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Abstract— This paper extends to singular perturbations of
strongly monotone systems a result of Hirsch’s on generic
convergence to equilibria.

I. INTRODUCTION

Monotone systems constitute a rich class of models for
which global and almost-global convergence properties can
be established. They are particularly useful in biochemical
models (see discussion and references in [13], [14], and also
appear in areas like coordination ([10]) and other problems
in control theory ([1]). This paper studies extensions, using
geometric singular perturbation theory, of Hirsch’s generic
convergence theorem for monotone systems ([4], [5], [6],
[12]). Informally stated, Hirsch’s result says that almost
every bounded solution of a strongly monotone system
converges to the set of equilibria. There is a rich literature
regarding the application of this powerful theorem, as well
as of other results dealing with everywhere convergence
when equilibria are unique ([12], [2], [7]), to models of
biochemical systems. Unfortunately, many models in biology
are not monotone. In order to address this drawback (as well
as to study properties of large systems which are monotone
but which are hard to analyze in their entirety), a recent line
of work introduced an input/output approach that is based on
the analysis of interconnections of monotone systems. For
example, the approach allows one to view anon-monotone
system as a “negative” feedback loop of monotone open-loop
systems, thus leading to results on global stability and the
emergence of oscillations under transmission delays, and to
the construction of relaxation oscillators by slow adaptation
rules on feedback gains. See [13], [14] for expositions and
many references. The present paper is in the same character.

Our motivation arose from the observation that time-scale
separation may also lead to monotonicity. This point of view
is of special interest in the context of biochemical systems;
for example, Michaelis Menten kinetics are mathematically
justified as singularly perturbed versions of mass action ki-
netics. A system that is not monotone may become monotone
once that fast variables are replaced by their steady-state
values. A trivial linear example that illustrates this point
is ẋ=−x−y, εẏ=−y+x, with ε>0. This system is not
monotone with respect to any orthant cone. On the other
hand, forε ≪ 1, the fast variabley tracksx, so the slow
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dynamics is well-approximated bẏx = −2x (which is
strongly monotone, because every scalar system is).

We consider systemṡx = f(x, y), εẏ = g(x, y) for
which the reduced systeṁx = f(x, h(x)) is (strongly)
monotone and the fast systeṁy = g(x, y) has a unique
globally asymptotically stable steady statey = h(x) for each
x, and satisfies an input to state stability type of property
with respect tox. One may expect that the original system
inherits global (generic) convergence properties, at least for
all ε>0 small enough, and this is indeed the object of our
study. This question may be approached in several ways.
One may viewy−h(x) as an input to the slow system, and
appeal to the theory of asymptotically autonomous systems.
Another approach, the one that we develop here, is through
geometric invariant manifold theory ([3], [8], [11]). There is
a manifoldMε, invariant for the full dynamics, which attracts
all near-enough solutions, with an asymptotic phase property.
The system restricted to the invariant manifoldMε is a
regular perturbation of the fast (ε=0) system. As remarked
in Theorem 1.2 in Hirsch’s early paper [4], aC1 regular
perturbation of a flow with eventually positive derivatives
also has generic convergence. So, solutions in the manifold
will be generally well-behaved, and asymptotic phase implies
that solutions track solutions inMε, and hence also converge
to equilibria if solutions onMε do. A key technical detail
is to establish that the tracking solutions also start from the
“good” set of initial conditions, for generic solutions of the
large system.

For simplicity, we discuss here only the case of coopera-
tive systems (monotonicity with respect to the main orthant),
but proofs in the case of general cones are similar and will
be discussed in a paper under preparation.

II. STATEMENT OF MAIN RESULT

We are interested in systems in singularly perturbed form:

dx

dt
= f(x, y) (1)

ε
dy

dt
= g(x, y),

where x ∈ R
n, y ∈ R

m, 0 < ε ≪ 1, and f and g are
smooth functions. We will present some preliminary results
in general, but for our main theorem we will restrict attention
to the case wheng has the special formg(x, y) = Ay +
h(x), whereA is a Hurwitz matrix (all eigenvalues have
negative real part) andh is a smooth function. That is, we



will specialize to systems of the following form:

dx

dt
= f(x, y) (2)

ε
dy

dt
= Ay + h(x).

(We remark later how our results may be extended to a
broader class of systems.) Settingε to zero, we have:

dx

dt
= f(x,m0(x)), (3)

wherem0(x) = −A−1h(x). As usual in singular pertur-
bation theory, our goal is to use properties of the limiting
system (3) in order to derive conclusions about the full
system (2) when0 < ε ≪ 1. We will assume given three
setsK, K̃, andL which satisfy the following hypotheses:

H1 The setK̃ is an n-dimensionalC∞ simply
connected compact manifold with boundary.
H2 The setK̃ is convex.
H3 The setL is a bounded open subset ofR

m, and
M0 = {(x, y) | y = m0(x), x ∈ K̃}, the graph of
m0, is contained inK̃ × L.
H4 The flow {ψt} of the limiting system (3) has
eventually positive derivatives oñK.
H5 For eachε > 0 sufficiently small, the forward
trajectory under (2) of each point iñD = IntK̃×L
is precompact inD̃.
H6 The equilibrium set of (2) is countable.
H7 The setK ⊂ IntK̃ is compact, and for each
ε > 0 sufficiently small, the setD = K × L is
positively invariant.

The main theorem is:
Theorem 1:Under assumptionsH1-H7, there existsε∗ >

0 such that for each0 < ε < ε∗, the forward trajectory of
(2) starting from almost every point inD converges to some
equilibrium.
Remark: A variant of this result is to assume that the
reduced system (3) has a unique equilibrium. In this case, one
may improve the conclusions of the theorem to global (not
just generic) convergence, by appealing to results of Hirsch
and others that apply when equilibria are unique. The proof
is simpler in that case, since the foliation structure givenby
Fenichel’s theory (see below) is not required. In the opposite
direction, one could drop the assumption of countability and
instead provide theorems on generic convergence to the set
of equilibria, or even to equilibria if hyperbolicity conditions
are satisfied, in the spirit of what is done in the theory of
strongly monotone systems.

III. T ERMINOLOGY

The following standard terminology is defined for a gen-
eral ordinary differential equation:

dz

dt
= F (z), (4)

where F : R
N → R

N is a C1 vector field. For any
z ∈ R

N , we denote the maximally defined solution of (4)
with initial condition z by t → φt(z), t ∈ I(z), where
I(z) is an open interval inR that contains zero. For each
t ∈ R, the set ofz ∈ R

N for which φt(z) is defined is
an open setW (t) ⊆ R

N , and φt : W (t) → W (−t) is a
diffeomorphism. The collection of maps{φt}t∈R is called
the flow of (4). We also write justz(t) for the solution of
(4), if the initial conditionz(0) is clear from the context.
The forward trajectory ofz ∈ R

N is a parametrized curve
t → φt(z). Its image is the forward orbit ofz, denoted
asO+(z). The backward trajectory and the backward orbit
O−(z) are defined analogously. A setU ⊆ R

N is positively
(respectively, negatively) invariantif O+(U) ⊆ U . It is
invariant if it is both positively and negatively invariant.

We borrow the notation from [8] for the forward evolution
of a setU ⊆ V ⊆ R

N restricted toV :

U ·V t = {φt(p) : p ∈ U andφs(p) ∈ V for all 0 ≤ s ≤ t}.

Let us denote the interior and the closure of a setU as IntU
andU respectively.

Definition 1: The flow{φt} of (4) is said to haveeventu-
ally positive derivatives on a setV ⊆ R

N if there existst0
such that the matrixDzφt(z) has only positive entries (also
called the matrix is positive) for everyt ≥ t0, z ∈ V .

The next lemma is a restatement of theorem 4.4 in [5]:
Lemma 1:Suppose that the open setW ⊆ Rn is convex

and the flow{φt} of (4) has eventually positive derivatives
on W . Let W c ⊆ W be the set of points whose forward
orbit has compact closure inW . If the set of equilibrium
points is countable, thenz(t) converges to a equilibrium as
t goes to infinity, for almost everyz ∈W c.
The following fact follows from differentiability of solutions
with respect to “regular” perturbations in the dynamics; see
[5], Theorem 1.2:

Lemma 2:AssumeV ⊂W is a compact set in which the
flow {φt} has eventually positive derivatives. Then, there
exists δ > 0 with the following property. Let{ψt} denote
the flow of aC1 vector fieldG such that theC1 norm of
F (z)−G(z) is less thanδ for all z in V . Then there exists
t∗ > 0 such that ift ≥ t∗ andψs(z) ∈ V for all s ∈ [0, t],
then the matrixDzψt(z) is positive.

Definition 2: A compact, connectedCr manifold M ⊂
R

N with boundary is said to belocally invariant under the



flow of (1), if for eachp ∈ IntM , there exists a time interval
Ip = (t1, t2), t1 < 0 < t2, such thatφt(p) ∈ M for all
t ∈ Ip.
When ε 6= 0, we can setτ = t/ε, and (1) is equivalent to
its fast system:

dx

dτ
= εf(x, y) (5)

dy

dτ
= g(x, y).

Definition 3: LetM be ann-dimensional manifold (possi-
bly with boundary) which is contained in{(x, y) | g(x, y) =
0}. We say thatM is normally hyperbolic relative to (5) if
all eigenvalues of the matrixDyg(p) have nonzero real part
for everyp ∈M .

IV. PROOF OF THEMAIN THEOREM

Our proofs are based on Fenichel’s theorems [3], in the
forms presented and developed by Jones in [8].

Fenichel’s First Theorem Under assumption H1, ifM0 is
normally hyperbolic relative to the fast system of (2), then
there existsε0 > 0, such that for every0 < ε < ε0 and
r > 0, there is a functiony = mε(x), defined onK̃, of class
Cr jointly in x and ε, such that

Mε = {(x, y) | y = mε(x), x ∈ K̃}

is locally invariant under (2), see Figure 1.
The requirement thatM0 be normally hyperbolic is sat-

isfied in our case, asg(x, y) = Ay + h(x) and therefore
Dyg(p) = A, which is invertible, for eachp ∈M0.

We will pick a particularr > 1 in the above theorem from
now on.

Let us interpret local invariance in terms of equations.
Let (x(t), y(t)) be the solution to (2) with initial condition
(x0, y0), such thatx0 ∈ IntK̃ and y0 = mε(x0). Local
invariance implies that(x(t), y(t)) satisfies

dx(t)

dt
= f

(
x(t),mε(x(t))

)
(6)

y(t) = mε(x(t)), (7)

for all t small enough. Actually, this is also true for allt ≥
0. The argument is as follows. ByH5, (x(t), y(t)) is well-
defined and remains iñD for all t ≥ 0. Let T = {t ≥
0 | y(t) = mε(x(t))}. Then,T is not empty, andT is closed
by the continuity ofmε(x(t)) and y(t). Also, T is open,
sinceMε is locally invariant. SoT = {t ≥ 0}, that is,x(t)
is a solution to (6) andy(t) = mε(x(t)) for all t ≥ 0.

In (6)-(7), the x-equation is decoupled from they-
equation, which allows us to reduce to studying a lower-
dimension system. Another advantage is that, asε approaches

y

xK

L

y=m (x)0

y=m (x)

[

(
)

]

ε

Μ ε

0Μ

Fig. 1. For simplicity, we sketch manifoldsMε andM0 of a system where
n = m = 1. The set eK is a compact set inx, and L is an open set in
y. The red curve denotes the locally invariant manifoldMε and the black
curve denotesM0.

zero, the limit of system (6) is system (3), which describes
the flow onM0. If M0 has some desirable property, it is
natural to expect this property is inherited by the perturbed
manifold Mε. An example of this principle is provided by
the following lemma.

Lemma 3:Under assumptionsH1-H4, for each0 < ε <
ε0, the flow {ψt} of (6) has eventually positive derivatives
on IntK̃.
Proof. Applying Lemma 2, there existδ > 0 such that when
theC1 norm ofm0(x)−mε(x) is less thanδ for all x ∈ K̃,
there existst∗ > 0 with the property that: ift ≥ t∗ and
ψs(x) ∈ K̃ for all s ∈ [0, t], then the matrixDxψt(x) is
positive. Sincemε is of classCr, jointly in x and ε, we
can pickε > 0 small enough to controlδ. If we then prove
IntK̃ is invariant under (6), we are done. To see this, pick
any x0 ∈ IntK̃, and let y0 = mε(x0), y(t) = mε(x(t)).
Then,(x(t), y(t)) is the solution to (2) with initial condition
(x0, y0) ∈ D̃. By H5, (x(t), y(t)) stays inD̃ for all t ≥ 0,
and thereforex(t) ∈ IntK̃ for all t ≥ 0.

Flows with eventually positive derivatives have particu-
larly appealing properties, as in Lemma 1. To apply that
lemma, we need to check two conditions. First, for every
point in IntK̃, its forward trajectory under (6) has com-
pact closure in Int̃K. Second, the number of equilibria of
(6) is countable. Suppose that the first property does not
hold, and letx(t) be a solution to (6) withx(0) ∈ IntK̃
but limj→∞ x(tj) /∈ IntK̃ for some sequence{tj}. So,(
x(t),mε(x(t))

)
is a solution for (2), and its forward orbit is

not precompact iñD. This violatesH5. To check the second



condition, we notice that (2) is reduced to (6) onMε, so
the equilibrium set of (6) is a subset of thex-coordinate of
the equilibrium set of (2), which is countable. Therefore, the
second condition also holds. Applying Lemma 1 we have:

Lemma 4:Under assumptionsH1-H6, for each0 < ε <
ε0, there exists a setCε ⊆ IntK̃ such that the forward
trajectory of (6) for every point ofCε converges to some
equilibrium, and the measure of IntK̃ \ Cε is zero.

Until now, we have discussed the flow only when restricted
to the locally invariant manifoldMε. The next theorem,
stated in the form given by [8], deals with more global
behavior. In [8], the theorem is stated forε > 0, but it also
holds for ε = 0 ([9]). (We will apply this result again with
a fixedr > 1.)

Fenichel’s Third Theorem Under assumption H1, ifM0

is normally hyperbolic relative to (2), then there exists0 <
ε1 < ε0, δ0 > 0, such that for every0 ≤ ε < ε1, 0 < δ < δ0
and r > 0, there is a function

hε,δ : Mε × [−δ, δ] → R
n

such that the following properties hold:

1) For eachp̄ = (x̄,mε(x̄)) ∈Mε, hε,δ(p̄, 0) = x̄.
2) The stable fibersW s

ε,δ(p̄), defined as

{(x, y) | x = hε,δ(p̄, λ), y = λ+mε(x), |λ| ≤ δ},

form a “positively invariant” family whenε 6= 0 in the
sense that

W s
ε,δ(p̄) ·Ws

ε,δ
(Mε) t ⊆W s

ε,δ(φt(p̄)),

whereW s
ε,δ(Mε) =

⋃
p̄∈Mε

W s
ε,δ(p̄).

3) “Asymptotic Phase”. There are positive constantsk
and α such that for anyp and p̄, if p ∈ W s

ε,δ(p̄),
ε 6= 0, then

|φt(p) − φt(p̄)| ≤ ke−αt

for all t ≥ 0 as long asφt(p) and φt(p̄) stay in
W s

ε,δ(Mε).
4) The stable fibers are disjoint, i.e., forpi ∈ W s

ε,δ(p̄i),
i = 1, 2, either W s

ε,δ(p̄1)
⋂
W s

ε,δ(p̄2) = ∅ or
W s

ε,δ(p̄1) = W s
ε,δ(p̄2).

5) The functionhε,δ(p̄, λ) is Cr jointly in ε, p̄ and λ.
Whenε = 0, h0,δ(p̄, λ) = x̄, wherep̄ = (x̄,m0(x̄)) ∈
M0.

The next lemma gives a sufficient condition to guarantee
that a point is on some fiber.

Lemma 5:There exists0 < ε2 < ε1, such that for every
0 < ε < ε2, 0 < δ < δ0, the setAδ := {(x, y) | x ∈
K, |y −m0(x)| ≤

δ
2} ⊂W s

ε,δ(Mε).

δ

φ

xMε

M
0

λ

λ

p=(x,0) h (x,   )ε λ

q

t (q)

Wε
s(p) Ws

ε(          )φ t (p)

φ t (p)

Fig. 2. To illustrate the geometric meaning of Fenichel’s Third Theorem,
we sketch the locally invariant manifold and stable fibers of asystem, in the
casen=m=1. The dimension of the manifoldsMε, M0, and stable fibers
is one.Mε is the graph ofλ = 0, andM0 is the graph ofm0(x)−mε(x)
(black curve). These manifolds may intersect at some equilibrium points.
Through each point̄p in the manifoldMε, there is a stable fiberW s

ε,δ
(p̄)

(blue curve). We call̄p the “base point” of the fiber. The fiber consists of
the pairs(x, λ) = (hε,δ(p̄, λ), λ), where |λ| ≤ δ. If a solution (purple
dashed curve) starts on fiberW s

ε,δ
(p̄), after a small timet, it evolves to

a point on another stable fiberW s
ε,δ

(φt(p̄)) (light blue curve); this is the
“positive invariance” property.

To prove this lemma, we need the following result:
Lemma 6:Let U and V be compact, convex subsets of

R
n andR

m respectively. Given a continuous functionh:

U × V → R
n × R

m

(x, y) 7→ (h1(x, y), h2(x, y))

satisfying ‖h1(x, y) − x‖ ≤ ρ1, ‖h2(x, y) − y‖ ≤ ρ2 for
all (x, y) ∈ U × V . Then every(α, β) ∈ U × V with
dist(α, ∂U) ≥ ρ1 and dist(β, ∂V ) ≥ ρ2 is in the image of
h.
Proof. For such a point(α, β), consider the mapH(x, y) =
(H1(x, y),H2(x, y)) := (x, y)−(h1(x, y), h2(x, y))+(α, β).
Thus H mapsU × V into itself. If not, sayH1(x, y) is
not in U , that is, x − h1(x, y) + α is not in U . Since
‖x− h1(x, y)‖ ≤ ρ1, so dist(α, ∂U) < ρ1, contradiction.
The case whenH2(x, y) is not inV follows similarly. Since
H mapsU × V into itself, and the product of convex sets
is still convex, by Brouwer’s Fixed Point Theorem, there is
some(x̄, ȳ) ∈ U×V so thatH(x̄, ȳ) = (x̄, ȳ), which means
that (h1(x̄, ȳ), h2(x̄, ȳ)) = (α, β), as we wanted to prove.

Proof of Lemma 5. Define the mapDε, for each0 ≤ ε <
ε1:

W s
0,δ(M0) → W s

ε,δ(Mε)

(x, λ) 7→ (hε,δ((x,mε(x)), λ), λ+mε(x) −m0(x))



In this proof, (·, ·) denote x = x, λ = y − m0(x)
coordinates. The mapDε is continuous, andD0 is iden-
tity. It satisfies ‖hε,δ((x,mε(x)), λ) − x‖ ≤ C1(ε) and
‖λ+mε(x) −m0(x) − λ‖ ≤ C2(ε) for some positive func-
tion Ci of ε, and Ci → 0 as ε → 0, i = 1, 2. Apply
Lemma 6 withU = K̃, V = [−δ, δ], ρ1 = C1(ε) and
ρ2 = C2(ε). Since dist(∂K, ∂K̃) and δ

2 are fixed, we can
pick 0 < ε2 < ε1 such that dist(∂K, ∂K̃) > C1(ε) and
δ
2 > C2(ε) for all ε ∈ (0, ε2). By Lemma 6, all points in
K × [− δ

2 ,
δ
2 ] = Aδ are also inW s

ε,δ(Mε).
Lemma 7:Under assumptionH7, for any givenδ > 0,

there exists0 < ε3 < ε2 such that for each0 < ε < ε3,
if p ∈ D, then there existsT0 ≥ 0, andφt(p) ∈ Aδ for all
t ≥ T0.
Proof. Settingz = y −m0(x) andτ = t/ε, (2) becomes

dx

dτ
= εf(x, z +m0(x))

dz

dτ
= Az − εm′

0(x)f(x, z +m0(x)).

So

z(τ) = z(0)eAτ − ε

∫ τ

0

eA(τ−s)m′
0(x)f

(
x, z +m0(x)

)
ds.

Notice that |eAt| ≤ Ce−βt, for some positive constantsC
andβ. So,

∣∣∣∣ε
∫ τ

0

eA(τ−s)m′
0(x)f

(
x, z +m0(x)

)
ds

∣∣∣∣ ≤
2εMC

β
,

whereM is an upper bound of the function|m′
0(x)f(x, y)|

on D. Let

ε =
δβ

4MC
and T ′

0 = max{
1

β
ln

2C|z(0)|

δ
, 0} .

Then, we have|z(τ)| ≤ δ for all τ ≥ T ′
0. Back to the slow

time scale, we letT0 = εT ′
0. Therefore,φt(p) ∈ Aδ for all

t ≥ T0, if the x-coordinate ofφt(p) stays inK, but this can
be easily derived fromH7.

Remark: Except for the normal hyperbolicity assumption,
Lemma 7 is the only place where the special structure (2) was
used. Consider a more general system as in (1), and assume
that g(x,m0(x)) = 0 on K̃ for some smooth functionm0.
By the same change of variables as in the above proof, (1)
is equivalent to

dx

dτ
= εf(x, z +m0(x))

dz

dτ
= g(x, z +m0(x)) − εm′

0(x)f(x, z +m0(x)).

The only property that we need in the lemma is that for
any initial condition (x(0), z(0)), the solution(x(t), z(t))
satisfies

lim sup
t→∞

|z(t)| ≤ γ

(
lim sup

t→∞
d(t)

)

where γ is a function of classK, that is to say, a con-
tinuous function [0,∞) → [0,∞) with γ(0) = 0, and
d(t) = εm′

0(x(t))f
(
x(t), z(t) +m0(x(t))

)
. In terms of the

functionsm0 and g, we may introduce the control system
dz/dt = G(d(t), z) + u(t), where d is a compact-valued
“disturbance” function andu is an input, andG(d, z) =
g(d, z+m0(d)). Then, the property of input-to-state stability
with input u (uniformly ond), which can be characterized in
several different manners, including by means of Lyapunov
functions, provides the desired condition.

Lemma 7 proves that every trajectory inD is attracted to
Aδ and therefore is also attracted toMε. This will lead to
our proof of the main theorem.

Proof of the main theorem.:Chooseε∗ = ε3 and some
0 < δ < δ0. For anyp ∈ D, there are three cases:

1) p ∈ Mε. By Lemma 4, the forward trajectory con-
verges to an equilibrium except for a set of measure
zero.

2) p ∈ Aδ ⊂ W s
ε,δ(Mε). Then p is on some fiber,

sayW s
ε,δ(p̄). If the x-coordinate ofp̄, denoted as̄x,

is in Cε (defined in Lemma 4), thenφt(p̄) → q,
some equilibrium point of (2). By the “asymptotic
phase” property of Fenichel’s Third Theorem,φt(p)
also converges toq. To deal with the case when̄x 6∈
Cε, it is enough to show that the set

Bε,δ =
⋃

x̄∈Int eK\Cε

W s
ε,δ(p̄)

as a subset ofRm+n has measure zero. Define

Cε,δ =
(

IntK̃ \ Cε

)
× [−δ, δ].

Since IntK \Cε has measure zero inRn, alsoCε,δ has
measure zero. The mapγ:

Cε,δ → Bε,δ

(x̄, λ) 7→ (hε,δ(p̄, λ), λ+mε(hε,δ(p̄, λ)))

is Lipschitz, andγ(Cε,δ) = Bε,δ. We are done, because
Lipschitz maps send measure zero sets to measure zero
sets.

3) p ∈ D \ Aδ. By Lemma 7φt(p) ∈ Aδ for all t ≥ T0.
Without loss of generality, we assume thatT0 is an
integer. IfφT0

(p) ∈ Aδ \Bε,δ, thenφt(p) converges to
an equilibrium. Otherwise,p ∈

⋃
k≥0,k∈Z

φ−k(Bε,δ).
Since the setBε,δ has measure zero andφ−k is



Lipschitz, φ−k(Bε,δ) has measure zero for allk, and
the countable union of them still has measure zero.

V. A N EXAMPLE

Consider the following system:

dxi

dt
= γi(y1, . . . , ym) − βi(x1, . . . , xn)

ε
dyj

dt
= −djyj − αj(x1, . . . , xn), dj > 0, (8)

whereαj , βi andγi (i = 1, . . . , n, j = 1, . . . ,m) are smooth
functions. We assume that

1) When n > 1, for all i, k = 1, . . . , n, i 6= k, and
all x ∈ R

n, the partial derivatives∂βi

∂xk
(x) < 0 and∑m

l=1
∂γi

∂yl
(x) ∂αl

∂xk
(x) ≤ 0.

2) The functionβi satisfies that thatβi(x1, . . . , xn) =
+∞ as all xi → +∞ and βi(x1, . . . , xn) = −∞ as
all xi → −∞.

3) There exists a positive constantMj such that|αj(x)| ≤
Mj for all x ∈ R

n.
4) The number of roots of the system of equations

γi(α1(x), . . . , αm(x)) = βi(x), i = 1, . . . ,m, is
countable.

The conditions are very natural. The condition on theβi’s is
satisfied, for example, if there is a linear decay term−xi in
the differential equation forxi, and all other variables appear
saturated in this rate, see an more interesting example in [15].

We are going to show that on any large enough region, and
provided thatε is sufficiently small, almost every trajectory
converges to an equilibrium. To emphasize the need for small
ε, we also show that whenε > 1, a limit cycle could appear.

To apply our main theorem, we takeL = { y ∈
R

m | |yj | < bj , j = 1, . . . ,m }, where bj is an arbitrary
positive number greater thanMj

dj
. Picking suchbj assures

yj
dyj

dt
< 0 for all x ∈ R and |yj | = bj , i.e. the vector

field points transversely inside on the boundary ofL. Let
K = {x ∈ R

n | − ai,2 ≤ xi ≤ ai,1, i = 1, . . . , n },
where ai,1 and ai,2 can be any positive numbers such
that βi(x) > Ni := max|yj |≤bj

|γi(y1, . . . , ym)|, whenever
x ∈ R

n satisfies that itsith coordinatexi ≥ ai,1; and
βi(x) < −Ni, wheneverx ∈ R

n satisfies that itsith
coordinatexi ≤ −ai,2. All large enoughai,j ’s satisfy this
condition, because of the assumption made onβ. So, we
havexi

dxi

dt
< 0 for all y ∈ L, xi = ai,1 andxi = −ai,2. We

then takeK̃ = {x ∈ R
n | − ai,2 − 1 ≤ xi ≤ ai,1 + 1, i =

1, . . . n }, D = K × L andD̃ = IntK̃ × L. Thus, the vector
field will point into the interior ofD and D̃. Hypotheses
H5 and H7 follow directly from this fact. It is easy to see
the other hypotheses also hold. By our main theorem, for

sufficiently small ε, the forward trajectory of (8) starting
from almost every point inD converges to some equilibrium.

On the other hand, convergence does not hold for large
ε. Let n = 1, β1(x1) =

x3

1

3 − x1, m = 1, α1(x1) =
4 tanhx1, γ(y1) = y1, d1 = 1. It is easy to verify that
(0, 0) is the only equilibrium. Whenε > 1, the trace of the
Jacobian at(0, 0) is 1 − 1

ε
> 0, its determinant is15

ε
> 0,

so the (only) equilibrium inD is repelling. By the Poincaré-
Bendixson Theorem, there exists a limit cycle inD.
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