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Abstract— New checkable criteria for persistence of chemical
reaction networks are proposed, which extend those obtained
by the authors in previous work. The new results allow the
consideration of reaction rates which are time-varying, thus
incorporating the effects of external signals, and also relax
the assumption of existence of global conservation laws, thus
allowing for inflows (production) and outflows (degradation).
As an illustration, a hypoxia network is analyzed.

I. INTRODUCTION

For differential equations evolving in Euclidean space,

“persistence” is the property that all solutions starting in the

positive orthant do not approach the boundary of the orthant.

Interpreted for chemical reactions and population models,

this translates into a “non-extinction property” that states that

no species will tend to be completely eliminated in the course

of the reaction, provided that every species was present at

the start of the reaction. In the previous work [4], the authors

presented criteria for checking persistence in closed chemical

reaction networks, couched in the language of graph theory

and Petri nets.

In the present paper, we extend the previous results in two

directions: (1) allowing the consideration of kinetic coeffi-

cients which are time-varying, and (2) dropping the assump-

tion of conservation, thus allowing potentially unbounded

solutions. Time-dependent coefficients represent the effect

of external inputs, while inflows and outflows naturally give

rise to non-conservative reactions networks. Production and

degradation processes are, mathematically, seen as inflows

and outflows respectively.

As an example of an application of the new results, this

paper analyzes a model of the common core subsystem

responsible for the hypoxia control network in C.elegans,

Drosophila, and humans. Hypoxia (deprivation of adequate

oxygen supply) results in the expression of specific genes in

response to stress caused by low concentration of available

oxygen. This particular example was picked for two reasons.

First of all, viewing oxygen concentration as an external

input gives rise to a network with time-dependent kinetic

coefficients. Second, in this model there are no conservation

laws that guarantee boundedness of solutions, and so the

same example serves to illustrate the role of the new concepts

of conditional persistence introduced in this work.

II. BACKGROUND ON CHEMICAL REACTION NETWORKS

A chemical reaction network (“CRN”, for short) is a list

of chemical reactions Ri, taking place among species Sj ,

where the indices i and j take values in R := {1, 2, . . . , nr}

and S := {1, 2, . . . ns} respectively. Individual reactions are

then denoted as follows:

Ri :
∑

j∈S

αijSj →
∑

j∈S

βijSj (1)

where the αij and βij are nonnegative integers called the

stoichiometry coefficients. The species j on the left-hand side

for which αij > 0 are called reactants and the ones on

the right-hand side for which β > 0 the products, of the

reaction. Informally speaking, the forward arrow means that

the transformation of reactants into products only happens in

the direction of the arrow. If also the converse transformation

occurs, then, the reaction is reversible and we need to also list

its inverse in the network as a separate reaction. Sometimes,

for convenience of notation, we will associate to a reaction

the two integer column vectors αi and βi, whose entries are

defined by the stoichiometry coefficients. It is worth pointing

out that we allow chemical reactions in which both the right

and left hand sides are actually empty (though not at the

same time). This case corresponds, from a physical point of

view, to inflows and outflows of the chemical reaction.

As usually done, we arrange the stoichiometry coefficients

into an ns × nr matrix, called the stoichiometry matrix Γ,

defined as follows:

[Γ]ji = βij − αij , (2)

for all i ∈ R and all j ∈ S (notice the reversal of indices).

This will be later used in order to synthetically write the

differential equation associated to a given chemical network.

Notice that we allow Γ to have columns which differ only by

their sign; this happens when there are reversible reactions

in the network.

We discuss, next, how the speed of reactions is affected

by the concentrations of the different species. Each chemical

reaction takes place continuously in time, at its own rate,

which is assumed to be only a function of the concentration

of the species taking part in it. In order to make this more

precise, we define the vector S = [S1, S2, . . . Sns
]′ of species

concentrations and, as a function of it, the vector of reaction

rates

R(S, t) := [R1(S, t), R2(S, t), . . . Rnr
(S, t)]′

where t ∈ [0,∞) denotes time. Notice that we explicitly

allow time-dependence, as we wish to to consider the effect

of external inputs to the system. Such inputs may represent

chemical species which are not explicitly considered as part

of the state variables but which, nevertheless, influence the

reaction rates.

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

ThB11.1

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 4559

Authorized licensed use limited to: Rutgers University. Downloaded on April 17,2010 at 22:18:21 UTC from IEEE Xplore.  Restrictions apply. 



Some mild uniformity requirements are needed for tech-

nical reasons as far as time time-dependence is concerned.

We assume, in particular, that for all i ∈ R for all S and all

t ≥ 0

Ri(0, t) = 0 and Ri(S) ≤ Ri(S, t) ≤ R̄i(S), (3)

where the Ri(S), R̄i(S) are non-negative, continuous func-

tions of S, satisfying the following monotonicity constraint:

S ≫Ri
Ŝ ⇒ R̄i(S) > R̄i(Ŝ) (4)

for all i ∈ R (and a similarly for Ri), where the notation

S ≫Ri
Ŝ means that we have a strict inequality Sj > Ŝj

whenever species j is a reactant in reaction i. (We also

write, more generally, S ≫ Ŝ for any two vectors of species

concentrations, if Sj > Ŝj for all j = 1, . . . , ns.)

Furthermore, we assume standard regularity assumptions

of Ri(S, t) in order to ensure local existence and uniqueness

of solutions.

A special form of reaction rates are mass-action kinetics,

which correspond to the following expression:

Ri(S, t) = ki(t)

ns∏

j=1

S
αij

j for all i = 1, . . . , nr

(interpreting S0 = 1 for all S), that is, the speed of each

reaction is proportional to the concentration of its reagents.

Notice that we allow a time-varying kinetic rate ki(t), which

may account for the effect of external species not explicitly

included in the network under consideration. In the case of

mass-action kinetics, a uniform lower and upper bound on

Ri(S, t) exists if and only if there exist constants ki
inf > 0

and ki
sup > 0 such that

ki
inf ≤ k(t) ≤ ksup ∀ t ≥ 0 .

With the above notations, the chemical reaction network

can be described by the following system of differential

equations:

Ṡ(t) = ΓR(S(t), t). (5)

where S = S(t) evolves in R
n
≥0 and represents the vector

of all species concentrations at time t, and Γ is the stoi-

chiometry matrix. For systems with mass-action kinetics the

following alternative expression is valid:

Ṡ(t) =
∑

i∈R

(βi − αi)ki(t)S
αi(t) (6)

where βi = βi∗ is the column vector col(βi1, . . . , βins
),

αi = αi∗ is the column vector col(αi1, . . . , αins
), and Sγ =

Sγ1

1 . . . S
γns
ns for any nonnegative vector γ = (γ1, . . . , γns

).
It is straightforward to verify that the positive orthant is

positively invariant for system (5).

III. PETRI NETS AND STRUCTURAL INVARIANTS

In stating our results, we will employ some terminology

borrowed from the graph theory, and specifically Petri nets.

Although arising from the study of discrete processes, Petri

nets provide a useful language and graphical representation

for CRN’s, and a number of structural and analytical tools

developed for them can be easily adapted to the continuous

context of chemical reactions. In what follows, we associate

to a CRN a bipartite directed graph (i.e., a directed graph

with two types of nodes) with weighted edges, called the

species-reaction Petri net, or SR-net for short. Mathemati-

cally, this is a quadruple

(VS , VR, E,W ) ,

where VS is a finite set of nodes, each one associated to a

species, VR similarly is a finite set of nodes (disjoint from

VS) corresponding to reactions, and E is a set of edges as

described below. (We often write S or VS interchangeably, or

R instead of VR, by identifying species or reactions with their

respective indexes; the context should make the meaning

clear.) The set of all nodes is also denoted by V
.
= VR ∪VS .

The edge set E ⊂ V ×V is defined as follows. Whenever

a certain reaction Ri belongs to the CRN:
∑

j∈S

αijSj →
∑

j∈S

βijSj , (7)

we draw an edge from Sj ∈ VS to Ri ∈ VR for all Sj’s such

that αij > 0. That is, (Sj , Ri) ∈ E iff αij > 0, and we say

in this case that Ri is an output reaction for Sj . Similarly,

we draw an edge from Ri ∈ VR to every Sj ∈ VS such that

βij > 0. That is, (Ri, Sj) ∈ E whenever βij > 0, and we

say in this case that Ri is an input reaction for Sj .

Notice that edges only connect species to reactions and

vice versa, but never connect two species or two reactions.

More generally, given a nonempty subset Σ ⊆ S of

species, we say that a reaction Ri is an output (input)

reaction for Σ if it is an output (input) reaction to some

species of Σ.

The last element to fully define the Petri net is the function

W : E → N, which associates to each edge a positive integer

according to the rule:

W (Sj , Ri) = αij and W (Ri, Sj) = βij .

The stoichiometry matrix Γ, previously introduced, is usually

referred to as incidence matrix in the Petri Net literature.

Several other definitions which are commonly used in that

context will be of interest in the following. We say that a

row or column vector v is non-negative, and we denote it by

v � 0 if it is so entry-wise. We write v ≻ 0 if v � 0 and

v 6= 0. A stronger notion is instead v ≫ 0, which indicates

vi > 0 for all i.
Definition 3.1: A P -semiflow is a row vector c ≻ 0 such

that cΓ = 0. The support of a P -semiflow is the set of

indexes {i ∈ VS : ci > 0}.

Using the fact that the entries of Γ are integers, it is easy

to show that, given any P -semiflow c, there is always a

P -semiflow with integer components which has the same

support as c.

Definition 3.2: A nonempty subset Σ ⊆ S of species

is stoichiometrically constrained if there is a P -semiflow

whose support is included in Σ. When Σ = S, that is, if

there is some P -semiflow c ≫ 0, we simply say that the
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CRN (or the corresponding Petri net) is stoichiometrically

constrained.

P -semiflows for the system (5) correspond to non-negative

linear first integrals, that is, linear functions S 7→ cS
such that (d/dt)cS(t) ≡ 0 along all solutions of (5). In

particular, a Petri net is stoichiometrically constrained if and

only if there is a positive linear conserved quantity for the

system. (Petri net theory views Petri nets as “token-passing”

systems, and, in that context, P -semiflows, also called place-

invariants, amount to conservation relations for the “place

markings” of the network, that show how many tokens there

are in each “place,” the nodes associated to species in SR-

nets. We do not make use of this interpretation in this paper.)

Definition 3.3: A T -semiflow is a column vector v ≻ 0
such that Γ v = 0.

Once again, one can assume without loss of generality that

such a v has integer entries.

Definition 3.4: A nonempty subset Λ ⊆ R of reactions is

consistent if there is a T -semiflow whose support includes

Λ. When Λ = R, we also say that the CRN, or its associated

Petri net, is consistent.

The notion of T -semiflow corresponds to the existence of a

collection of positive reaction rates which do not produce any

variation in the concentrations of the species. In other words,

v can be viewed as a set of fluxes that is in equilibrium [6].

(In Petri net theory, the terminology is “T-invariant,” and the

fluxes are flows of tokens.)

A vector v = (0, 0, . . . , 0, 1, 0, . . . , 0) with a “1” in the ith
position and 0’s elsewhere represents the ith reaction; thus

we may label such a unit vector as “Ri”. With this notational

convention, the following fact holds. Suppose that Rk and

Rℓ are reactions that are reverses of each other, that is, αkj =
βℓj and βkj = αℓj for every species j ∈ S. Then, the vector

Rk +Rℓ is a T -semiflow, becaus the kth and ℓth columns of

Γ are opposites of each other. In chemical network models of

biological systems, it is common for several of the reactions

to be considered as reversible. This gives rise to many such

“trivial” T -semiflows.

Definition 3.5: A nonempty set Σ ⊂ VS is called a siphon

if each input reaction for Σ is also an output reaction for Σ.

A siphon is minimal if it does not contain (strictly) any other

siphons.

For later use, we associate a particular set to a siphon Σ as

follows:

LΣ = {x ∈ R
ns

≥0 |xi = 0 ⇐⇒ i ∈ Σ}.

The set LΣ is therefore characterized as the set of concen-

tration vectors whose entries are zero if (and only if) the

corresponding chemical species are in the siphon Σ.

IV. PERSISTENCE AND CONSISTENCY

Our main interest is the study of persistence: when do

species remain nonzero, if they start nonzero? We will study

two variants of this concept, and will provide a necessary

characterization for one and a sufficient characterization for

the other.

Definition 4.1: A nonempty subset Σ ⊆ S of species is

conditionally persistent (respectively, bounded-persistent) if

there exists a bounded solution S(·) with S(0) ≫ 0 such

that

lim inf
t→∞

Sj(t) > 0 ∀ j ∈ Σ (8)

(respectively, if this property holds for all bounded solutions).

When Σ = S, we say simply that the corresponding CRN is

conditionally persistent or bounded-persistent respectively.

Note that in case Σ = S condition (8) amounts to the

requirement that the omega-limit set ω(S(0)) should not

intersect the boundary of the main orthant.

The following result generalizes Theorem 1 in [4] to

systems with time-varying rates, and provides a necessary

condition for persistence. It is proved in Section V.

Theorem 1: Every conditionally persistent CRN is consis-

tent.

The following result gives a sufficient condition for persis-

tence, and generalizes Theorem 2 in [4] and [1] to systems

with time-varying rates: It is proved in Section V.

Theorem 2: If a CNR has the property that every siphon is

stoichiometrically constrained, then it is bounded-persistent.

V. KEY TECHNICAL RESULTS

Definition 5.1: A nonempty subset Λ ⊆ R of reactions

is conditionally persistent if there exists a bounded solution

S(·) with S(0) ≫ 0 such that

lim inf
t→∞

Ri(S(t), t) > 0 ∀ i ∈ Λ .

The first key technical fact that we need is as follows; it

is proved in Section VII.

Theorem 3: Every conditionally persistent subset Λ of

reactions is consistent.

Definition 5.2: A nonempty subset Σ ⊆ S of species is

an extinction set if there exists a bounded solution S(·) with

S(0) ≫ 0 and a sequence tn → ∞ such that

lim
n→∞

Sj(tn) = 0 ⇔ j ∈ Σ . (9)

Equivalently, Σ is an extinction set if and only if

LΣ

⋂
ω(S(0)) 6= ∅ for some bounded solution S(·).

The second key technical fact, proved in Section VI, is as

follows.

Theorem 4: Every extinction set of species is a siphon.

Lemma 5.3: An extinction set cannot be stoichiometri-

cally constrained.

Proof: Let Σ be an extinction set, and pick a bounded

solution S(·) as in the definition of extinction. Suppose that

Σ ⊆ S is stoichiometrically constrained. Let c be a P -

semiflow whose support is included in Σ. Since c is a P -

semiflow, cS(t) = cS(0) > 0 for all t ≥ 0 (the last inequality

because S(0) ≫ 0 and c > 0). Since the support of c is a

subset of Σ, it follows that cS(t) =
∑

cjSj(t), with the sum

only over the indices j ∈ Σ. Thus (9) cannot hold.

We defined what it means for a reaction Ri to be an output

reaction for a species Sj , namely that Sj should be a reactant

of Ri. More generally, we use the following concept.

Definition 5.4: Consider a nonempty subset Σ ⊆ S of

species. A reaction Ri is said to be a sink for Σ if the set
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of reactants of Ri is a subset of Σ. The set of all sinks for

Σ is denoted as Λ(Σ).
Lemma 5.5: If Σ is conditionally persistent, then Λ(Σ) is

conditionally persistent.

Proof: Suppose that we have a bounded solution such

that lim inft→∞ Sj(t) ≥ s > 0 for every j ∈ Σ. Since the

solution S(·) is bounded, this means its closure is a compact

subset K of the (closed) positive orthant. Pick any sink Ri

for Σ. By Property (4), Ri(S) > 0 for all S ∈ K. Therefore

lim inft→∞ Ri(S(t), t) > 0 for this same trajectory, which

proves that Λ(Σ) is conditionally persistent.

Corollary 5.6: If Σ is conditionally persistent, then Λ(Σ)
is consistent.

Proof: This follows immediately from Lemma 5.5 and

Theorem 3.

This completes the proof of Theorem 1, because the

hypothesis of the Theorem says that Σ = S is conditionally

persistent. By Corollary 5.6, Λ(S) = R is consistent, which

means that the CRN is consistent, as claimed.

To prove Theorem 2, we observe:

Lemma 5.7: If a CRN is not bounded-persistent, then

there is some extinction set.

Proof: Suppose that there is some bounded solution S(·)
with S(0) ≫ 0, some species j0 ∈ S, and some sequence

tn → ∞, such that limn→∞ Sj(tn) = 0. For this solution,

and for this same sequence {tn}, let Σ be defined as the set of

species j ∈ S such that limn→∞ Sj(tn) = 0. Since j0 ∈ Σ,

Σ is nonempty, and it is an extinction set by definition.

Now Theorem 2 follows from:

Corollary 5.8: If a CRN is not bounded-persistent, then

there is a non-stoichiometrically constrained siphon.

Proof: Assume that the given CNR is not bounded-

persistent. By Lemma 5.7, there is an extinction set Σ.

By Theorem 4, Σ is a siphon. By Lemma 5.3, Σ is not

stoichiometrically constrained.

VI. PROOF OF THEOREM 4

Let the nonempty subset Σ ⊆ S of species be an extinction

set. Pick a bounded solution S(·) with S(0) ≫ 0 such that

LΣ

⋂
ω(S(0)) 6= ∅ . We need to prove that Σ is a siphon.

Assume that y ∈ LΣ∩ω(S(0)) but that Σ is not a siphon.

Hence, there exists a species Sj ∈ Σ so that for at least one

of its input reactions Rk and all of Rk’s reactant species Sl,

it holds yl > 0. By Property (3), we have that

Rk(y, t) ≥ Rk(y)
.
= r̄ > 0

for some positive value r̄ and all t ≥ t0.

Therefore, since all output reactions of Sj have zero rate

at y (no matter what the value of t is), and at least some

incoming reaction is strictly positive, it follows by continuity

of each of the Rk(S)’s that there is some ε > 0, so that:

Ṡj(t) = [ΓR(z(t), t)]j ≥ r̄/2

whenever z(t) ∈ Bε(y)
.
= {z � 0 : |z − y| ≤ ε} and

t ≥ t0. Now, using the uniform upper bound R̄(S) =
(R̄1(S), . . . , R̄r(S)) and its continuity, we know that there

exists M > 0 so that |ΓR(z, t)| ≤ M for all z as before.

Hence,

|S(tb) − S(ta)| =

∣∣∣∣
∫ tb

ta

ΓR(S(t), t) dt

∣∣∣∣ ≤ (tb − ta)M

(10)

whenever S(t) ∈ Bε(y) for t ∈ [ta, tb].
Assume without loss of generality (choosing a smaller ε

if necessary) that ε is such that S(0) 6∈ Bε(y). Consider now

any partial trajectory crossing the boundary of Bε(y) at time

tε, and hitting the boundary of Bε/2(y) at time tε/2, where

tε/2 is picked as the first time after tε when this happens.

Notice that such a partial trajectory exists, because S(0) 6∈
Bε(y) and by our assumption that y ∈ ω(S(0)).

Since Ṡj(t) ≥ r̄/2 for all t ≥ t0 whenever z(t) belongs

to Bε(y), it follows that necessarily we must exit Bε(y) an

infinite number of times, hence infinitely many such partial

trajectories exist.

By the estimate in (10), the time it takes to get from the

boundary of Bε(y) to Bε/2(y) is at least ε/2M . Moreover,

since Ṡj(t) ≥ r̄/2 we have:

Sj(tε/2) = Sj(tε) +
∫ tε/2

tε
Ṡj(t) dt ≥

Sj(tε) + εr̄/4M ≥ εr̄/4M.

Obviously, for t ≥ tε/2, and as long as S(t) ∈ Bε(y), we

also have: Sj(t) ≥ Sj(tε/2) ≥ εr̄/4M . This shows indeed

y /∈ ω(S(0)), contradicting our hypothesis. Hence, Σ must

be a siphon.

VII. PROOF OF THEOREM 3

Suppose that Λ ⊆ R is a conditionally persistent set of

reactions, and pick a bounded solution S(·) with S(0) ≫ 0
such that lim inft→∞ Ri(S(t), t) > 0 for each i ∈ Λ. We

need to show that Λ is consistent.

Pick an arbitrary t ≥ t0. Clearly:

S(t, t0, S0) − S0 =

∫ t

t0

Ṡ(t) dt = Γ

∫ t

t0

R(S(t), t) dt .

(11)

Since S(t, t0, S0) is bounded, so are R(S(t), t) and its

average

1

t

∫ t

t0

R(S(t), t) dt .

Hence, there exists a sequence tn → +∞ such that

1

tn

∫ tn

t0

R(S(t), t) dt

also admits a limit R̃ � 0 as n → +∞. Now taking limits

along this subsequence in both sides of (11), after dividing

by t yields:

0 = lim
n→+∞

1

tn
(S(tn, t0, S0) − S0) = Γ R̃ . (12)

Moreover, for all i ∈ Λ we have

lim inf
t→+∞

Ri(S(t), t) = ri > 0
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S1 HIFα

S2 HIFα:ARNT

S3 HIFα:ARNT:HRE

S4 HRE

S5 HIFα:ARNT:PHD

S6 PHD

S7 ARNT

S8 HIFα:PHD

S9 HIFα OH:ARNT:HRE

S10 HIFα OH:ARNT

S11 HIFα OH

S12 VHL

S13 HIFα OH:VHL

TABLE I

THE VARIOUS SPECIES IN THE HYPOXIA NETWORK (13).

and hence there exists T > 0 so that for all t ≥ T ,

Ri(S(t), t) ≥ ri/2. Letting r be the minimum of the ri’s,

we conclude that:

R̃i = limn→+∞
1
tn

∫ tn

t0
Rj(S(t), t) dt

≥ lim 1
tn

(tn − t0)
r
2

= r
2

> 0 .

So, R̃ is a T -semiflow v whose support contains Λ.

VIII. AN EXAMPLE: HYPOXIA NETWORK

As discussed in the Introduction, we analyze a model of

the hypoxia control network. Starting from the model given

in [5] for the core subsystem of the hypoxia control network

in C.elegans, Drosophila, and humans, with 23 species and

32 reactions, the authors of [7] picked a subsystem consisting

of 13 species and 19 reactions which constitute the key

components explaining experimentally observed behaviors.

We analyze this simplified model.

One of the species, S1, which represents the transcription

factor HIFα, is subject to production and degradation (or, in

formal terms, “inflows” and “outflows”).

The reactions are as follows:

0 → S1 → 0
S1 + S7 ↔ S2

S2 + S4 ↔ S3

S1 + S6 ↔ S8 → S6 + S11

S4 + S10 ↔ S9

S10 ↔ S11 + S7

S2 + S6 ↔ S5 → S6 + S10

S11 + S12 ↔ S13 → S12,

(13)

where the meaning of the various biochemical species is in

Table I .

External oxygen affects the dynamics of the system by

scaling the rate constants for the reactions S8 → S6 + S11

and S5 → S6 + S10. Mathematically, this means that ki(t)
is proportional to the oxygen concentration (and hence is

potentially time-dependent) for each of these two reactions.

According to [5], when the oxygen level falls below a

critical value, a sharp rise in HIFα is observed, while this

protein is undetectable if the oxygen level is above the critical

value. The modeling effort in [5] and the analysis of the

model in [7] were aimed at understanding this switch-like

R1

R2

R3

R4

R5

R6

R7R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

S1S2S3

S4S5

S6

S7 S8

S9 S10

S11

S12 S13

Fig. 1. Hypoxia network

behavior. For simplicity, the oxygen level was kept constant,

and the model was investigated over a range of values of this

constant. Here we will investigate the persistence properties

of this network under the assumption that oxygen levels are

time-varying.

The associated reaction network, represented as a Petri

Net, is shown in Fig. 1. This network admits 4 linearly inde-

pendent P -semiflows, which are associated to the following

conservation laws:

S12 + S13 = const1
S3 + S4 + S9 = const2
S5 + S6 + S8 = const3

S2 + S3 + S5 + S7 + S9 + S10 = const4

(14)

and it is clearly not conservative, due to the presence of

outflows and inflows (equation for S1). Not only are there

no strictly positive conservation laws vΓ = 0, but there are

not even “decreasing” semiflows satisfying vΓ ≤ 0 which

could be used as Lyapunov functions in order to establish

boundedness of solutions. In addition, some kinetic rates are

allowed to be time-varying. Thus, the techniques from [4]

cannot be applied to study persistence.

We consider next the possible T -semiflows. There are sev-

eral “trivial” ones, corresponding to the reversible reactions:

R3+R4, R5+R6, R7+R8, R10+R11, R12+R13,R14+R15

and R17 + R19.

In addition to these, one can find 3 non-trivial independent

T -semiflows:

R1 + R2

R1 + R7 + R9 + R17 + R18

R1 + R3 + R15 + R16 + R12 + R17 + R18 .
(15)
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Since every reaction appears in at least some T -semiflow,

the sum of the semiflows shown is also a semiflow which

is strictly positive, and we can conclude that the network is

consistent.

Thus, the necessary condition for persistence in Theorem 3

is satisfied. This does not quite prove conditional persistence,

but shows that the property is not ruled out by the structure

of the network.

Next, we find a set of minimal siphons:

{S12, S13}
{S3, S4, S9}
{S5, S6, S8}
{S2, S3, S5, S7, S9, S10}.

(16)

Notice that all of them coincide with the support of some

P -semiflow, hence every siphon is stoichiometrically con-

strained. We conclude that the network is bounded-persistent,

by Theorem 2. Next step is the investigation of which

variables have the potential for becoming unbounded. An

algorithm developed for this purpose is illustrated in [2]. It

is based on a linear time-varying embedding of individual

species equations and it carries out a consistency check

in order to verify which scenarios are compatible with the

topology of the network, assuming (for instance) mass-action

kinetics. Scenarios are described by labeling each species

with a symbol in {0, 1, ω} depending on its asymptotic

behaviour, namely converging to 0, bounded and bounded

away of 0 or diverging to infinity. While such a classification

of behaviours does not cover all the potential asymptotic

dynamics of general systems, it appears to be, in practical

situations, a fairly mild restriction.

Running the algorithm on the hypoxia network yields

3 potential scenarios for the asymptotic behaviour of the

network:

Scenario S1 S2 S3 S4 S5 S6 S7

I 1 1 1 1 1 1 1

II 1 0 0 1 0 1 0

III 1 1 1 1 1 1 0

S8 S9 S10 S11 S12 S13

I 1 1 1 1 1 1

II 1 1 1 ∞ 0 1

III 1 1 1 ∞ 0 1

Moreover, see [2] further details, asymptotic invariant vector

analysis allows to discard Scenario III, see Fig. 2). Indeed,

the linear function S2 + S3 + S5 is associated to a P -

decreasing vector of the reduced net obtained by removing

reaction R3, which, according to the labeling is asymptot-

ically switched off. Hence, in this scenario, the quantity

S2 + S3 + S5 gets asymptotically dissipated with a strictly

positive rate; a clear contradiction.

Indeed, simulations showed that both scenarios I and II

are possible for different values of the kinetic constants.

Notice that persistence is violated in scenario II as several

species (namely S2, S3, S5, S7, S12 ) vanish asymptotically.

This is not in contrast with our theoretical developments as

species S11 in this case gets accumulated and diverges to

R1

R2

R3

R4

R5

R6

R7R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

S1S2S3

S4S5

S6

S7 S8

S9 S10

S11

S12 S13

Fig. 2. Reduced Petri Net and P-decreasing vector support

infinity, thus violating the boundedness assumption which is

crucial to Theorem 2. This also shows that extinction sets

for unbounded solutions need not be siphons.

IX. CONCLUSIONS

Checkable criteria for persistence, both necessary and suf-

ficient, have been extended to reactions with time-dependent

rates. Such “time-dependent” rates may represent inflows

and outflows as well as the effect of external inputs. As an

illustration, a hypoxia network is analyzed.
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