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Conditions for Abstract Nonlinear Regulation* 

EDUARDO D.  SONTAG 

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903 

This paper studies the general problem of the existence of output (dynamic) 
stabilizers for a control system. The controller is not assumed to have any special 
structure. Necessary and sufficient conditions are given in terms of new notions 
which generalize the usual ones of stabilizability and detectability. In the particular 
eases of analytic and bilinear systems, these conditions are considerably simplified. 

1. INTRODUCTION 

A typical regulation problem is the following one. Let S be a control 
system, and let "0" be an equilibrium state of S. One wishes to obtain a 
(feedback) controller which drives every state of S asymptotically to 0 while 
it applies inputs to S which themselves approach 0 (internal stability). In 
general, this controller has access only to (partial) measurements of the state 
of S. Further, one assumes that arbitrary (finite support) disturbances may 
affect states and measurements, but that these disturbances cannot be 
directly observed by the controller. For linear (time invariant, finite dimen- 
sional) systems, such a controller exists if and only if S is stabilizable and 
detectable (see, e.g., Wonham (1974)). The first of these properties, which we 
shall call "asymptotic controllability," or just "asycontrollability," means 
that each state can be driven (open loop) asymptotically to the origin. The 
second, which we shall call "0-detectability," says that the subsystem defined 
by the set of "unobservable states," i.e., the set of those states which are 
indistinguishable from 0, is asymptotically stable. 

In this paper, we present a result which can be interpreted as a 
generalization, to nonlinear systems, o f  the above result. There has been, of 
course, extensive research on the topic of constructing regulators for many 
kinds of nonlinear systems, but no characterization in the spirit of those in 
the linear theory has been suggested. Much past research dealt with 
controllers having a "smooth" or even algebraic structure--for instance, 
bilinear controllers for bilinear systems. While such special controllers are of 
course to be desired if they exist, it appears to be impossible to derive a 
general theory under such artificial constraints. There are in fact many 
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examples of simple control problems for which no "nice" synthesis is 
possible. One way around this difficulty is to relax somewhat the structure 
and to introduce piecewise linear controllers, as done for instance in the well- 
developed case of sliding-mode systems (see, e.g., Utkin (1977) and Young 
(1978)). Even when using such an approach, however, there seems to be no 
way to derive complete necessary and sufficient characterizations. (A 
somewhat related approach, via sampled PL controllers, is described in 
Sontag (1981), and provides sufficient conditions for regulability which are 
very close to being necessary.) 

In view of the above, we take the most general approach that seems 
natural. Regulators will be just abstract control systems: a set with well- 
defined transition and output maps. In order to obtain a mathematically 
significant theory, we shall restrict attention to the case where the original 
system to be controlled has a certain amount of structure, at least 
topological, and progress to systems defined by analytic differential 
equations .and eventually to bilinear systems. For each such class the charac- 
terizations become progressively simpler, until in the last case one recovers, 
for bilinear systems, a characterization equal to that for linear systems. The 
constructions in the proofs are rather abstract, but they all can be in prin- 
ciple implemented digitally; our objective in this paper, however, is to 
understand the underlying properties, not to provide actual control 
algorithms. (Close inspection of the proofs suggests that, with the 
appropriate definitions, the resulting regulators can be defined v ia  
"piecewise-analytic," or at least "piecewise-continuous," equations, 
depending on the structure of the original system.) 

In Section 2 we present the definitions and state the main results. The 
central theorem is that, for systems S whose state spaces admit a metric for 
which the system maps are continuous, regulability of (S, 0) is equivalent to 
preregulability plus indy-detectability. The latter has a rather technical 
definition; it means, intuitively, that indistinguishability ("indy," for short) 
classes can be estimated (asymptotically). Preregulability means that S is 0- 
detectable (definition as in the linear case) and indy-asycontrollable (or, 
"indy classes are asycontrollable"), meaning essentially that for each indy 
class there is a control sending all states in the class (uniformly) to 0. The 
necessary part of this equivalence is easy to prove from the definitions. The 
intuitive idea of the sufficiency proof is also easy to understand: alternate 
estimation of indy classes with appropriate control actions; technically, the 
proof turns out to be rather delicate, and it will occupy most of Section 3. It 
turns out that indy-detectability is satisfied automatically for analytic 
systems, so regulability is in that case equivalent to just preregulability. In 
the bilinear (or, more generally, state-affine case) one can prove, further, that 
preregulability is in fact equivalent to just asycontrollability and 0- 
detectability. 
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The results in this paper were presented in the conference papers of Sontag 
(1981b, 1982b). Throughout the paper we include suggestions for further 
research. 

2. DEFINITIONS AND STATEMENT OF RESULTS 

We shall need a large number of definitions and notational conventions. 
The latter are unavoidable if the proofs are to be kept at a reasonable length. 

Systems and Signal Spaces 

A time-function will be any function defined on the nonnegative reals R 
(i>0). In any statement involving time functions, "for all t" will mean "for all 
t ~> 0" unless otherwise stated. Often, values will belong to a set having a 
distinguished element, to be called always "0," and/or a set endowed with a 
metric d; some of the following notations assume this. Let w be a time 
function. Then t(w) := sup{t [ w(t) v~ 0}. The concatenation at b >/0 of v and 
w is denoted by v lb [w and is equal to v(t) for t < b  and to w( t -b )  
otherwise. The time function 0 is the one having the constant value 0. The b- 
initial segment of v-restriction to [0, b) followed by 0 -  is v[blO. The right 
shift by b of v is just 0 [b[ v; this suggests extending the above definition to 
deal with negative b, so that the left shift (with truncation) is 0[b[ v with 
b < 0. Note the equality u [a[ (v [b[ w) = (u la[ v)I(a + b)] w. We adopt the 
convention that any function which we define on a subinterval I will be alter- 
natively thought of as a time function, extended by 0 outside L 

For any metric space (X,d) and subset A of X, we denote by B(A, r) 
[resp., B*(A, r)] the open [resp., closed] ball {x[d(x,A) < r} [resp., ~]. 
When an element 0 has been distinguished in X, #(x)  := d(x, 0), and A is 
omitted in the above for A = {0}. If v is a time function, #(v)  will denote the 
sup-"norm", i.e., sup{#(v(t)), t>~ 0}, assuming values are on a metric space 
and there is a distinguished value. Consistently with this, B(r) [B*(r)] will 
be also used for time functions, i.e., for the set {v [#(v)  < r} [~r]. For any 
T, the set B(r; T) is the set of v with # ( v ) <  r and with t(v)<~ T, and 
similarly for B*. No confusion should arise from the fact that the same 
notat ions--#( . ) ,  0, etc.--will be used in any given discussion to refer to 
objects associated to different sets; the meanings will be clear from the 
context. 

One rather obvious terminology convention: most definitions and proofs 
will involve estimates depending on various (distinct) parameters--say T 
depending on k and e, b depending only on e, etc. A phrase like "for all 
k, e > 0 there exist positive T(k, e) and b(e) such that..." will be used 
sometimes instead of saying, more precisely: "there exist functions 
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T: ~(>0)  × ~ ( > 0 ) ~  ~(>0)  and b: [R(>0)~ ~ (>0)  such that, for all k > 0 
and e > 0 the quantities T(k, e) and b(e) satisfy...." 

Let V be a metric space with an element 0 and for which the balls B*(r) 
are all compact. A signal space V is a set of time functions with values in the 
(underlying signal-value set) V which (1) is closed under concatenations, (2) 
contains 0, (3) consists of locally bounded time functions, i.e., # (v  It[ 0) is 
finite for all v in V and all t, and (4) is extended, i.e., a time function v with 
all truncations v [t[ 0 in V is necessarily itself in V. 

The cartesian product U X V of two signal spaces is itself a signal space 
with underlying set U X V and metric d((u, v), (u', v ')) = d(u, v) + d(u', v'). 

Let V, W be two fixed signal spaces (of "input" and "output" signals, 
respectively). With respect to these, a system S = (X, 0, h) is given by a set 
X, a map gi: [1~ (90) X X X V-~ X, and a map h: X X V --} W, such that the 
following axioms hold for all x in X, all u, v in V, and all t, s: 

(2.1) O(O;x,v)=x,  

(2.2) O(s; O(t; x, u), v) = O(t + s; x, u I tl v), 

(2.3) if u I tl 0 = v I tl o, then 0(t; x, u) = O(t; x, v), 

(2.4) given K, T > 0, there exists K' > 0 so that, for all v in B(K; T), 
w(.) ----- h(O(.; x, v), v(.)) is in W, and w lrl  0 is in B(K'; IF). 

Note that of course K' depends on x. An initialized system (S, 0), or just S, 
is given by a system S and a state 0 in S which satisfies: 

(2.5) O(t; 0, 0) = 0 for all t, and 

(2.6) h(0, 0) = 0. 

Note the use of "0" both to denote a state and elements of (input and 
output) signal spaces; there is a mild inconsistency in not denoting this state 
by "0." The above definition is rather standard, except perhaps for (2.4), 
which must be added in the abstract setup but is automatically satisfied in 
the usual ("finite dimensional") cases. The causality axiom (2.3) follows 
from the consistency (2.1) and semigroup (2.2) axioms, but we include it for 
emphasis. 

Some particular classes of systems will be of interest. A strictly causal 
system is one for which h is independent of v; more generally, if V =  C X D 
and W = E X F, then one says, for example, that E is strictly causal on the 
C-coordinate if the first coordinate of h(x, c, d) does not depend on e. A 
discrete time (or a "sampled data" system) is one for which transitions occur 
at integer times only and depend only on samples of the input: O(t; x, v) = x 
for t < 1, 4(1; x, v) depends only on v(0). This models the case of difference 
equations in the strictly causal case (with a "one-second clock" added in 
each interval); for outputs depending on inputs one would modify the state 
space to store samples of past inputs. Note that the present definition allows 
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for interconnections of discrete and other systems. A continuous-time system 
is one arising (in the obvious way) from equations 

Yc(t) =f(x( t ) ,  v(t)), w(t) = h(x(t), v(t)), (2.7) 

where the state space X is a differentiable manifold, the map f :  X × V ~ T(X) 
is continuous, each f ( . , v )  is a complete vector field on X, and h is 
continuous. The space of input signals V consists of all piecewise continuous 
time functions to V (one could take locally bounded measurable inputs 
without changing any of the results), and it is assumed that solutions x(t) 
exist and are unique for all x(0) and all t. (Note that we are implicitely 
making the usual--and rather restrictive, in our view--assumption that there 
are no finite escape times. This assumption simplifies considerably the 
exposition, but it would be interesting to have the general case treated in the 
future.) An analytic (continuous time) system is one for which X and W are 
real analytic manifolds, V is a subset of an Euclidean space with connected 
interior and no isolated points, and both f and h are real analytic (see 
Sussmann (1979)). Finally, a (continuous time) state-affine system is one for 
which X, V, W are Euclidean, f is affine in x, and h is a constant linear 
function of x, i.e., one has equations 

2(t) = F(u(t)) x(t) + G(u(t)), y(t) = Hx(t), (2.8) 

with F(.)  and G(.) continuous. As an initialized system, 0 is the origin in X. 
(Bilinear systems have F, G linear on u.) 

The most important class in what follows is that of metric systems. These 
are systems S for which X is a metric space with all B*(r) compact, and for 
which h and ~ are jointly continuous in all their arguments (for the compact- 
open topology on II). The continuous systems defined before are all metric. 

We need to introduce a few notions for a general system S. The output 
out[x/v] is the signal in W defined by w( . ) :=  h(gt(.; x, v), v(.)), for any x in 
X and v in 11, Two states x, x '  are v-indistinguishable iff out[x/v] = 
out[x'/v]. They are indistinguishable if this happens for all v in V. An obser- 
vable system is one for which no two states are indistinguishable. For a state 
x, input v, and subset A of X containing x, the indy class (resp., v-indy class) 
of x rel A is the set [x//A] (resp., Ix~viAl) consisting of all states in A which 
are indistinguishable (resp. v-indistinguishable) from x. When A = X ,  we 
write just Ix] and [x/v], respectively. This notation is consistent with the one 
for outputs since the latter depend only on indy classes. Note that, for 
example, [0/0] is for initialized systems the set of all states x giving iden- 
tically zero outputs when the input signal 0 is fed into the system. 

Let I be the equivalence relation defined by: xlx '  iff [x] = [x'], and 
consider the quotient set X/I. When X is a topological space, X/1 will be 
endowed with the (usual) finest topology for which the projection [.] is 
continuous. The (A--) saturation [B] (resp., [B//A]) of a subset B (resp., 

643/5I/2-2 
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relA) is the union of the sets [x] for x in B (resp., [x//A] for x in A ~ B ) .  
The set B is saturated (resp., relA) iff B = [ B ]  (resp., =[B//A]). By 
continuity of the maps out[./v], X/I is a Hausdorff space when X is a metric 
system. 

Regulation Concepts 

We shall say that a map f :  V ~  W between signal spaces is stable iff the 
following two properties hold: 

(2.9) for any k, T, e > 0 there is a T' so that #(f(v)(t)) < e whenever 
v is in B(k; T) and t >~ T'; 

(2.10) for any e > 0 there exist d, T >  0 so that #(f(v))  < e whenever 
v is in B(d; T). 

An initialized system will be called stable iff its i/o map f ( v ) : =  out[0/v] is 
stable. 

In other words, outputs must converge to zero under any finite support 
inputs (to be thought of as "disturbances" or "perturbations"), and this 
convergence is uniform on the "magnitude" of the disturbance; further, small 
disturbances should give rise to small outputs. This is just one of many 
possible definitions, and we use it because it is simple, mathematically 
convenient, and intuitively reasonable. The results to be given can be 
extended to cover stability under non-finite support but "sufficiently rapid 
decay" disturbances; the proofs are basically the same, but there seems to be 
no simple (elegant) way to make the corresponding statements precise. We 
leave as a suggestion for further research the search for similar results under 
other definitions, e.g., via extended spaces. From a purely mathematical 
standpoint, it would be highly desirable to have a definition of stability 
which is closed under cascades. 

A (deterministic, general) regulation problem is specified by (i) an 
initialized system (P, 0) (the plant) whose input and output spaces split as 
U X V and W X Y, respectively, with the Y-coordinate strictly causal on the 
U-coordinate, and (ii) a class OBJ of maps from V into U X W X Y. The 
signal spaces V, U, W, Y will be called the spaces of disturbances, controls, 
output-objectives, and measurements, respectively. A solution to such a 
problem is provided by an initialized system (Q, 0) (the controller) which 
satisfies the following properties: 

(2.11) the input (resp., output) signal space of Q is Y (resp., U), 

(2.12) the interconnection P ,  Q (see below) is well-posed, and 

(2.13) the i/o m a p f ( v ) : - -  out[(0,0)/v] of P *  Q is in OBJ. 

In general, by the intereonneetion P * Q of two systems P = (X, ~b, h) and 
Q = (X', 4', h ')  with compatible signal spaces as above, we mean a system 
(X×X' ,  (~*, h*) such that (i) the input signal space of P *  Q is V, the 
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output space U × W × I1, and (ii) for any v in V, and any x in AT, X' in X', 
let (x(t),x'(t)) = O*(t; (x,x') ,  v), y(t) := Y-coordinate of h(x(t), v(t)), 
u(t) := h'(x'(t),y(t)); then the following must hold: 

(2.14) out*[(x, x')/v] = (out'[x'/y], out[x/(u, v)]) = (u, w,y), and 

(2.15) 0*(t; (x,x') ,  v ) =  (•(t;x, (v, u)), q)'(t;x',y)) for all t. 

If both P and Q are initialized systems, one defines P • Q to be initialized at 
(0, 0). We shall say that the interconnection P * Q is well-posed if there is a 
unique such P . Q .  (This can be equivalently expressed in terms of 
uniqueness of the signals u and y such that the above properties hold.) The 
x(.), x ' ( . ) ,  u, y will be refered to as the "closed-loop" state trajectories and 
control and measurement signals. 

We shall be interested here only in the state stabilization problem, but we 
feel that the above definition should be appropriate to the modeling of many 
other interesting regulation problems (decoupling when V, W are further split 
and OBJ consists of diagonal maps, etc.). One possible variation is to require 
the i/o maps associated to every initial state to be in OBJ, but this can be 
made equivalent to the above if one includes enough "disturbances" to set 
initial states. A rather interesting fact is that even some system theoretic 
problems not commonly thought of as "regulation" problems fit neatly in the 
above; for instance, if OBJ consists of a single map and P is the trivial 
system with y := v and w := u then a "controller" is just a realization o f f ;  
an inversion problem, on the other hand, can be modeled by letting y :=f (v) ,  
w :--u, for given f with OBJ= tdelays} or {integrators}. Here we restrict 
ourselves to: 

(2.16) DEFINITION, The plant P is regulable iff the regulator problem 
has a solution when OBJ= {stable maps}. 

As explained in the Introduction, we are going to treat only a particular 
case of this problem, namely, that of state stabilization under any finite 
support perturbations. Specifically, we make the following assumptions on P 
for the rest of  the paper: 

(2.17) full state as output-objective: W-coordinate of h(x, u, v ) =  x; 

(2.18) independent state and output disturbances: V is a product 
A × B, in such a way that ~ is independent of B and the second coordinate of 
h is independent of A; 

(2.19) the disturbances are full  (see (2.21)-(2.22) below); and 

(2.20) the system P is metric. 

The argument A (resp., B) will be deleted from h (resp., 4)- 
The notion of full disturbance corresponds to requiring that arbitrary 

effects can be achieved by the perturbations. The typical example, and the 
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standard case in the regulation literature, is that of additive disturbances, 
e.g., ~ = f ( x ,  u ) t  a, y=h(x)+b,  for continuous time systems on an 
Euclidean space. The axioms are as follows: 

(2.21) For each T, u the map ~[T, u](a) := ~(T; 0, u, a) (i) is open at 
a = 0 with respect to the compact-open topology on A, and (ii) for each k, u 
there is a k '  such that the image of B(k'; T) under ~[T, U] contains B(k). 

(2.22) Let T > 0 .  Then, (i) for e a c h e > 0 t h e r e i s  a d > 0  such that, 
for each admissible trajectory x(.)  with #(x(t)) < d for t < T and for each y 
in B(d; T), there is a b in B with # (b  IT] 0) < e and y(t) = Y-coordinate of 
h(x(t), b(t)) for t < T, and (ii) for each k > 0 there is a k '  > 0 such that if 
x(.)  is a trajectory with x(t) in B(k) for all t < T, and i fy  is in B(k; T), then 
there is a b with # (b  IT[ 0) < k '  and with y(t) = h(x(t), b(t)) for t < T. 

We introduce also the underlying system S := P/O of the plant P; this is 
the system (X, ~, h) obtained when the maps ~, h are restricted to v = 0 and 
the first coordinate of h is ignored. This system, with input and output 
spaces U and I1, respectively, will be very important in what follows since 
most properties will depend only on S. (Suggestion for further research: if 
(2.19) does not hold, one may derive the results using for S the set of states 
reached from x =  0, and if (2.17) does not hold the results can be derived 
with some variation relating to controllability to the set of states giving 
w=0.) 

We now introduce the notions which will be used to characterize 
regulability. Let P be a fixed plant, and take S - - P / O .  All notions of 
indistinguishability will be with respect to the underlying system S, not to P. 
The same notations ¢, h will be used for the system maps of P and S; each 
has one less argument (a, or b, respectively) in the case of S. Definitions 
2.23 and 2.24 depend only on S, and Definitior~ 2.26 only involves P in the 
well-posedness of the feedback system for arbitrary disturbances. Recall that 
X has a metric d. 

(2.23) DEFINITION. The system S is O-detectable iff [0/0] is 
asymptotically stable, i.e., (i) ~(t; x, 0) converges to x -- 0 (as t ~  oo) for any 
x in [0/0], and (ii) for each e > 0 there is a d >  0 such that #(¢( . ;  x, 0)) < e 
for # (x )  < d. 

Note that [0/0] is positively invariant under u = 0, so the above could 
have been also defined as stability (in the sense of this paper) for the 
"subsystem" [0/0] of S, assuming one introduces appropriate "disturbances" 
to set the initial states in [0/0]. Note also that a standard stability argument 
can be used to prove that the convergence is uniform on compacts, i.e., that 
for each k > 0 and r > 0 there is a T such that O[T, 0] maps B(k) into B(r), 

The next definition requires, intuitively, that each state x be open-loop 
asymptotically controllable to the origin, given only the knowledge of the 
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indy class [x]; the technical conditions ask for for uniform convergence on 
compacts, and for small excursions and control values for small states: 

(2.24) DEFINITION. The system S is indy-asyeontrollable iff there exists 
a function d: ~ ( > 0 ) ~  ~(>0)  and for each indy class L there is a control 
signal u such that: 

(i) if # (x)  < d(e) for some x in L and some e, then both #(u)  < e and 
#(O('; x, u)) < e; and 

(ii) for each k, r there is a T such that, whenever there is an x in L 
with #(x)  < k, then #(O(T; x, u)) < r. 

(2.25) DEFINITION. The system S is asyeontroIlable iff S is indy- 
asycontrollable with respect to the identity measurement function. 

The most important of Definitions 2.24 and 2.25 will be the former. Note 
that in particular this condition implies that L = [0] is asymptotically stable 
when u = 0, but this is in general weaker than Definition 2.23 because [0] 
may be a proper subset of [0/0]. Note that Definitions 2.24 and 2.25 
coincide for observable systems. In the "classical" linear case, Definition 
2.24 is equivalent to Definition 2.23 plus Definition 2.25. No definition like 
2.24 appears to have been given before. We could have defined asycon- 
trollability not requiring that controls converge to zero. Since we are 
studying here "regulation with internal stability," the present definition is the 
appropriate one. The reference Sontag (1982) deals with a Lyapunov ("direct 
method") characterization of asycontrollability for continuous time systems; 
it would be interesting to obtain analogous conditions for indy- 
asycontrollability and for 0-detectability. Note that we are suggesting here 
"internal" characterizations, not the search for conditions under which a 
given regulator configuration gives a solution to a regulator problem (which 
is an interesting but different problem). The work of Vidyasagar (1980) may 
be very useful in this regard. 

(2.26) DEFINITION. The system S is preregulable iff it is 0-detectable 
and indy-asycontrollable. 

While the intuitive content of the next definition is very natural - indy 
classes can be estimated on compacts by a suitable "detector",-  we would 
like to suggest for further study the search for a simpler definition 
compatible with the results to be obtained. Note the interpretation of the 
Q(k, e) below as "detectors" for states in the large compact B*(k) which do 
riot "disturb" the states in a small ngbd B(e). 

(2.27) DEFINITION. The plant P is indy-detectable iff (i) for each e > 0 
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there is a d(e) > 0, (ii) for each k, k ' ,  e > 0 there is an m(k, e, k ' )  > 0, (iii) 
for each k, r, e > 0 there is a T(k, e, r) > 0, (iv) for each k, e > 0 there is a 
system Q(k, e) with P ,  Q(k, e) well-posed, a state q(k, e) in each such 
system, and a b(k, e) > 0, and (v) there is given for each such k, e a function 
i : X '  ~X/1  (primes indicate objects associated to Q(k,e)), such that the 
following properties hold for arbitrary k, e, r. Consider first the closed loop 
system P * Q(k, e) and, for each x in X the trajectory with x ' ( 0 )  = q(k, e), 
x(0) = 0, v = 0, and let T :--- T(k, e, r); then: 

(a) if # ( x )  < d(e ' ) ,  then #(x(t)) < e '  and #(u(t)) < e '  for all t ~< T 
and all e '  in the interval [e, 1]; 

(b) if # ( x ) <  k, then #(x(t))< b(k,e) for all t ~< T, and x(T) is in 
r); 

(c) if # ( x )  < k '  for some k ' ,  then #(x(t)) < m and #(u(t)) < m for all 
t ~ T and m = re(k, e, k'). 

Consider now the system P by itself, with input signals u = v = O. 
It is then also required that: 

(d) if # ( x ) < d ( e ) ,  and if y ] t ' l O = O  for some t ' ,  then either 
[¢i(t'; x, 0)/0]  = [0/0] or #(x(t)) < e for 0 ~< t ~ t ' ,  and 

(e) if # ( x ) < k '  and Y l t ' ] O = O  for some k ' ,  t ' ,  then either 
[¢i(t'; x, 0)/0]  = [0/0] or #(x(t)) < m(m, 1, k ' )  for t ~< t ' .  

The definition could be generallize d to allow for the estimation function to 
depend on the present output y(t); this would give an equivalent concept 
since one may  always enlarge the state space of Q to allow for the memory  
of y. The 1 in (e) is chosen arbitrarily; it is only used in order to simplify 
notations by not adding yet another estimate depending only on k ' .  We shall 
see later that: 

(2.28) THEOREM. Every plant P with S analytic is indy-deteetable. 

But many  -even  s m o o t h -  systems are not indy-detectable. For instance, 
consider the system - p l a n t -  with X = A = Y = U = ~ (W is irrelevant and B 
can be taken trivial) and equations x = u + a, y = h(x), where h is any 
function which is bijective on the interval [ - 2 , - 1 ]  and is zero outside 
[ - 3 , - 1 ] .  The underlying system S (a = 0) is in fact observable, but the 
above definition cannot hold for, say, r =  0.1, e---0.5.  Indeed, compare  two 
trajectories remaining in B(0.5). Both result in y = 0, independently of  x(0), 
so the controller state trajectory x ' ( . )  is independent of the initial state of  the 
plant, say x(0)----x or =z.  It follows that the control u is also the same, and 
thus the distance d(x(t), z(t)) is constant in t (where z( . )  is the trajectory 
starting at z). But (b) requires that for some t = T this distance be less than 
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0.2, because the set (indy class) i(x '(T)) consists of a single state (obser- 
vability). Taking x = 0, z = 0.4 gives a contradiction. 

These are the main results to be proved: 

(2.29) THEOREM. Regulability = indy-detectability + preregulability. 

(2.30) COROLLARY. For S analytic, regulability =preregulability. 

(2.31) THEOREm. For S state-afJTne, preregulability = O-detectability + 
asycontrollability. 

3. PROOFS 

Necessary Part 

Let P be a regulable plant, S = P/O, and Q a regulator for P. Recall that 
(2.17)-(2.20) are supposed to hold, and that OBJ= all stable maps. We wish 
to show that P is preregulable and indy-detectable. A state x '  in X '  is 
reachable (from 0) iff there is some input signal y for Q and some t such that 
x ' - ¢ ' ( t ;  0,y). The following lemma gives consequences of regulability for 
S. 

(3.1) LEMMA. Consider P * Q, and assume that v = O. Then, for each 
k, e > 0, and for each x' in X', there exist positive numbers d(e), re(k, x') ,  
and T(k, e, x ')  such that: (a) i f # ( x )  < d(e) and x '  = 0, then the closed loop 
trajectories have #(x( . ) )  < e and #(u) < e, and (b) if  #(x)  < k and x' is 
reachable, then (i) #(x(t)) < e and #(u(t)) < e for all t >/T= T(k, e, x'), and 
(ii) x(.), y, u are in B(m(k, x')). 

Proof. Let e > 0  be given. By (2.10), there are e ' > 0  and T > 0  such 
that #(out[(0,  0 ) / v ] ) <  e whenever v is in B(e'; 7). Since P is metric, and 
using the local compactness of X and V, the map sending the triple (a, u, x) 
into the trajectory 4(';  x, (u, a)) is continuous, assuming the compact open 
topology is used for state trajectories. Thus, ~(t; 0, 0, 0 ) =  0 implies that 
there exists for the above T an e'  small enough so that #(x(t))  < e for t ~< T 
if v is as above and u = 0. We assume that e '  satisfies also this property. By 
2.22(i), for this e '  there is a d such that, whenever x(.)  is a trajectory which 
is in B(d) for t < T, there is some b in B(e'/2; 7) such that h(x(t), b(t)) = 0 
for t < T. By 2.21(i), this d can be chosen small enough that for each x in 
B(d) there is an a in B(e'/2; T) such that ¢[T, 0] sends a to x. Further, d can 
be taken less than e. We let d(e):= this last d. Assume now that x is in 
B(d(e)), and pick a as above. The continuity argument on ~ gives that 
# ( x ( t ) ) < e  for all t~<T. Thus, there is a b as above such that y( t )= 
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h(x(t), b ( t ) ) =  0 for t < 7". Let v :=(a, b). Then, if x ( 0 ) = 0 ,  x ' ( 0 ) =  0, all 
future x(t) (=w(t))  and u(t) are in B(e), and y I TI 0 = 0, x(T) = x. It follows 
that x ' (T )  = 0. Thus, ¢i*(t: (x, 0), 0) = ¢*(t; ¢*(T;  (0, 0), v), 0) = ¢*(t  + T, 
(0, 0), v [TI 0), and it follows that (a) holds. 

We now prove (b). We first establish that for any k and any reachable x '  
there exists a c = c(k, x') and a T such that, whenever # ( x )  < k, there is a v 
in B(c) such that ~*(T; (0, 0), v) = (x, x ') .  Since x '  is reachable in Q, there 
is a y in its input signal space and a T such that ¢'(7"; 0 , y ) - - x ' .  Let u(t):-- 
h'(x'(t),y(t)) for t~< T. By 2.21(ii), there is for this k a c > 0 such that, for 
each x in B(k) there is an a in B(c/2) so that ¢(T; 0, u, a) = x. By Definition 
2.4 applied to P/O, for each such a c there is a k '  such that all intermediate 
x(t) are in B(k ' ) ,  when the input to P has a in B(c/2) and u fixed as above. 
By 2.22(ii), then, c can be chosen large enough that, for any trajectory x( . )  
starting in B(k ' ) ,  there is a b in B(c/2) with h(x(t), b(t)) = y ( t )  for t < T. 
This c----c(k, x') satisfies the desired property. 

Assume now that e,k ,x '  are given. Choose a T =  T(x') so that T +  T' 
satisfies the required properties. Let N = N(c, T, T') be such that all of  x(t), 
u(t), y(t), are in B(N) whenever t<~ T +  T', v is in B(c; T), and initial state 
= 0  (definition of "system" applied to P ,  Q). To obtain m, let T' be 
obtained for (say) e = 1, and let m(k, x') be larger than N(c, 7", T') and 1. 
This completes the proof  of Lemma 3.1. 

(3.2) PROPOSITION. S is O-detectable. 

Proof Let [x/0] = [0/0]. Consider in P • Q the initial state (x, 0), and 
assume that v = 0. Consider the signals u = 0 in U and y = 0 in Y. Let x(t) = 
~i(t;0,0), x ' ( t ) = 0  for all t. By well-posedness, it follows that ¢*(t; 
(x, 0), 0) = (x(t), 0). The conclusion follows from Lemma 3.1. 

(3.3) PROPOSITION. S is indy-asycontrollable. 

Proof Let d( .)  be as Lemma 3.1. Let L be an indy class. Pick any x in 
L, and consider ¢*(t;  (x, 0) ,0) .  We claim that the ensuing u and y are 
independent of the particular x chosen: this follows from well-posedness, 
since out]x/u] = out[z/u] whenever [ x ] - - [ z ]  = L. Again the result follows 
from Lemma 3.1. 

(3.4) PROPOSITION. P is indy-detectable. 

Proof Again the proof uses Lemma 3.1. We let d(-) be as there, and 
define Q(k, e) := Q, and q(k, e) := 0, for all k, e, T' via T'(k, e, r) := the 
T(k,r,O) from Lemma 3.1, b(k ' ,e)=m(k,e ,k ' ) :=m(k ' ,O) ,  and the 
functions i all constant and equal to ]0]. Given e, k, r, the axioms (a), (b), 
and (c) in 2.27 then follow from Lemma 3.1. In particular, note that (a) 
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holds for any e' (not just those in [e, 1]), because Q is independent of e, and 
for (b) note that d(x(T), i(x'(T))) = d(x(t), [0]) ~< d(x(t), 0). To prove (d), 
assume that x(0) = x  is in B(d(e)), x'(0)  = 0, u = v = 0, and y It'l 0 -- 0 for 
some t'. Let z :=x( t ' ) .  Consider the evolution of P ,  Q with v : = 0  and 
starting at (z, 0). Let u', y ' ,  z(.), z ' ( . )  be the trajectories obtained. The 
signals 0 It'l u' and 0 It't y '  are consistent with the trajectory equal to x(t) 
for t ~< t' and to z(t '  - t) otherwise, and similarly for x' .  By well-posedness, 
these are the trajectories corresponding to the initial state (x, 0) and v = 0. 
Thus, #(x( t ) )  < e for all t, and in particular for t ~< t', as wanted. The proof 
of (e) is analogous. 

Sufficiency 

Throughout this section, P is an indy-detectable, preregulable plant. We 
shall need a couple of easy technical lemmas. 

(3.5) LEMMA. Given a compact subset Z of  X, and an open subset N, 
there 'exists an open set N'  such that (i) N'  is saturated rel Z, and ( i i ) for  
any indy class L such that N contains L ~ Z, N'  satisfies L ~ Z ~ N'  (~ Z c 
N ~ Z .  

Proof Consider the restriction 0 to Z of the projection [-]. Since Z is 
compact and X / I  is Hausdorff, 8 is a closed (continuous) map. Let B be the 
complement of N ~  Z in Z. This set is closed in the relative topology of Z. 
Thus, [B//Z] (=preimage under 8 of O(B)) is also closed in Z, and hence in 
X. Then N' := complement (in X) of [B//Z] satisfies~the required properties. 

(3.6) LEMMA. Each of  the functions d(.) appearing in Definitions 2.23, 
2.24, and 2.27 may be assumed to be continuous and strictly increasing. 

Proof Note that any function d' with d ' (e )< d(e) for all e > 0 also 
satisfies the conditions in each case. Note also that, when e' > e, d can be 
redefined if desired at e' by d'(e ' ) : - -d(e) ,  again without affecting the 
validity of the conditions. Given d, then, define first d' by: d'(e) :-- d(1/n) in 
the interval [1/n, 1 / ( n - 1 ) ) ,  for each n > 1, and d ' ( e ) :=d(1 )  otherwise. 
Now replace d' by any continuous strictly increasing function majorized by 
the piecewise constant d'. 

Only part of the following lemma will be needed later, but the full 
statement is of interest in itself. Note the difference with Definition 2.24: T is 
now independent of L, and x(t), u(t) are in B ( r ) f o r  all t >~ T; on the other 
hand, u depends now on k and r. Only indy-asycontrollability is needed in 
Lemmas 3.7-3.8. 

(3.7) LEMMA. For each k', r', e > 0 with r ' <  k', e < k'  there are 
positive d'(e), e(k'), and T(k', r') > 1 such that, for each indy class L ' ,  there 
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is an input u' with: (i) if x is in L' nB*(d'(e)), then both ¢(t: x, u') and 
u'(t) are in B(e) for all t, and (ii) if x is in L 'AB*(k ' ) ,  then 
x(t) = O(t;x, u') is in B(r') for all t >/T'(k', r'), and #(x(t)) < e(k'), 
#(u) < e(k'). 

Proof. Define a function j(e):= d(d(e)/2), where d is as in Definition 
2.24, assumed continuous and strictly increasing via Lemma 3.6. Let also 
d'(e) :=j(e)/2. For each class L 4: [0], let e(L) be the inf of the e such that 
L nB*(j(e))  is nonempty. Since L is closed, e(L)-~ O. Pick k ' ,  r ' ,  e, and a 
class L. 

Assume first that L 4: [0]. Apply Definition 2.24 to L, to obtain an input 
u as there. Let r := d(r'), k := k '  + 1, and pick T as in Definition 2.24(ii). 
Pick a number e larger than k' ,  larger than the (finite) number #(u IT [ 0), 
and larger than all possible values #(~(t;  x, u ' )  for all t ~< T, x in B*(k') and 
# ( u ' )  ~< maxI#(u  IT I 0), k'}. Since ¢[T, u] is continuous, there is a d" such 
that any x, z at distance <d" get mapped to x ' ,  z '  at distance <d(e(L))/2, 
for x, z in B*(k). Let m be a number less than both d" and j(e(L ))/2. Note 
that ~[T,u] maps E : = L N B * ( k ' )  into B(d(r')). Let N be an open set 
which contains the former and which is also mapped into B(d(r')). We may 
assume that N is contained in the m-ngbd of E. By Lemma 3.5, we may 
further assume that N is saturated rel B*(k'). Consider any indy class L '  
intersecting N at a nonempty set F. Let G be the image of F under ~i[T, u]. 
Since [x] = [z] always implies that [~(t;x,u)] = [~(t; z,u)], there is a 
(unique) indy class H containing F. Let w be the input associated to H via 
Definition 2.24. In particular, for any x in G, 4(t; x, w) remains in B(r') for 
all t. Further, #(w)  < r '  < c. Suppose that L '  intersects some B*(d'(e)), for 
some e, say at x. Since N is saturated rel B*(k), x is in N (because 
d'(e) < e < k). Thus, there is some z in L with d(x, z) < m <j(e(L))/2. Since 
#(x) < d'(e) =j(e)/2, it follows that j(e(L)) <~ #(z) <j(e(L))/2 +j(e)/2. 
Thus, e(L) < e. It follows that L intersetcs B(j(e)) = B(d(d(e)/2)), and z is 
in the intersection. Also, this implies that u is in B(j(e)), so also in B(e). By 
Definition 2.24, 0(T; z, u) is in B(d(e)/2). Since d(x, z) < m < d, also x '  := 
¢(T;x,u) is in B(d(e)). Thus, #(O(.;x ' ,w))<e and # ( w ) < e .  
Concatenating u and w, one has for each L '  intersecting N that the 
conclusions hold, except of course that T and c depend on the chosen 
L (4:[0]). 

We claim that the same local result holds for L = [0]. Again apply 
Definition 2.24, to obtain T, with r = d(r'), k = k '  + 1. Note that now u = 0. 
Since E : =  [ 0 ] N B * ( k ' )  is mapped by u = 0  into B(d(r')), there is by 
continuity on u and x an a > 0 such that ~(T; x, w) is in B(d(r')) whenever 
#(w) < a and x is in an a-ngbd of E. Let N be an open ngbd of E which is 
saturated rel B*(k) and which i s  contained in the B(d(a))-ngbd of E. 
Consider any indy class L '  intersecting N at a nonempty set F. Choose for 
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L '  an input u as in Definition 2.24. If L '  intersects B*(d'(e)),  note that 
d'(e) < d(e), so L '  also intersects B(d(e)), and hence by Definition 2.24 
future x(t) and u(t) are in B(e). If x is in F, it is also in B(d(a)), so also 
#(u)  < a, and hence also #(T; 3c, u) is in B(d(r')),  as wanted. With any c 
larger that a and larger than the x(t) which may appear when starting in the 
closure of N, one has the conclusion for ngbds of L = [0]. 

Cover the set B*(k ' )  by the open sets N(L)  constructed for each L and 
take a finite subcover. It is enough now to take e (resp., T) as the largest of 
the e(L) (resp., all T(L), and 1) associated to this subcover. 

(3.8) LEMMA. Let T(., .) and d(.) be the functions in the statement of  
Lemma 3.7. For each k, r, e > 0 with r < k and e ~ 1 <~ k there exists a e(k), 
and for each indy class L intersecting B*(k)  there exist an input u and a 
open set N, such that (i) L N B * ( k ) c  N, (ii) N is saturated rel B*(k),  (iii) 
for any x in N N B * ( k ) ,  #(•(T; x, u)) < r and #(x( t ) )  < c(k) for  all t <~ T, 
(iv) i fe~<e '  ~< 1 and x is in N n B * ( d ( e ' ) ) ,  then #(x( t ) )  < e' for t ~ T, and 
(v) #(u) < c(k). 

Proof. Let k, r, e, L be given. Pick u as in Lemma 3.7. Let M be the set 
of all x in X such that for each e' in [e, 1] the following property holds: 
#(x )  <, d(e') implies # (0( t ;x ,  u ) )<  e' for all t~< T. An easy compactness 
argument (plus continuity of d(.)) gives that M is open. By Lemma 3.7, L is 
contained in M. Since L n B * ( k )  is mapped by O[T, u] into B(r), it has an 
open ngbd M'  which is also sent to B(r). Let N'  be the intersection of M and 
M'  and pick N such that it satisfies (i) and (ii) and such that N N B * ( k )  is 
included in N' A B*(k).  Assume that x is in the first of these sets. Then x is 
in M',  so it is mapped into B(r). Define c(k) as larger than c ' (k ) := the 
"c(k)" of Lemma 3.7, and so that it bounds all values #(O(t;x, u')) for 
# ( u ' )  < c'(k), t K T, and # ( x ) K  k. Thus, (iii) holds. Since (v) holds by 
construction, it only remains to prove (iv). But this is immediate from the 
definition of M. 

(3.9) LEMMA. For each k', k", r, e, e' > 0, e ~ 1, there are 
T =  T'(k ' ,  r,e) > 1, positive c' = e'(k'),  m' = m'(k ' ,  e, k"), g = g ( e ' ) ,  
b' = b'(k',  e), and systems Q = Q(k', r, e) with states x '  = x'(k ' ,  r, e) such 
that the following properties hold: (i) the interconnection P .  Q is well posed, 
and for  v = O, x(O) = x, and x'(O) = x '  the following hold for the ensuing 
closed loop trajectories; (ii) if # (x )  < g(e') for an e' in the interval [e, 1 ], 
then #(x( t ) )  < e' and #(u( t ) )  < e' for  t ~ T, (iii) if  # (x )  < k', then 
# (x (T) )  < r, and #(x( t ) )  < c' and #(u( t ) )  < b' for t ~ T; and (iv) if 
#(x )  < k", then #(u(t))  < m' for  t ~ T. 

Proof Let d be as in Lemma 3.8, and let d' be the function called d in 
Definition 2.27. Define g(e) := d'(d(e)). Consider the detectors in Definition 
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2.27, and let R be the Q(k', d(e)) there, q = q(k', d(e)). Let X(R) be the state 
space of R. Using b from Definition 2.27, let k be any number larger than 
b(k', e), r, and 1. Let c'(k') := c(k), and let b'(k', e) be any number larger 
than b(k', e) and c(k). Let m'(k', e, k") be any number greater than c(k) and 
m(k', e, k"). We shall define T'(k', r, e) to be the sum of the T(k, r) in 
Lemma 3.8 and of T =  T(k', d(e), tT) (right-hand term is the estimate in 
Definition 2.27), where the number 0' will be constructed below. 

We claim that there exists an open covering {N i, i = 1 ..... n} of B*(k) with 
all N i saturated rel B*(k), inputs {ui} as in Lemma 3.8, and a map 1: X ' ~  
{1 ..... n} such that: (1) N i ~ B * ( k  ) is mapped into B(r) by u i at time T(k, r), 
with all the properties in Lemma 3.8 holding, and (2) when R is started at q 
and x(0) is in B(k'), then x(T) is in N i for i =  l(x '(T)).  We now prove this 
claim. Pick any indy class L, and apply Lemma 3.8 to get a corresponding 
N, u. Let O(L) be such that the 0(L)-ngbd of L ~ B *(k )  is contained in N. 
Pick O'(L) := O(L)/2. Consider B(L, O'(L)) and apply Lemma 3.5 to this set, 
with Z----B*(k). Let N ' (L)  be the saturated open thus obtained. Cover B*(k) 
by these N'(L), and take a finite subcover {N[ =N[(Li), i= 1 ..... n}. By N i, 
u i we denote the N, u associated to the corresponding Li. Let 0' be a number 
which is less than 1 and less than all the 0[. This is the 0' used above to 
obtain the time T that the detector R will be operated. Given any indy class 
L intersecting B*(k), one of the N[ contains this intersection. Let j: X / I ~  
{1,...,n} be a choice map giving an index i for which this happens. Let 
l(z) :=j(i(z)). If R is now operated, with x ( 0 ) =  x in B(k'), one has x(T) in 
B(i(x'(T)), 0') by definition of indy-detectability. Thus, d(x(T), z) < 0' for 
some z in i(x'(T)). But x(t) is always in B(b(k', e)), so # ( z ) ~  k. By the 
definition of j, i (x ' (T) )A B*(k) is contained in B(Li, Oi), where i =  l(x '(T)).  
Thus, d(x(T), Li) < Oi, and it follows that x(T) is in N;, as claimed. 

We now define Q =  Q(k',r,e). The state space X'  will be the set 
(X(R) U {1 ..... n}) X ~ minus the set of all (p, s) with p in X(R) and s ~> T. 
The state x '  will be (q, 0). States of the type (p, t) in X(R) X ~ will be said 
to be "of type 1", the (i, t) in the rest of type 2. We let ¢% h" denote the 
system functions of R. Then, for states of types 1 and 2 respectively: 

¢'(t; (p, s) ,y) := (O"(t;p,y), t + s) if t + s < T 

:= ( I (~" (T- -  s;p, y)), t + s) otherwise, 

O'(t: (i, s) ,y) := (i, t + s), (3.10) 

h'((p,t) ,y) :=h"(p,y); h'((i, t ) ,y)  :=-ui(t- T). (3.11) 

Then (3.10)-(3.11) define indeed a system, and the interconnection P*Q is 
well posed: one needs only to check all possible combinations of types of 
states and times <T or >T. For instance, the signals u, y needed for the 
closed loop operation are constructed separately for t < T (well posedness of 



ABSTRACT NONLINEAR REGULATION 121 

P ' R )  and for t/> T (basically open-loop control in that interval). All the 
desired properties hold by construction. 

(3.12) LEMMA. Consider the system S =P/O. For each k, e > 0 there 
exist positive j(e), n(k) such that, for any t, x for which out[x/O] ]t] 0 = O, the 
following properties hold." ( a ) / f # (x )  < j(e) for some e, then #(0(t ' ;  x, 0)) < e 
for all t' < t+  i, and (b) ~ # ( x )  < k for some k, then #(O(t'; x, 0)) < n(k) 
for all t' < t + 1. 

Proof By continuity of 0(t;. ,  0) there is a g(.) such that B(g(e)) is 
mapped into B(e) for all t~< 1. By 0-detectability, there is a d'( .)  such that 
#(4( ' ;  x, 0)) < e whenever [x/0] = [0/0] and #(x)  < d'(e). Finally, let d be 
as in Definition 2.27. Define j(.) := min{d'(.), d(g(.))}. Pick an x in B(j(e)) 
and t arbitrary. Assume that y It] 0 = 0. By indy-detectability, either ( i)x(t ' )  
is in B(g(e)) for t'~< t or (ii) x(t) is in [0/0]. In case (i), the choice of g 
gives the desired conclusion. If [x(t)/O] = [0/0], then, since also y(t ')  = 0 for 
t ' < t, it follows that out[x/0] = 0, so x is itself in [0/0]. By 0-detectability, 
(a) holds. To prove (b), note that the estimate n(k) exists for x in [0/0], and 
if x is not in this set, the estimate also exists by Definition 2.27 plus the 
boundedness of #(4(t; x; 0)) for x bounded and t ~< 1. 

The proof that a given system description involving different kinds of 
states indeed defines a system Q, and that an interconnection P • Q is well- 
posed, is in general very tedious since it involves careful checking of all 
axioms for each kind of state. The following technical lemma can be used, at 
least in the case that we shall need to consider, to establish directly these 
properties. 

(3.13) LEMMA. Assume given a family of systems Q(i), i >>. O, for which 
the interconneetions P .  Q(i) are well-posed for each i. States q(i) and a 
subset Z(i) are specified for each state set X(i). Further, a function 
~ : Z ( i ) ~  N (= nonnegative integers) is given for each i. Let s (x ,y ) :=  
inf{t ] O(t; x, y) is in Z(i)}, for each input y and each x in X(i). It is assumed 
that there is an s(x) (possibly infinite) such that s(x, y) >~ s(x) > 0 for all y, 

for each x not in Z(i), and that s(q(i)) = T(i) >~ 1 for all i. The claim is that 
there is a unique system Q such that P • Q is well-posed, and such that for 
each x in X(i): 

O(t; x, y )  = O,(t; x, y) / /  t < s(x, y), 

= Oi(t - s(x, y); q(j), 0 I(s(x, y) - t)[ y) otherwise, (3. a4) 

where j :=fi(Oi(s(x,y); x, u)), and where the state space of Q is the disjoint 
union of the Y(i) modulo the identifications x = q(fi(x)) for each x in Z(i). 
The output map is assumed to be h(x, y) := hi(x, y) for those x that are in 
X(i) but not in Z(i). 
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Proof (sketch). The definition of ql is by induction on n, defining 
¢(t; x, y) for each (t, x, y) such that, either s(x) > 1 and t ~< n, or s(x) ~< 1 and 
t ~ n - 1. Formulas 3.14 then define ~ for all values. The axioms for Q being 
a system follow from those for the subsystems Q(i). To prove well-posedness, 
consider a state x of P and a state x '  of Q, say in x(i). By the above iden- 
tification, one may assume that x'  is not in Z(i). Thus, a unique pair of 
closed-loop signals (u,y) exists, by well-posedness of P * Q(i), for t < s(x). 
Using this y one obtains the next j as in formula 3.14, and the result follows 
by induction. Note the use of the assumption that T(i) > 1 in the induction 
step, ensuring that there are finitely many transitions, from one type of state 
to another type of state, in any finite time interval. 

We now start constructing the controller P. The definition will use the 
construction in Lemma 3.13. Define, using Lemma 3.9, e(1) := 1 and induc- 
tively e(i + 1) := g(e(i)). For each a > 0, define f (a)  to be any integer j such 
that e(j) < a. 

A system Q(0) is introduced as follows. Its state set is X(0) :=  set of 
initial segments of observations, i.e., the set of pairs (y, t), y in Y, with 
y l t [ 0 = 0 .  We denote by 0 the pair (0,0), and define 4(t; 0, y) := 0 if 
T(y) := inf{t [y(t) :/: 0} is greater than t, O(t; 0,y) :--- (y[ ( t -  T(y))[ 0, 
t - T ( y ) )  otherwise. For a state (y,t) with t > 0 ,  define O(t';(y,y'):= 
(y [tly' ,  t + t'). The output h is constantly =0. Let Z(0) := {(y, t) qt---- 1}, 
and f0(Y, 1):=f(CA(y[0.5[ 0)). The hypothesis of 3.13 hold then for Q(0), 
when q(0) := 0. 

Define now functions K(i,j) and m(i,j) as follows, by induction on i. Let 
K(1,j) : = j  for all j />  1. Assume that K(i,j) has been defined for all j. Let 
k'(i) :=K(i,i). Consider using Lemma 3.9 the system Q'(i):= Q(k'(i), 
e(i + 2), e(i + 1)), and obtain T(i) := T(k'(i), e(i + 2), e(i + 1)). Let m(i,j) := 
m' (k' (i), e(i + 1), K(i,j)), for all j. The induction is then completed by letting 
K(i + 1,j) be any number bounding 

{#(¢~(t; x, u))] t ~< T(i), #(x) ~< K(i,j), CA(u) <<. m(i,j)}. (3.15) 

Note that K(i + 1,j) > K(i,j) >j  for each i. Now introduce the systems Q(i) 
as follows. The state space X(i) of Q(i) is X'(i) x IR()0), where X'(i) is the 
state space of Q'(i), and let q(i) :-= (x'(i), 0), using the states x'(i) given in 
Lemrna 3.9. The set Z(i) consists of all the (x, t) with t = T(i). If ~[ is the 
transition map of Q'(i), then let for Q(i): 

~i(t'; (x, t),y):= (~;(t';x,y), t' + t), (3.16) 

and output hi((x, t), y) := h[(x, y). Let fi  be constantly equal to i + 1. The 
hypothesis in Lemma 3.13 hold by well posedness of the original P ,  Q'(i). 
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Note that s(x, t ) : =  T( i ) -  t ~  T(i,) for all x. And s(q( i ) )=  T(i), so the 
notations T(-) in Lemmas 3.13 and 3.9 are consistent. 

Let Q be constructed from these Q(i) via Lemma 3.13. It must be proved 
that P • Q is stable. We shall use primes ( ' )  to indicate objects associated to 
Q. For simplicity, conditions (2.9)-(2.10) will be only proved explicitly for u 
and x: by the continuity of the output measurement y on x, the full result for 
out[(O,O)]/v]=(u,x,y) can be obtained trivially from this. Note the 
following two properties that hold by construction. Let v = 0, and consider 
the states x(0) = 0 in P and x'(O) = q(i) in X' .  Then, for each i/> 1 : 

(3.17) assume # ( x ) < e ( i + l - i ' ) ,  i'>/O, and take any j>/i; let 
T : = 0  if j =  i, = T(i + 1 ) +  ... + T(j) otherwise; then #(x(t)) and #(u(t)) 
are necessarily < e(j - i') for t/> T; 

(3.18) assume #(x)  < K(i,j),j>/i, and let T :---- T(i) + ... + T(j); then 
#(x(t)) and #(u(t)) are <e(j)  for t )  T. 

Let k, T be given, and consider a disturbance v in B(k; T). Let j > 0 be 
chosen such that T ~  T(O) t ... + T(j). Then x ' (T)  must be in one of the 
sets X(i) with 0 ~ i<~j. Assume first that i > 0. Let t '  := s(x'(T)).  Then 
x ' (T+ t') = q(i + 1). Let K be a number large enough so that x(T+ t') is in 
B(K). Note that K can be chosen independently of the particular v since x(T) 
is bounded for v in, say, B(k; T+ 1), and since the input disturbance is 
identically zero in the interval (T ,T+T ' ) .  Let j>>.i be such that- 
K<K(i,j)--recall that always K(i, j)>j.  Then property (2.9) in the 
definition of stability follows from (3.18). Assume now that i = 0 ,  and 
suppose that x(T) is in [0/0] and x ' (T)=0.  Then (2.9) follows by 0- 
detectability. If  x = x(T) is not in [0/0], consider t '  := inf of those t for 
which the output y of S has y(t) 4= O, assuming x(0) = x and control u = 0. 
Then x(T+ t') is again bounded as a function only of k and T, by the 
second part of Lemma 3.12. Since x ' (T+ t ' ) =  q(1), one may again apply 
(3.18). If x ' (T )4 :  0, then there is a t '  < 1 as above, so we again apply (3.18). 
Thus, (2.9) is true in every case. 

To prove (2.10), let e be given. Define T : = 0 . 5 .  Pick a j '  such that 
e(j') < e. Let d be such that, with u = 0 and #(v)  < d, necessarily #(x(t)) < 
j ( e ( j '  + 1))--ef. Lemma 3.12--and #(y(t)) < e(j') for t~< 0.6 (any number 
larger than 0.5 is suitable here). Let t" := inf{t ]y(t) 4= 0 if u = 0 is applied 
toP}. If y =  0, then in the closed loop operation always x ' ( t ) - 0 .  Thus, 
u = 0 is indeed applied (note the delay which prevents this reasoning from 
being circular). In that case, Lemma 3.12 gives the desired result. The other 
possibility is that t" is finite. Then x'(t" + 1) = some q(i), where i = f ( a ) ,  
a = magnitude of the output y restricted to It", t" + 0.5). By the choice of 
d,a < e(j'). By definition o f f ,  then, i>j ' .  Again by Lemma 3.12, one 
knows that #(x(t" + 1)) < e(j' + 1). Let i' : = i - j ' .  By (3.17), then, 
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#(x( t ) )  < e(i - i') < e(j ' )  < e for all t, and the same happens for the control 
values #(u(t)).  

This completes the proof of regulability. Close inspection of the above 
proof suggests an area for further research: develop all the theory in the 
category of "piecewise continuous" systems, where one requires all maps 
appearing to be continuous on each of the elements of a covering; the sets in 
this covering could be, e.g., intersections of open and closed sets, and in 
order for the setup to be of applied interest one should require this covering 
to be locally finite around each nonzero state. Similarly for piecewise 
analytic, etc. Note that these constructions result a priori in very large state 
spaces; as remarked in the Introduction we are here interested only in 
abstract regulability. But various simplifications are immediate. In most 
situations one is only interested in appropiate behavior for disturbances 
which are bounded in magnitude and/or in controlling to a sufficiently close 
tolerance around the origin, not necessarily asycontrollability. All that is 
required is then to only consider those Q(i) controlling states of a given 
bounded magnitude, to a ngbd B(j)  small enough. 

Some Particular Classes of  Systems 

We wish to prove Theorem 2.28. The following lemma is useful. 

(3.19) LEMMA. Let P be a plant, and assume that the following 
properties hoM for S -- P/O, for  some T >  0: (i) for each e there is a u with 
# (u)  < e and such that u determines final states, i.e., for any x, z in X, if 
out[x/u]lTI 0 = out[z/u]lTI 0, then [O(T; x, u)] = [O(T; z, u)], and (ii) for 
any x in X, either out[x/O] l TI 0 4:0 or [¢(T; x, 0)] = [0/0]. Then e is indy- 
detectable. 

Proof Given e > 0, pick d(e) such that 0(t; x, u) is in B(e) whenever 
t ~ T, # ( x ) <  d(e), and # ( u ) <  d(e). Such a d always exists by continuity 
because 0 is an equilibrium state. Let T(k, e, r ) := constantly T, and let 
m = m(k, e, k ' )  be any number bounding #(•(t; x, u)) for t ~< T, # (x)  ~< k', 
and #(u)  ~< 1. Let b(k, e) := re(k, e, k). The system Q(k, e) will depend only 
on e ;  in fact, both the state space X and the transition map 0 are even 
independent of e. Pick X as the set of initial segments of inputs (y, t) with 
y Itl 0 = y .  Let 0(t'; (y, t ) ,y ' )  :=(y  ttt (y '  It'l 0), t + t'). For each e, take an 
u as in the statement, such that # (u)  < min{1, d(e)}. Define for Q(k, e) the 
(strictly causal) output map h(y, t) := u(t). Finally, choose q(k, e) := (0, 0), 
and let i(y, t) := the indy class [0(T; x, u)] characterized by y I T] 0, if any 
such class exists, and arbitrary otherwise. (In the case to be considered, 
analytic systems, one may replace Y by a finite dimensional space.) The 
systems Q(k, e) are all well defined, and the interconnection P * Q(k, e) is 
well posed--trivially, since there is no  feedback involved. The axioms (a), 
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(b), (c), for indy-detectability are satisfied by construction. We now prove 
(d). Let t '  be arbitrary and let # (x)  < d(e). Assume that out[x/0] It 'l  0 = 0. 
Let first t '  ~> T. Then [#(T; x, 0)/0] = [0/0], so also [¢(t'; x, 0)/0] = [0/0], 
as wanted. If  instead t '  < T, then #(0(t ;  x, 0)) < e for all t ~ t ' ,  by definition 
of d(.). To prove (e) the argument is analogous: just note that #(0(t ;  x, 0)) is 
bounded when x and t are both bounded. 

For analytic systems, the hypothesis of the lemma hold; this is an 
immediate consequence of the main result in Sussmann (1979); part (ii) is 
just an exercise in analyticity. This establishes Theorem 2.28. We remark 
also that one has the same result for (at least) polynomial discrete time 
systems; see Sontag (1979). 

Turning now to preregulability, we ask when is this property equal to just 
asycontrollability plus 0-detectability. Call a system weakly preregulable if 
these two latter properties hold. (This is unrelated to "weak regulation" in 
the sense of Sontag (1981).) The following analytic system is weakly 
preregulable but not preregulable (see Sontag (1982b) for details). Let the 
state space of S be the plane, U =  ~, and equations: 

37 = 4x arctan(xz - 1)(u + 1) + 2x(1 - z2)(u 2 + 1), 

= -z(u + 1), (3.20) 

and output y = z. It is interesting that this system is pretty well behaved near 
(0, 0) since its linearization there is asymptotically stable. Study of this 
example suggests the definitions below. 

Call the system S locally indy-asycontrollable if there exists a ngbd N of 0 
and a function d such that the properties in (2.4) hold for all indy classes rel 
N. Call S strongly locally indy-a.c, if there is some saturated such ngbd. In 
the "hyperbolic" case when the linearization of S at zero makes sense and is 
regulable, one concludes only local indy-a.c., not the strong notion. 

(3.21) LEMMA. A weakly regulable and strongly locally indy-a.c, system 
S is necessarily preregulable. 

Proof We must prove indy-asycontrollability. First modify d such that 
for no e > 0 is # (x)  < d(e) for an x not in N. Let a > 0 be such that B(a) is 
included in N. Let k > 0, and pick any x in B*(k). By asycontrollability, 
there are a u and a T such that #(¢i(t;x, u)) < a for all t ~ T. Using an 
argument as in Lemma 3.7, one can conclude that there as a whole ngbd o f x  
that satisfies the same property, for a fixed T(x), and for inputs u bounded 
by a constant dependent only on x. By compactness, one can find a b(k) and 
a T(k) such that all states in B*(k) can be controlled into B(a) in time T(k) 
using inputs in B(d(k)). We may assume that b(.) and T(.) are increasing 
functions. Let c(k) be a bound on the values #(~t(t; x, u)), for #(u)  = b(k), 

643/51/2-3 
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#(x)  ~< k, and t <<, T(k). Consider T(., .) from the definition of strong local 
indy-asycontrollability. Define now a new T' (k, r) := T(k) + T(c(k), r). 

Let now L 4:0 be an indy class, and assume that L does not intersect N 
(otherwise, what follows is true by hypothesis). Let k be smallest possible 
such that L intersects B*(k). Let x be any state in this intersection. Find u 
so that O(T(k); x, u) is in B(a). Then all of L is mapped into a indy class L '  
having a representative in B(a). Thus (saturation) L '  is included in N. There 
is then an input u' driving L '  to the origin, and u I T(k)I u' drives L to the 
origin. Condition (i) of Definition 2.24 is irrelevant here because L does not 
intersect N. Assume however that L intersects some B(k'), say at a state z. 
Necessarily, k' > k. So b(k') > b(k), and thus #(¢(T(k);  z, u) < c(k'). It 
follows that, for the chosen input for L ' ,  z is mapped into B(r) in time at 
most T(k', r). This completes the proof. 

Particular cases of interest of the above are that of local indy-a.c, with [0] 
compact, or the case where there is (exact) local controllability. We use this 
lemma to give a proof of Theorem 2.31. 

Let S be a weakly preregulable state affine system. Consider [0], which is 
a subset of [0/0]. This set is a subspace for which we may decompose the 
equations for S as 

--- F(u) x + G(u), (3.22) 

-~ A(u) z + E(u) x + B(u), (3.23) 

with y = Hx, and where [0] is the space of vectors of the form {(0, z)}. Since 
[0/0] is asymptotically stable, [0] also is (under input = 0). Thus, A(0) is a 
Hurwitz matrix. By Bellman (1969, Theorem 2.2.2), and by continuity of A 
on u, there is an e > 0 such that 2(0 =A(u(t))x( t)  is asystable for any u in 
B(e). In the definition of asycontrollability, let d be such that, for any (x, z) 
in B(d), there is a u in D(e) controlling (x, z) asymptotically to zero. 
Consider now N := saturated of B(d) = spacet(x, z)] # (x)  < d}. Pick any 
indy class L(x) which contains an (x, 0) in B(d). Let u control (x, 0) as 
above. In general, 

z(t) -- A(t) z + g(u, x)(t), (3.24) 

where A is the fundamental matrix of i = A(u(t)) z. For z = 0, then g(u, x)(t) 
converges to zero. Thus, for any other z this is still true, for the same fixed u, 
because the first term in the right converges by the choice of e. Thus, L(x) is 
controlled, and the estimates d(.), T(., .) follow from those for asycon- 
trollability applied to (x, 0) plus the linear theory. Thus, S is strongly locally 
indy-a.c., and the result follows from the previous lemma. 

RECEIVED: July 6, 1981. 
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