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Abstract— This paper extends to singular perturbations of dynamics is well-approximated by = —2z (which is
strongly monotone systems a result of Hirsch’s on generic strongly monotone, because every scalar system is).

convergence to equilibria. We consider systems = f(z,y), ey = g(x,y) for
which the reduced systemt = f(x,h(x)) is (strongly)
l. INTRODUCTION monotone and the fast systetn= g(x,y) has a unique

Monotone systems constitute a rich class of models fdafobally asymptotically stable steady stagte- 2(x) for each
which global and almost-global convergence properties can and satisfies an input to state stability type of property
be established. They are particularly useful in biochemicavith respect tox. One may expect that the original system
models (see discussion and references in [13], [14], arad aliherits global (generic) convergence properties, attléas
appear in areas like coordination ([10]) and other problemgll >0 small enough, and this is indeed the object of our
in control theory ([1]). This paper studies extensionsngsi Study. This question may be approached in several ways.
geometric singular perturbation theory, of Hirsch’s gémer One may viewy — h(x) as an input to the slow system, and
convergence theorem for monotone systems ([4], [5], [6RPPeal to the theory of asymptotically autonomous systems.
[12]). Informally stated, Hirsch’s result says that almosfAnother approach, the one that we develop here, is through
every bounded solution of a strongly monotone systerieometric invariant manifold theory ([3], [8], [11]). Theis
converges to the set of equilibria. There is a rich literatur@ manifold/., invariant for the full dynamics, which attracts
regarding the application of this powerful theorem, as weldll near-enough solutions, with an asymptotic phase ptgper
as of other results dealing with everywhere convergencEne system restricted to the invariant manifald. is a
when equilibria are unique ([12], [2], [7]), to models of regular perturbation of the fast£0) system. As remarked
biochemical systems. Unfortunately, many models in biplogin Theorem 1.2 in Hirsch's early paper [4], @" regular
are not monotone. In order to address this drawback (as w@grturbation of a flow with eventually positive derivatives
as to study properties of large systems which are monoto@éﬁo has generic convergence. So, solutions in the manifold
but which are hard to analyze in their entirety), a recerg linwill be generally well-behaved, and asymptotic phase iegpli
of work introduced an input/output approach that is based dhat solutions track solutions i/, and hence also converge
the analysis of interconnections of monotone systems. F&t equilibria if solutions onM. do. A key technical detail
examp|e, the approach allows one to viewm@n-imonotone is to establish that the tracking solutions also start frowm t
system as a “negative” feedback loop of monotone open-|oc‘)‘900d" set of initial conditions, for generic solutions dfet
systems, thus leading to results on global stability and tHarge system.
emergence of oscillations under transmission delays, and t For simplicity, we discuss here only the case of coopera-
the construction of relaxation oscillators by slow adaptat tive systems (monotonicity with respect to the main orthant
rules on feedback gains. See [13], [14] for expositions anlut proofs in the case of general cones are similar and will
many references. The present paper is in the same characher.discussed in a paper under preparation.

Our motivation arose from the observation that time-scale
separation may also lead to monotonicity. This point of view
is of special interest in the context of biochemical systems
for example, Michaelis Menten kinetics are mathematically
justified as singularly perturbed versions of mass action ki We are interested in systems in singularly perturbed form:
netics. A system that is not monotone may become monotone

Il. STATEMENT OF MAIN RESULT

once that fast variables are replaced by their steady-state dx = f(z,y) 1)
values. A trivial linear example that illustrates this poin dt ’
is &=—z—y, ey=—y+z, with £>0. This system is not dy  _
: e— = g(zy),
monotone with respect to any orthant cone. On the other dt

hand, fore <« 1, the fast variabley tracksx, so the slow
wherez € R", y € R™, 0 < ¢ < 1, and f and g are
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will specialize to systems of the following form: 1. TERMINOLOGY
The following standard terminology is defined for a gen-

‘Z = f(z,y) (2) eral ordinary differential equation:

dy dz

> —=F 4
ey = Ay + h(x). i (2), 4)

. N N 1 1
(We remark later how our results may be extended to \é\l/here FoRY — R7 s aC vector field. For any

broader class of systems.) Settingo zero, we have: z € RY, we denote the maximally defined solution of (4)
y ' ’ ' with initial condition z by t — ¢:(2),t € I(z), where

dz I(z) is an open interval iR that contains zero. For each
7 = f@mel), (3) t e R, the set ofz € RV for which ¢,(z) is defined is
an open set¥(t) C RY, and¢, : W(t) — W(-t) is a
where mg(z) = —A~'h(x). As usual in singular pertur- diffeomorphism. The collection of map§p;}:cr is called

bation theory, our goal is to use properties of the limitinghe flow of (4). We also write just(t) for the solution of
system (3) in order to derive conclusions about the ful(4), if the initial conditionz(0) is clear from the context.
system (2) wher) < ¢ < 1. We will assume given three The forward trajectory of: € R™ is a parametrized curve
setsK, K, and L which satisfy the following hypotheses: ¢t — ¢:(z). Its image is the forward orbit of, denoted
as O4(z). The backward trajectory and the backward orbit
O_(z) are defined analogously. A sEtC R" is positively
(respectively, negatively) invariant O, (U) C U. It is
invariant if it is both positively and negatively invariant.

_ _ ~ We borrow the notation from [8] for the forward evolution
n]\fg,i_s,{(:(gr’lig;irleyd_ingoimgi v € K}, the graph of of a setU C V C R¥ restricted toV:

H4 The flow {1, } of the limiting system (3) has /., ¢t = {¢:(p) : p € U andgs(p) € V for all 0 < s < t}.
eventually positive derivatives oR .

H5 For eachs > 0 sufficiently small, the forward
trajectory under (2) of each point i = IntK x L
is precompact inD.

H6 The equilibrium set of (2) is countable.

H7 The setK C IntK is compact, and for each
e > 0 sufficiently small, the setD = K x L is
positively invariant.

H1 The setK is an n-dimensionalC> simply
connected compact manifold with boundary.
H2 The setK is convex.

H3 The setL is a bounded open subsetkf*, and

Let us denote the interior and the closure of algeds Int/
andU respectively.

Definition 1: The flow {¢.} of (4) is said to haveventu-
ally positive derivatives on a s&f C RY if there existst,
such that the matrixXD,¢;(z) has only positive entries (also
called the matrix is positive) for everty> ¢y, z € V.

The next lemma is a restatement of theorem 4.4 in [5]:

Lemma 1:Suppose that the open dét C R™ is convex

The main theorem is: and the flow{¢,} of (4) has eventually positive derivatives

Theorem 1:Under assumptionsl1-H7, there existg™ > on W. Let W°¢ C W be the set of points whose forward
0 such that for eacl) < ¢ < ¢*, the forward trajectory of orbit has compact closure ii¥’. If the set of equilibrium
(2) starting from almost every point if» converges to some points is countable, then(t) converges to a equilibrium as
equilibrium. t goes to infinity, for almost every € We.

Remark: A variant of this result is to assume that theThe following fact follows from differentiability of solubns
reduced system (3) has a unique equilibrium. In this case, owith respect to “regular” perturbations in the dynamicse se
may improve the conclusions of the theorem to global (nd6], Theorem 1.2:

just generic) convergence, by appealing to results of Hirsc Lemma 2: AssumeV C W is a compact set in which the
and others that apply when equilibria are unique. The prodlow {¢,} has eventually positive derivatives. Then, there
is simpler in that case, since the foliation structure gitgn exists§ > 0 with the following property. Let{«);} denote
Fenichel's theory (see below) is not required. In the opgosithe flow of aC* vector field G such that theC'* norm of
direction, one could drop the assumption of countabilitd anF'(z) — G(z) is less thary for all z in V. Then there exists
instead provide theorems on generic convergence to the $et> 0 such that ift > ¢, andv,(z) € V for all s € [0, ],

of equilibria, or even to equilibria if hyperbolicity cortiins  then the matrixD.v.(z) is positive.

are satisfied, in the spirit of what is done in the theory of Definition 2: A compact, connected” manifold M C
strongly monotone systems. RY with boundary is said to btcally invariant under the



flow of (1), if for eachp € IntM, there exists a time interval
I, = (t1,t2),t1 < 0 < to, such that¢,(p) € M for all
tel,

Whene # 0, we can setr = t/e, and (1) is equivalent to
its fast system:

() ©)
% = g(a:,y).

Definition 3: Let M be ann-dimensional manifold (possi-
bly with boundary) which is contained if(z,y) | g(x,y) =
0}. We say thatM is normally hyperbolic relative to (5) if
all eigenvalues of the matri®, g(p) have nonzero real part
for everyp € M.

IV. PROOF OF THEMAIN THEOREM

n
Our proofs are based on Fenichel's theorems [3], in thg

forms presented and developed by Jones in [8].

Fenichel's First Theorem Under assumption H1, ifi/; is

normally hyperbolic relative to the fast system of (2), the

there existssy > 0, such that for every) < ¢ < ¢o and
r > 0, there is a functiony = m.(x), defined onk, of class
C" jointly in z and ¢, such that

M. ={(z,y) | y = m.(z), = € K}

is locally invariant under (2), see Figure 1.

The requirement thatZ, be normally hyperbolic is sat-
isfied in our case, ag(zr,y) = Ay + h(z) and therefore
D,g(p) = A, which is invertible, for eactp € M.

We will pick a particularr > 1 in the above theorem from
now on.

Let us interpret local invariance in terms of equations?bs(w)

Let (x(t),y(t)) be the solution to (2) with initial condition
(z0,y0), such thatzy € IntK andyo = m.(zo). Local
invariance implies thatx(¢), y(¢)) satisfies

e (CORRED)) ©
W) = melali), @

for all ¢t small enough. Actually, this is also true for alb>
0. The argument is as follows. BY5, (z(t),y(t)) is well-
defined and remains i for all t > 0. Let T = {t >
0] y(t) = me(x(¢))}. Then,T is not empty, and’ is closed
by the continuity ofm.(z(t)) and y(¢). Also, T is open,
since M. is locally invariant. Sol" = {t > 0}, that is,z(t)
is a solution to (6) and(t) = m.(x(¢)) for all ¢ > 0.

In (6)-(7), the xz-equation is decoupled from theg-

K X

Fig. 1. For simplicity, we sketch manifold&/. and M, of a system where
= m = 1. The setK is a compact set iz, and L is an open set in
The red curve denotes the locally invariant manifdlt and the black
curve denotes\y.

Qero, the limit of system (6) is system (3), which describes

the flow on M,. If M, has some desirable property, it is
natural to expect this property is inherited by the pertdrbe
manifold M.. An example of this principle is provided by
the following lemma.

Lemma 3:Under assumptionsi1-H4, for each0 < ¢ <
€0, the flow {¢;} of (6) has eventually positive derivatives
on IntK.

Proof. Applying Lemma 2, there exist> 0 such that when
the C* norm of mg(x) —me(x) is less thars for all z € K,
there existst, > 0 with the property that: ift > ¢, and
€ K for all s € [0,¢], then the matrixD, vy, (z) is
positive. Sincem, is of classC”, jointly in  and e, we
can picke > 0 small enough to contral. If we then prove
IntK is invariant under (6), we are done. To see this, pick
any zo € IntK, and letyy = mq(zo),y(t) = me(z(t)).
Then, (z(t), y(t)) is the solution to (2) with initial condition
(r0,y0) € D. By H5, (x(t),y(t)) stays inD for all t > 0,
and thereforex(¢) € IntK for all ¢ > 0.

Flows with eventually positive derivatives have particu-
larly appealing properties, as in Lemma 1. To apply that
lemma, we need to check two conditions. First, for every
point in IntK, its forward trajectory under (6) has com-
pact closure in Ink. Second, the number of equilibria of
(6) is countable. Suppose that the first property does not
hold, and letz(t) be a solution to (6) withz(0) € IntK
but lim; .. z(t;) ¢ IntK for some sequencét;}. So,

equation, which allows us to reduce to studying a lower{z(t),m.(z(t))) is a solution for (2), and its forward orbit is

dimension system. Another advantage is that, agproaches

not precompact irD. This violatesH5. To check the second



condition, we notice that (2) is reduced to (6) ., so
the equilibrium set of (6) is a subset of thecoordinate of
the equilibrium set of (2), which is countable. Therefotes t

second condition also holds. Applying Lemma 1 we have:

Lemma 4:Under assumptionbi1-H6, for each0 < ¢ <
€0, there exists a se€. C IntK such that the forward
trajectory of (6) for every point ofC. converges to some
equilibrium, and the measure of Kt\ C. is zero.
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Until now, we have discussed the flow only when restricted Mg X

to the locally invariant manifoldM.. The next theorem,

stated in the form given by [8], deals with more global

behavior. In [8], the theorem is stated for> 0, but it also
holds fore = 0 ([9]). (We will apply this result again with
a fixedr > 1.)

Fenichel's Third Theorem Under assumption H1, if\/,
is normally hyperbolic relative to (2), then there exists<
€1 < €9, 99 > 0, such that forevery) <e <e1,0< 0 < g
andr > 0, there is a function

hes: Me x [=§,0] = R"

such that the following properties hold:

1) For eaChp - (SC mE( )) € Msi hs 0(p50)
2) The stable fibersV? s(p), defined as

{(x,y) | T = hs,é(ﬁz >‘)a Y= )‘+ms(x)7

form a “positively invariant” family where # 0 in the
sense that

WZs(P) ws ey t € WEs(¢4(P)),

Al < 6},

whereW? s (M) = Upe . We 5(D)-

3) “Asymptotic Phase”. There are positive constarits
and « such that for anyp and p, if p € W7 ;(p),
e #0, then

|6¢(p) — ¢1(D)] < ke

for all t > 0 as long as¢.(p) and ¢;(p) stay in
Ws 5(M)

4) The stable fibers are disjoint, i.e., far, € ,5( Di
i = 1,2, either W2 (p1) \W:s(p2) = 0 o

25(p1) = W 5(p2).
5) The functionh. s(p, A) is C” jointly in ¢, 5 and A.

Whene = 0, hos(p, ) = &, wherep = (Z,mo(Z)) €
Mo.

Fig. 2. To illustrate the geometric meaning of Fenichel's @hitheorem,
we sketch the locally invariant manifold and stable fibers efstem, in the
casen=m=1. The dimension of the manifold&/, Mo, and stable fibers
is one. M. is the graph of\ = 0, and M is the graph ofng(x) — me(z)
(black curve). These manifolds may intersect at some equilibrpoints.
Through each poinp in the manifold M., there is a stable flbeIrVéé(p)
(blue curve). We calp the “base point” of the fiber. The fiber consists of
the pairs(z,\) = (he,5(P, ), A), where|\| < 4. If a solution (purple
dashed curve) starts on fib&? ;(p), after a small timet, it evolves to
a point on another stable flbé’VS(;(qbt( p)) (light blue curve); this is the
“positive invariance” property.

To prove this lemma, we need the following result:
Lemma 6:Let U and V' be compact, convex subsets of
R™ andR™ respectively. Given a continuous functian

UxV — R'xR™
(l’,y) (h1($,y),h2($7y))

satisfying |1 (x,y) — #l| < p. |hal2,y) —yl| < po for
all (z,y) € U x V. Then every(a,3) € U x V with
dist(a, 0U) > py and dist3,0V) > ps is in the image of
h.

Proof. For such a poinfa, 5), consider the mapi (z,y) =
(Hl(a:,y),Hg(m,y)) = (x,y)—(hl(x,y),hg(a:,y))+(a,ﬁ).
Thus H mapsU x V into itself. If not, say H(z,y) is
not in U, that is, z — hy(z,y) + « is not in U. Since
|z = hi(x,y)|] < p1, so diste,0U) < py, contradiction.
The case whettlz(x, y) is not inV follows similarly. Since
H mapsU x V into itself, and the product of convex sets
is still convex, by Brouwer’s Fixed Point Theorem, there is
some(z,y) € U xV so thatH (z,y) = (z,y), which means
that (h1(Z,9), h2(Z, 7)) = (o, B), @as we wanted to prove.

[d

The next lemma gives a sufficient condition to guarantee proof of Lemma 5. Define the map., for each0 < & <

that a point is on some fiber.
Lemma 5:There existd) < 5 < €1, such that for every
0 <e<eg0<d <y, the setds = {(z,y) | z €

K, ly—mo(z)| < §} C W25(Me).

£1:

W5.6(Mo)
(z,A)

W2 s(Me)

)
(he 5 (2, me(2)), A); A+ me(2) —

—
—

mo())



In this proof, (-,-) denotez = =z, A = y — mo(x)
coordinates. The ma@, is continuous, andD, is iden-
tity. It satisfies ||he s((x, me(2)), ) —z|| < Ci(e) and

1A+ me(x) — mo(z) — A|| < Ca(e) for some positive func-

tion C; of ¢, and C; — 0 ase — 0, i = 1,2. Apply
Lemma 6 withU = K, V = [-4§,6], p1 = Ci(e) and

p2 = Cy(e). Since distdK, dK) and § are fixed, we can

pick 0 < &5 < &, such that dig9K,dK) > C;(c) and
)

K x [-$,3] = As are also inW ;(M,).

Lemma 7:Under assumptioH7, for any givend > 0,
there exists) < e3 < e such that for eacl) < ¢ < €3,
if p € D, then there existdy > 0, and ¢;(p) € A; for all
t > Tp.

Proof. Settingz = y — mo(z) andr = t/¢, (2) becomes

Zi; = ef(z,z+ mo(x))
dz
7 = Az —emy(z) f(z, 2 + mo(x)).

2(1) = 2(0)e™ — g/ AT mg () f (z, 2 + mo(x)) ds.
0

Notice that|e??| < Ce="*, for some positive constants

and 3. So,

T 2e M
5/ eA(T_S)mf)(ac)f(:c,z—i—mo(m)) ds| < i C,
0

s
where M is an upper bound of the functidmy(z) f (z,y)|
onD. Let
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and T, = Inax{ﬁln 5 ,0}.

Then, we havéz(r)| < § for all = > Tj. Back to the slow

time scale, we lefly = T{. Therefore,¢,(p) € A; for all
t > Ty, if the z-coordinate ofg,(p) stays inK, but this can
be easily derived fronH7.

Remark: Except for the normal hyperbolicity assumption,
Lemma 7 is the only place where the special structure (2) was
used. Consider a more general system as in (1), and assume

that g(z, mo(z)) = 0 on K for some smooth functioms.

By the same change of variables as in the above proof, (1)

is equivalent to

dj
dr
%
dr

ef(x,z +mo(z))

= g(x,z+mo()) — emg(2) f (2, 2 + mo ().

5 > Co(e) for all € € (0,e2). By Lemma 6, all points in

The only property that we need in the lemma is that for
any initial condition (z(0), z(0)), the solution(z(t), z(t))
satisfies

limsup |z(¢)| <~ (hm sup d(t))

t—o0 t—o0

where v is a function of classiC, that is to say, a con-
tinuous function[0,00) — [0,00) with (0) = 0, and
d(t) = emj(z(t)) f(z(t), 2(t) + mo(z(t))). In terms of the
functionsmgy and g, we may introduce the control system
dz/dt = G(d(t),z) + u(t), whered is a compact-valued
“disturbance” function and: is an input, andG(d,z) =
g(d, z+mo(d)). Then, the property of input-to-state stability
with input« (uniformly ond), which can be characterized in
several different manners, including by means of Lyapunov
functions, provides the desired condition.

Lemma 7 proves that every trajectory in is attracted to
As and therefore is also attracted id.. This will lead to
our proof of the main theorem.

Proof of the main theorem.Chooses* = £3 and some
0 < 0 < dg. For anyp € D, there are three cases:

1) p € M.. By Lemma 4, the forward trajectory con-
verges to an equilibrium except for a set of measure
zero.

2) p € As C WZs5(M.). Thenp is on some fiber,
say W?5(p). If the z-coordinate ofp, denoted ast,
is in C. (defined in Lemma 4), them,(p) — q,
some equilibrium point of (2). By the “asymptotic
phase” property of Fenichel's Third Theorem;(p)
also converges tg. To deal with the case when ¢
C., it is enough to show that the set

Bs= |J W)
zelntik\c.
as a subset dR”™*” has measure zero. Define
Co = (mtf( \ 05) x [~6, ).

Since Inf{ \ C. has measure zero R", alsoC. ;s has
measure zero. The map

Ca,é
(2,2

- 65,6
(hs,zi(ﬁv >\)7 A+ me(he,é(pa )‘)))

is Lipschitz, andy(C. 5) = B.,s. We are done, because
Lipschitz maps send measure zero sets to measure zero
sets.

3) pe D\ As. By Lemma 7¢.(p) € A; for all ¢t > Tj.
Without loss of generality, we assume tH&f is an
integer. Ifor, (p) € As\ Be s, theng,(p) converges to

an equilibrium. Otherwisep € U~ rez @k (Bes)-
Since the setB.; has measure zero angd_; is



Lipschitz, ¢_x(B.,s) has measure zero for ali, and
the countable union of them still has measure zero.

V. AN EXAMPLE

Consider the following system:

da:i
dt = ’Yi(ylw"aym)_Bi(xla--~7xn)
dy;

5% —djyj —aj(atl,...,xn), dj > 0, (8)
whereq;, §; and~; (i =1,...,n,j =1,...,m) are smooth
functions. We assume that [

1) Whenn > 1, for all i,k = 1,...,n, i # k, and
all x € R, the partial derivativesgxi;(x) <0and [
=1 5y (1) g5 (@) < 0.
2) The functionf; satisfies that thap;(z1,...,2.) = ()
+oo as allz; — 400 and (x4, ...,2,) = —00 as
all x; — —oo. (4]
3) There exists a positive constant; such thata;(z)| <
M; for all z € R™. [5]

4) The number of roots of the system of equations
vilar(x),...,am(z)) = Bi(z), ¢ = 1,...,m, Is
countable.
The conditions are very natural. The condition on this is 7]
satisfied, for example, if there is a linear decay term; in
the differential equation for;, and all other variables appear (8l
saturated in this rate, see an more interesting examplein [1
We are going to show that on any large enough region, angb
provided thats is sufficiently small, almost every trajectory [10]
converges to an equilibrium. To emphasize the need for small
e, we also show that when> 1, a limit cycle could appear. [11]
To apply our main theorem, we také {y €
R™ | |y;] < b;, j =1,...,m}, whereb; is an arbitrary
positive number greater tha%’ji. Picking suchb; assures
yj% < 0 for all z € R and |y;| = b;, i.e. the vector
field points transversely inside on the boundary/ofLet
K = {ZL’ e R” ‘ — Q;2 <z < a; 1, 1= ].,...,TL}7
where a,; and a; 2 can be any positive numbers suc
that 8;(x) > N; := max, <, [7i(¥1, -, ym)|, whenever
x € R" satisfies that itsith coordinatex; > a;; and
Bi(x) < —N;, wheneverz € R"™ satisfies that itsith
coordinatex; < —a; 2. All large enougha; ;'s satisfy this
condition, because of the assumption madeorSo, we
haveaci d;tl < 0 for all Yy € L,x; = a; 1 and:ci = —Q;2- We
then takeK = {2 € R" | —a;2 —1<z; <aj+1, i=
l,...n}, D=Kx LandD = IntK x L. Thus, the vector
field will point into the interior of D and D. Hypotheses
H5 and H7 follow directly from this fact. It is easy to see
the other hypotheses also hold. By our main theorem, for

(6]

[12]

[13]
[14]

h[15]

sufficiently smalle, the forward trajectory of (8) starting
from almost every point irD converges to some equilibrium.
On the other hand, convergence does not hold for large
e.letn =1, fi(z) = 3
4tanhxy, y(y1) = y1, di = 1. It is easy to verify that
(0,0) is the only equilibrium. Wher > 1, the trace of the
Jacobian a{0,0) is 1 — 1 > 0, its determinant is'> > 0,
so the (only) equilibrium inD is repelling. By the Poincar
Bendixson Theorem, there exists a limit cyclelin

f— 1 —

-z, m =1, ay(z1)
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