwinglessmRNA
is produced.

A. Random order algorithm

For comparison purposes, we briefly describe an algorithm
developed in [4], which guarantees that every node is updated
exactly once during each unit time interval. A random order
of updates for theN nodes is generated as a permutation
φk of {1, . . . N}. This permutation is randomly chosen out
of a uniform distribution over the set of allN ! possible
permutations, at the beginning of the time unitk. The
updating times for each node are now written as

T k
i = N(k − 1) + φk(i), k ∈ N,

so thatφk(j) < φk(i) implies T k
j < T k

i , and nodej is
updated before nodei at thek-th iteration.

III. G LASS-TYPE NETWORKS

An alternative method for analysis of varying timescales
in a genetic network, based in the work of L. Glass [10],
is now described. In that paper, Glass introduced a class of
piecewise linear differential equations that combine logical
rules for the synthesis of products with linear (free) decay. In
this method, each node is represented by two variables, one
discrete and one continuous. The interactions among nodes
are still modeled by Boolean functions [10], [7], [6]. The
notation is as follows:̂Xi denotes the continuous variable
associated with nodei, Xi its discrete variable, and the
discrete variable’s Boolean rule isFi. The Glass-type model
is then

d X̂i

dt
= αi( −X̂i + Fi(X1, X2, . . . , XN ) ), (3)

with αi ≥ ε for some fixedε > 0, for i = 1, . . . , N . At each
instantt, the discrete variableXi is defined as a function of
the continuous variable according to a threshold value:

Xi(t) =
{

0, X̂i(t) ≤ θi

1, X̂i(t) > θi ,
(4)

whereθi ∈ (0, 1).1 The discrete variablesXi represent the
ON and OFF levels of the nodes in the Boolean model.

1We will analyze the behaviors of trajectories of systems of the form (3),
assuming that trajectories are well-defined. Since the right-hand sides of
equations of these type are discontinuous, it is very difficult to give general
existence and uniqueness theorems for solutions of inital-value problems.
One must impose additional assumptions, insuring that only a finite number
of switches can take place on any finite time interval, and often tools from
the theory of differential inclusions must be applied, see for instance [8],
[6].

Since the initial conditions coincide (i.e.,X(0) = X̂(0))
and Fi ∈ {0, 1}, it is easy to see that solutions of (3)
evolve in the hypercube[0, 1]N . Under these conditions, the
limiting values “0” and “1” of the continuous variablêXi

represent, respectively, “absence of speciesi” and “maximal
concentration of speciesi” – thus we can view thêXi as
dimensionless variables, scaled to attain their maximal values
at 1. The continuous dynamics is translated into a Boolean
ON/OFF response, according toθi: as soon aŝXi increases
above θi, speciesi is considered to be in the ON state;
otherwise it remains in the OFF state (see also [6]). Thus the
parameterθi defines the fraction of “maximal concentration”
necessary for a protein or mRNA to effectively perform its
biological function.

The αi represent different timescales for the different
processes, and their inverses may be interpreted as half-lives
of mRNA or proteins. In fact, they are naturally related to the
individual time unitsγi: using Euler’s method to discretize
system (3) obtains

X̂i(t + ∆t) = X̂i(t) + αi∆t(−X̂i(t) + Fi(X(t))).

Now notice that choosing the integrating time interval to
be such thatαi∆t = 1 recovers the discrete asynchronous
algorithm with specific time units

γi = ∆t = α−1
i .

With this method the structure and relative timescales of the
network may be analyzed, by randomly varying the half-lives
αi, and the effective ON concentrationsθi. It is easy to see
that the steady states of the piecewise linear equations (3)
are still those of the Boolean model, since:

d X̂i

dt
= 0 ⇔ X̂i = Xi = Fi(X1, X2, . . . , XN ),

for i = 1, . . . , N , independently ofθi.

IV. T HE SEGMENT POLARITY GENES IN THE FRUIT FLY

The methods above will be applied to the robustness
analysis of a Boolean model ofDrosophila melanogaster
segment polarity network. This gene network is responsible
for defining the segmentation of the embryo of the fly. The
best characterized segment polarity genes includeengrailed
(en), wingless(wg), hedgehog(hh), patched(ptc), cubitus
interruptus (ci) and sloppy paired (slp), coding for the
corresponding proteins, which we will represent by capital
letters (EN, WG, HH, PTC, CI and SLP). Two additional
proteins,CIA, and CIR, resulting from transformations of
the proteinCI, also play important roles.

The Boolean model to be analyzed is depicted in Table I,
and was introduced in [1]. (Further robustness analysis was
also developed in [4], [5].) In this model, a parasegment
of four cells is considered: the variables are the expression
levels of the segment polarity genes and proteins (listed
above) in each of the four cells. The model successfully
describes the transition from the initial expression pattern (5)
to a final pattern two or three developmental stages later,
when the embryo has been clearly divided into parasegments



TABLE I

BOOLEAN OF SEGMENT POLARITY GENE PRODUCTS IN THE MODEL.

SUBSCRIPTSi = 1, 2, 3, 4 DENOTE CELL NUMBER.

Node Boolean updating function (synchronous algorithm)

SLPi SLPi(k + 1) =

{
0 if i ∈ {1, 2}
1 if i ∈ {3, 4}

wgi wgi(k + 1) = (CIAi(k) andSLPi(k) and notCIRi(k))
or [wgi(k) and (CIAi(k) or SLPi(k)) and notCIRi(k)]

WGi WGi(k + 1) = wgi(k)
eni eni(k + 1) = (WGi−1(k) or WGi+1(k)) and notSLPi(k)
ENi ENi(k + 1) = eni(k)
hhi hhi(k + 1) = ENi(k) and notCIRi(k)
HHi HHi(k + 1) = hhi(k)
ptci ptci(k + 1) = CIAi(k) and notENi(k) and notCIRi(k)
PTCi PTCi(k + 1) = ptci(k) or (PTCi(k) and notHHi−1(k)

and notHHi+1(k))
cii cii(k + 1) = not ENi(k)
CIi CIi(k + 1) = cii(k)
CIAi CIAi(k + 1) = CIi(k) and [notPTCi(k) or HHi−1(k)

or HHi+1(k) or hhi−1(k) or hhi+1(k)]
CIRi CIRi(k + 1) = CIi(k) andPTCi(k) and notHHi−1(k)

and notHHi+1(k) and nothhi−1(k) and nothhi+1(k)

of about four cells each (see first entry of Table II). We
adopt the notation “wgk

1” or “ wg1(k)” to represent the state
of winglessmRNA in the first cell of the parasegment at time
k. Similar notations apply for other mRNAs and proteins.
Periodic boundary conditions are assumed, meaning that:
node4+1 = node1 and node1−1 = node4. The wild type
initial pattern corresponds to:

wg0
4 = 1, en01 = 1, hh0

1 = 1, ptc02,3,4 = 1, ci02,3,4 = 1, (5)

with the remaining nodes zero.
A complete analysis of the steady states for the Boolean

model (Table I) is found in [1]. Table II summarizes these
results, indicating the expressed nodes in each of the six
steady-states. We note that three of the steady states agree
perfectly with experimentally observed states corresponding
to wild type, toptc knockout mutant (broad striped) and to
en, wg or hh knockout mutant (non-segmented) embryonic
patterns, the latter two corresponding to embryonic lethal
phenotypes (see [1] for appropriate references).

TABLE II

COMPLETE CHARACTERIZATION OF THE MODEL’ S STEADY STATES.

ONLY ON (EXPRESSED) NODES ARE INDICATED.

Steady state Expressed nodes

wild type wg4, WG4, en1, EN1, hh1, HH1, PTC2,3,4,
(WT) ptc2,4, ci2,3,4, CI2,3,4, CIA2,4, CIR3

broad stripes wg3,4, WG3,4, en1,2, EN1,2, hh1,2, HH1,2,
(BS) ptc3,4, PTC3,4, ci3,4, CI3,4, CIA3,4

no segmentation ci1,2,3,4, CI1,2,3,4, PTC1,2,3,4, CIR1,2,3,4

(NS)
wild type variant wg4, WG4, en1, EN1, hh1, HH1, PTC1,2,3,4,
(WTV) ptc2,4, ci2,3,4, CI2,3,4, CIA2,4, CIR3

ectopic wg3, WG3, en2, EN2, hh2, HH2, PTC1,3,4,
(EC) ptc1,3, ci1,3,4, CI1,3,4, CIA1,3, CIR4

ectopic variant wg3, WG3, en2, EN2, hh2, HH2, PTC1,2,3,4,
(ECV) ptc1,3, ci1,3,4, CI1,3,4, CIA1,3, CIR4

V. RESULTS

Applying the asynchronous algorithm to the segment po-
larity network shows that, when started from the initial wild
type state (5), any of the steady states of the model (Table II)
may occur with a certain probability. The probability of
occurrence of each pattern depends on the range over which
the individual time unitsγi are allowed to vary (see Fig. 1).
For ε = 0, the wild type steady state is attained with
probability 100% (corresponding to the synchronous Boolean
model). Asε increases to 0.01 (resp. 0.1) this value decreases
to 60% (resp. 44%). However, further increase inε (hence
larger time intervals) unexpectedly leads to an increase in
the occurrence of the wild type state, up to 51% forε = 0.9.
Other final states observed are the broad-striped pattern
(25% − 38%) observed in heat-shock experiments andptc
mutants and the pattern with no segmentation (12%− 15%)
observed inen, hh or wg mutants. Each of the other three
steady states occurs with frequencies less than5%. (These
values were obtained from 10000 numerical experiments.)

Fig. 1. Probability of occurrence of the three most frequent patterns under
variable range of timescales (see Table II for notation). Dashed lines/squares
represent asynchronous algorithm results, while solid lines/circles represent
Glass-type model results (out of 1000 runs, withθi = 0.5, for all i.

With the random order algorithm, the WT steady state is
reached with a probability of 56%, followed by BS (24%)
and NS (15%). Less frequent are WTV (4.2%) and EC, ECV
(< 1%). To apply the Glass type model in a comparable
way, the scale factorsα−1

i are randomly chosen from a
uniform distribution in intervals of the form[1 − ε, 1 + ε],
ε ∈ (0, 1). Also, to separately study the effect of varying ON
thresholds, in Fig. 1 allθi are fixed at 0.5. With this method,
in contrast to the asynchronous Boolean model, the wild type
pattern occurs with frequencies that decrease monotonically
with ε, down to 89% forε = 0.9 (Fig. 1). The next more
frequently achieved patterns are BS (around 6%), NS (3%),
and WTV (1%). To analyze the effect of varyingθi, we next
randomly choseαi from the interval[0.5, 1.5], and also chose
θi randomly from uniform distributions in the intervals(0, 1),
(0, 0.5] and [0.5,1). The results are summarized in Table III
and indicate that higher thresholds are not realistic. On the



contrary, small fractions of the maximal concentration (below
50%) are already sufficient for a gene or protein to be active.
(For instance, in [15] a threshold of 10% was used.)

VI. ROBUSTNESS UNDER TIMESCALE SEPARATION

It is well known that post-translational processes such as
protein conformational changes or complex formation, usu-
ally have shorter durations than transcription, translation or
mRNA decay. In this section, a timescale separation among
processes is introduced, equivalent to updating proteins first
and mRNAs later. Timescale separation is straightforwardly
implemented in the random order algorithm presented in
Section II; at thek-th updating step we generate two random
permutations,φk

Prot and φk
mRNA, within the set of proteins and

mRNAs, respectively. Then theN nodes are updated in the
order given by

φk = (φk
Prot, φ

k
mRNA).

This method shows that the Boolean model is very robust,
in the sense that when started from the wild type initial
condition, the wild type pattern occurs with a frequency of
87.5% and only one other steady state is observed, the broad
striped pattern, with a frequency of12.5%. Furthermore,
these frequencies are exact, as follows from a complete
characterization of the model resulting from incorporation of
a protein/mRNA timescale separation into the random order
algorithm. We summarize the results in the next theorem,
stated without proof, and refer to [4] for more details.

Theorem 1:In the random order algorithm with timescale
separation, letwg0

3 = 0, ptc03 = 1, hh0
2,4 = 0 and ci03 = 1

(as satisfied by initial condition (5)). Then system diverges
from the wild type pattern if and only if the permutationφ1

satisfies the following sequence among the proteinsCI, CIA,
CIR andPTC:

CIR3 CI3 CIA3 PTC3,
CI3 CIR3 CIA3 PTC3,
CI3 CIA3 CIR3 PTC3.

(6)

The other proteins may appear in any of the remaining slots.

Thus we can compute the exact probability with which the
random order algorithm (with timescale separation) leads to
either the wild type or broad stripes pattern: the latter is
simply the fraction of sequences of the form (6) [4].

For the Glass-type and asynchronous algorithms, time
separation among processes is implemented by using two
non-overlapping intervals for the scaling factors:

γ−1
i , αi ∈ AmRNA, if Xi ∈ {wg, en, hh, ptc, ci}

γ−1
i , αi ∈ AProt, otherwise

with, for instance,AmRNA = [0.2, 0.6] and AProt = [1.4, 1.8].
Under these conditions, choosing the factorsαi from a
uniform distribution in these intervals, numerical experiments
indicate that the two methods respond in mostly similar
ways, with only the wild type and broad stripes patterns
occurring at steady state when the systems start from (wild
type) initial condition (5).

For the asynchronous algorithm, the probabilities of con-
vergence to each of the steady states clearly depend on the
distance between the two intervals (see [4]). Convergence to
wild type is between93% and100%.

For the Glass-type model, two cases can be distinguished.
For θi ≤ 0.5, numerical simulations show that the model
reaches wild type pattern with probability near 100%, even
when there is some overlap betweenAmRNA and AProt. In
fact, we next theoretically prove thatthe wild type pattern
is indeed the unique possible steady stateof the hybrid
system (3) and initial condition (5), when there is a suitable
distance between the intervals,θi = θ for all i, and a lower
bound onθ (Theorem 2). Forθi > 0.5, we have found no
condition that guarantees convergence to the wild type steady
state, and indeed numerical simulations show that, even for
large interval separation, the system may converge to one of
the mutant patterns.

Theorem 2:Consider system (3), withθi = θ for all
i = 1, . . . , N , and initial condition (5). Assume that the
scaling factorsαi are chosen from intervalsAmRNA and AProt

that satisfy:

For all a ∈ AmRNA and b ∈ AProt : 0 < 2a < b. (7)

Assume also that one of the following conditions holds:

(a) θ ≤ 1/2 and (1 − θ)2 ≤ θ or equivalently0.382 ≈
(3−

√
5)/2 ≤ θ ≤ 1/2;

(b) θ ≤ 1/2 andαPTC3 > αCI3 ;

thenwg3(t) = 0 for all t.
The differences and similarities between discrete and

continuous models are illustrated by Theorems 1 and 2.
The second (sufficient) condition of Theorem 2 guarantees
convergence to the wild type steady state for all0 < θ ≤
0.5, but assumes thatαPTC3 > αCI3 . This is an analog to
Theorem 1: ifαPTC3 > αCI3 , then (starting fromPTC3(0) =
CI3(0) = 0 and assumingFPTC3 = FCI3 = 1) P̂TC3 increases
faster thanĈI3, implying thatPTC3 becomes ON faster than
CI3. Such response prevents the events listed in Theorem 1,
which would lead to a mutant state. Thus, both discrete and
piecewise linear model predict that the sequence ofPTC,
CI expression in the third cell is one of the fundamental
pieces in establishing the correct development of embryo
segmentation.

Condition (a) (Theorem 2) applies only for0.382 ≤ θ ≤
0.5, but does not require any extra conditions to prevent the
single “jump” event described by Theorem 1.

Theorem 2 identifies essentially three distinct regions of
behavior for the caseθi = θ: (0, (3 −

√
5)/2], [(3 −√

5)/2, 1/2], and [1/2, 1). To test the performance of the
system and compare it to previous results, we considered two
timescale situations:αi ∈ [0.5, 1.5] for all i, or the timescale
separationAmRNA = [0.2, 0.6], AProt = [1.4, 1.8]. In each case,
we randomly assigned values toθi from uniform distributions
in the intervals(0, 1), (0, 0.5) and(0.4, 0.5). Table III sum-
marizes the results for all combinations ofθi andαi regions.
The most general case, allowing a large degree of freedom
in both timescales and concentration thresholds, indicates



TABLE III

PROBABILITIES OF CONVERGENCE TO A GIVEN STEADY STATE, WITH

DISTINCT CONCENTRATION THRESHOLDSθi AND DISTINCT

TIMESCALES αi , IN THE GLASS-TYPE MODEL. (PROBABILITIES

COMPUTED OUT OF1000SIMULATIONS FOR EACH CASE.)

Steady (0, 1) (0.5, 1) (0, 0.5] (0, 0.5] [0.4, 0.5]
state αPTC3 > αCI3
pattern

AmRNA = AProt = [0.5, 1.5]
WT 45.6% 57.1% 84.1% 90% 92.6%
BS 27.8% 15.1% 12% 6.2% 7.3%
NS 24.4% 25.8% 0.9% 0.9% 0.05%
WTV 2.1% 1.9% 2.9% 2.9% 0%

AmRNA = [0.2, 0.6], AProt = [1.4, 1.8]
WT 74.1% 52.7% 96.6% 97.1% 100%
BS 10.8% 3.3% 3.3% 2.8% 0%
NS 14.1% 43.9% 0% 0% 0%
WTV 1.0% 0% 0.1% 0.1% 0%

the fragility of the network, with a very high incidence on
mutant patterns (θi ∈ (0, 1), αi ∈ [0.5, 1.5]). Comparing
the reasonable results obtained forθi ≤ 0.5 with the bad
performance for0.5 < θi < 1, we conclude that the optimal
ON concentratin for proteins or mRNA is below 50% of
maximal concentration. Restrictingθi even further to one of
the conditions given in Theorem 2 dramatically increases the
probability that the system develops in the correct way.

VII. G LASS-TYPE MODEL PROVIDES EXACT

CONVERGENCE TO WILD TYPE PATTERN

In this section we will require that the intervalsAmRNA

and AProt do not overlap, by satisfying assumption (7). A
second assumption is that the effective maximal concentra-
tion is equal for all nodes and satisfiesθ ≤ 1/2, which is
equivalent to:≤ ln 1

θ . Theorem 2 shows that the steady state
representing the broad stripes pattern cannot ever be reached
in system (3) from the initial condition (5), whenθ ≤ 1/2
and either of the extra conditions holds.

Theorem 3:Consider system (3), withθi = θ for all i =
1, . . . , N , and initial condition (5). Assume that the scaling
factorsαi satisfy (7), and thatθ ≤ 1/2. Then wg4(t) = 1
andPTC1(t) = 0 for all t.
This shows that the steady states NS, WTV, EC and ECV
cannot ever be reached in system (3) with (5). From
Theorems 2 and 3 we conclude that, under the timescale
separation assumption, the Glass-type model (3) (withθi = θ
for all i = 1, . . . , N ) can only converge to the wild type
pattern, when starting from (5), and for appropriateθ values
(Table III).

The proof of Theorem 2 is given next, and the reader is
referred to [5] for a proof of Theorem 3. We first summarize
some useful observations. LetX denote any of the nodes in
the network, andα its time rate. Since equations (3) are either
of the form dX̂/dt = α(−X̂ + 1) or dX̂/dt = −αX̂, their
solutions are continous functions, piecewise combinations of:

X̂
1
(t) = 1− (1− X̂

1
(t0)) e−α(t−t0) (8)

X̂
0
(t) = X̂

0
(t0) e−α(t−t0) (9)

X̂
1
(t) (resp. X̂

0
(t)) is monotonically increasing (resp. de-

creasing). In addition, note that discrete variablesX can only
switch between 0 and 1 at instants such thatX̂(tswitch) = θ:

t1switch = t0 +
1
α

ln
(1− X̂(t0))

1− θ
(10)

t0switch = t0 +
1
α

ln
X̂(t0)

θ
(11)

From the initial conditions, together with the constant values
of SLPi (i = 1, 2, 3, 4), we can immediately conclude:

ŵg1,2(t) = WG1,2(t) = 0, (12)

ên3,4(t) = ÊN3,4(t) = 0,

ĥh3,4(t) = ĤH3,4(t) = 0, (13)

for all t ≥ 0. Then, becauseci3,4(0) = 1 and Fci3,4 =
not EN3,4,

ĉi3,4(t) = 1 and ĈI3,4(t) = 1− e−αCI3,4 t. (14)

Lemma 7.1:Let 0 ≤ t0 < t3 ≤ t1 and 0 ≤ t2 < t3.
Define δ = ln 1

1−θ / max1,...,N αi. AssumeCIA3(t) = 0 for
t ∈ (t2, t3), andwg3(t) = 0 for t ∈ [0, t3). Then
(a) wg3(t) = 0 for t ∈ [0, t3 + δ);
(b) WG3(t) = 0 for t ∈ [0, t3 + δ);
(c) en2(t) = EN2(t) = 0 for t ∈ [0, t3 + δ);
(d) hh2(t) = HH2(t) = 0 for t ∈ [0, t3 + δ).
Assume further thatPTC3(t) = 1 for t ∈ (t0, t1). Then
(e) PTC3(t) = 1 for all t ∈ (t0, t3 + δ).
(f) CIA3(t) = 0 for all t ∈ (t2, t3 + δ).

Proof: Part (a) follows directly from the fact thatFwg3(t) =
0 on [0, t3), and from (10).

To prove parts (b), (c), and (d), first note that initial
conditions together withwg3(t) = 0 for t ∈ [0, t3) imply
ŴG3(t) = 0, ên2(t) = ÊN2(t) = 0, and ĥh2(t) =
ĤH2(t) = 0, for t ∈ [0, t3]. Then, from equations (8)
to (11) we conclude that the corresponding discrete variables
cannot switch from 0 to 1 during an interval of the form
[0, t3+ 1

αj
ln 1

1−θ ). Taking the largest common interval yields
the desired results.

To prove parts (e) and (f), assume also thatPTC3(t) =
1 for t ∈ (t0, t1). From (13) and part (d), it follows that
functionFPTC3 does not switch in the interval(t0, t3 +δ) and
in fact PTC3(t) = 1 for all t in this interval. This, together
with (13) and part (d) yieldFCIA3(t) = 0 for (t0, t3 + δ), so
that ĈIA3 cannot increase in this interval and the discrete
level satisfiesCIA3(t) = 0 for all t ∈ (t2, t3 + δ), as we
wanted to show.

Corollary 7.2: Let 0 ≤ t0 < t3 ≤ t1 and0 ≤ t2 < t3. If
PTC3(t) = 1 for t ∈ (t0, t1), CIA3(t) = 0 for t ∈ (t2, t3),
andwg3(t) = 0 for t ∈ [0, t3), thenwg3(t) = 0 for all t.

The proof follows by induction onk, settingt̃3 = t3 + kδ
(see [4]).

Proof of Theorem 2:The rule forCIA3 may be simplified
to (by (13)) FCIA3 = CI3 and [notPTC3 or hh2 or HH2].
From equation (14), we have that

CI3(t) = 1, for all t >
1

αCI3

ln
1

1− θ
. (15)



On the other hand, sinceptc3(0) = 1, by continuity of
solutions ptc3(t) = 1 for all t < 1

αptc3
ln 1

θ . This implies
that the Patched protein satisfies

P̂TC3(t) = 1− e−αPTC3 t, 0 ≤ t ≤ 1
αptc3

ln
1
θ

and therefore

PTC3(t) =

{
0, 0 ≤ t ≤ 1

αPTC3
ln 1

1−θ

1, 1
αPTC3

ln 1
1−θ < t < 1

αptc3
ln 1

θ .
(16)

By assumption,αPTC3 > αptc3 and also ln 1
1−θ ≤ ln 1

θ ,
defining a nonempty interval wherePTC3 is expressed. Now
let tc = 1

αCI3
ln 1

1−θ and tp = 1
αPTC3

ln 1
1−θ . ĈIA3(t) starts at

zero and must remain so whileCI3 = 0, so thatCIA3(t) = 0
for 0 < t < tc. In the casetc > tp, letting t0 = tp,
t1 = 1

αptc3
ln 1

θ , t2 = 0, andt3 = tc in Corollary 7.2, obtains
wg3(t) = 0 for all t. This proves item (b) of the theorem,
and part of (a).

To finish the proof of item (a), we assume that(1−θ)2 < θ
and must now consider the casetc ≤ tp. Then

ĈIA3(t) =


0, 0 ≤ t ≤ tc
1− e−αCIA3 (t−tc), tc < t ≤ tp
ĈIA3(tp) e−αCIA3 (t−tp), tp < t ≤ 1

αptc3
ln 1

θ ,

Following equation (10) witht0 = tc and ĈIA3(t0) = 0,
CIA3 might become expressed at timetc < ta < tp:

ta = tc +
1

αCIA3

ln
1

1− θ
,

but it would then become zero again at (equation (11) with
t0 = tp)

tb = tp +
1

αCIA3

ln
ĈIA3(tp)

θ
.

Finally, we show that, even ifCIA3(t) = 1 for t ∈ (ta, tb),
wg3 cannot become expressed in this interval. In this interval,
ŵg3 evolves according tôwg3(t) = 1−e−αwg3 (t−ta), andwg3

can switch to 1 at time

tw = ta +
1

αwg3

ln
1

1− θ
.

We will show thattw > tb, so wg3(t) = 0 in the interval
[0, tb). Writing

ln
ĈIA3(tp)

θ
= ln

ĈIA3(tp)
1− θ

1− θ

θ

= ln
ĈIA3(tp)

1− θ
+ ln

1− θ

θ

≤ ln
1

1− θ
+ ln

1
1− θ

where we have used̂CIA3(tp) ≤ 1 and the assumption onθ:
1−θ

θ ≤ 1
1−θ . Therefore

tb ≤ tp +
2

αCIA3

ln
1

1− θ

<
1

αwg3

ln
1

1− θ
+

1
αCIA3

ln
1

1− θ
< tw

where we have used the timescale separation assumption (7).
Letting t0 = tp, t2 = 0, andt1 = t3 = min{tb, α−1

ptc3
ln 1

θ} in
the Corollary, obtainswg3(t) = 0 for all t.

VIII. CONCLUSIONS

Two alternative methods were discussed for modeling gene
expression networks: asynchronous Boolean methods and
piecewise linear hybrid systems. Unrestricted variability in
timescales or ON levels may lead to significant deviations
from the experimentally observed dynamical behavior thus
suggesting the fragility of the developmental process under
severe perturbations. Both models agree in predicting the
fundamental sequences of gene expression that irreversibly
lead to a deviation from the wild type behavior and to a
convergence to a mutant state. However, a single biologically
justified restriction, that is, separating the timescales of post-
translational and transcription/translation processes, unveils
a remarkable robustness of the Boolean model in predicting
the correct gene expression pattern. The Glass-type system
with time separation, as a model of the segment polarity
gene network, indicates that the topology of the network is
more important than the fine-tuning of the kinetic parameters
[15], since its results are robust for a large region of
parameter (scaling factor, activation threshold) space. This
result underscores the applicability of qualitative modeling
when detailed kinetic information is unavailable.
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