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LINEAR SYSTEMS OVER COMMUTATIVE RINGS:

A (PARTIAL) UPDATED SURVEY
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Ahstract : Scme recent cdevelopments in the
theory of linear systems over rinas are
describec. The focus 1s on problems of
regulation, as well as on applications tc
cdelay systems and computational! methods for
classical linear systems.

Key worcs: System Theory; linear systems

1. INTRODUCTION

This paper is intendecd as a partial up-
date of the survey in Sontag(l197€6). The
1976 paper, to be referred in what follows
as SSR, described the area of systems over
rings and surveved the results known at that
time. Sirce then, a large number of further
results have beer obtained; 1t would be
1impossible to review all of them here. We
have chosen to restrict ourselves to a short
overview of parts of the area, especially
regarcing problems of regulation. Few of
the references and results quoted in SSR
will be repeateci. To make the paper
self-contained, however, and to emphasize
application areas, we shall briefly describe
again same of the motivations and early
work. Later we shall treat "pole shifting”
problems, dynamic regulatior and its rela-
tionship to matrix {raction decompositions
of transfer matrices, and the case of "prin-
cipal ideal domains", where all concepts and
results are easier to understand. Two other
expositions, those of Kamen(1978) and
Hazewinkel (1979) provide aeneral views on
subjects related to systems over rings;
there is very little overlap among all three
papers, and the interested reader should
consult those references for aspects not
treated here.
Motivation

A great deal of the theory of finite-
dimensional linear systems can be derived as
algebraic properties of a matrix triple
(F,G,H) and its relations to various types
of algebraic "input/output" objects (trans-
fer matrices, impulse responses). It is
known in fact how to carry out this theory

when the entries of the matrices F, G, H
belong to an arbitrary field R of coef-

ficients. Classically, one uses R = real
or complex numbers; in coding applications
one uses R = finite field. Familiarity
with the classical theory will be assumed in
what follows. Assume now that R 1is a
commutative ring, not necessarily a field
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(ir other words, no division ics a)lowed
insicde R). Most questions about linear
systems, like those pertaining to re-
alizations of i/o maps, or the existence of
feedback controllers, can often be posed in
meaningful ways in this more general con-
text. However, generalizirg fram the field
case 1s far fram trivial. Thic is because
the area of linear algebra over rings has
only recently been the object of study, and
because many fundamental results are simply
false over rings (most particularly, those
cealing with matrix cdiagonalizatiorn and
canonical forms). Still, it turns out that
many system theoretic results can be proved
over rings, provided that one cdces not in-
sist in using the same methocdology as for
fields. (In studying alternative ap-
proaches, one of course gets insight also
into the "classical" case.)

Systems over rings are of interest for
various appliec reasons. For example, a
controllec delay-differential equation

(dx/dt) (t) = x(t)+3x(t=1)-2x(t-3)+u(t)
can be thought of as an equation

(Ax/At) (t) = (1+3p—2p )x(t) + u(t),
where p denotes a delay operator. The
resulting equation resembles a classical
finite dimensional controlled system, whose
coefficients belong now to a polynamial ring
R(p]. When there are incammensurable delays
in the original equations, one includes
various celay operators, Pyreser Pos
and there results a polynanial rmg
R(p reeerP ]; @ camplex polynamial
ring is usec if one wants to allow for cam-
plex coefficients in the original delay
equation. One may study all this over a
field of rational functions, but that has
the disadvantage that synthesis procedures
will in general involve inverses of p, i.e.
nonrealizable ideal predictors. It is very
natural to view these as systems over rings,
and to apply the relevant theory. Such an
approach was emphasized by E. Kamen ca. 1972
(see Kamen(1975)). The ring structure was
recognized independently by Williams and
Zakian(1977) , but no use of systems over
rings results was m.'“e by them.

A rather different motivation for stud-
ylng systems over rings comes from applica-
tions to discrete time systems over the ring
of integers. These are controlled linear
systems where the input, state, and output
values, as well as the system coefficients,
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are intepral, Varjarione of this nre
systeme over resfidue rinps. ! linear sysrem
ovor I n= ? nnA r = wor-

leneth oP n computer, is 2 much herrer medel
o€ 2 ‘fived-point’ Firi1tally implemented
system thatr a system over the reals, in thet
overflows an? underflows hecome explicit 1in
Tha gyerem Aeecrirrtior. Systemg over rthe
1nTagers were vhe original morivarion for
the worl on realizarion over rinpe in
Poushaleay et o), f1072)

oop
B A& g il

ae dApsrribhed 1n

Arher areas 0f applicastion were describhed
in SFP, Cne of ther, mentioned only briefly
rtharn, was thar o€ "2™ oy "imsee prroc-
ecainge” "re work menvtiored in SSR
vag ev¥plaine”d 1n some more deraill 1n
Sontap/1077) | and yas carried out in muchk
further deptk by Fisingl1070 taan)

“ne area of arplicatiorn that was nor
describe? in SFP wqg rther of fari1lies of
lirear sysrtems,
reramerrized ser 0f real or complex coe€-
ficient avstems

|SysTteme,

Yere pone ronsi1ders =

{2 (A /A+ N +YmP y/+Van uft\' y(,\.H x(,\'
3 P P
for +re correspondine Aiscrere rime ver-
sion,' where 1 denotes a vector parameter.
The study of families of linear systems,
with an emphasis or the alpgehro-peomerrie
plobal srrucrure, was irirtiate?d by
Hazewinkel and Yalmen/1076), (iven a system
over a2 ring, 1T 18 n=arturs] 10 view 1t a8 o
famri1ly of systems over resifue fields: this
is the "local method" uvsed in SR 1o esrtah-
lish some resulrs. However, S8 314 not use
2t al]l rthe plobal peomerric structure whirh
18 natural for families o€ sysrtems,
Ryrnes(1079) noriced thar, when © i a
ring of polvnominls, ‘~nd hence one bhas 1
family of classical linear systems,' the
seometric global structure can he usefully
employed. Fe proved various results for
systems over these rings using facres about
families of systems obrained by various
anthors. Perently, Yazewinkel/1070) grpyed
that the (plobal) "family of systems" sp-
proazh coan bhe usafyul even for rather peneral
-ronpolynominl- =ings, an? showed how to
derive proofs of some results usine also
these methods. Tt 1is very possible rthar
these merthods wil)! bhecome useful in the
furure, burt they wil)l notr he explained fur-
ther bhera, Tn any case, we are inrterested
rere 1n families of sysTtems not as = tool in
sTudying systems over rines, but, quite the
contrary, 28 an are2 0f application.

There are many reasons for studyving fa-
milies of sysrems live ir *), (Civen ¢
synthesis problem, say that of feedback
stabilization, it is mathematically natural
to 2sk wherther this construction can be
parametrized also by p in tre same way as
(#) is. For example, if in *) the
parameters p aAappear polynomially, then one
would want to know 1if ir is possible to
obtain a feedback metrix K_ dependent
also polynomially on P sugh that, for all
p, F -G K has all its eigen-
value8 ifi given half plane. Ve helieve
that these arguments will become eventually

very useful in 4e2line with cerrtain
computarional issues in control. Tn many
situations, the general form of a ‘amily 1s
9 priori known, except for the precise val-
ues of some parameters. This happens for
example when one takes 3 ronlinear system
and etudies linearizations around various
nossibhle orera~ing poinrts, or in some ad-
aptive control situations. The methods of
systems over rinpgs 2l'low one to place most
of the computational emphasis in the offline
computartions invelved i1n obraining 2 ree-
ularor dependine on rthe parameters p: the
only computartions needed online when the
rarsmeters are 1dentified) ere polynomial
evaluations.

2. SOMF RPCPNT RFSTLTS

The topic 0of realizartion was discussed 1n
some dera1]l 1n TSR, Mhe problem there is to
study possible "internal"” rerresentations
(. 60,4) of an "impulse reponse” sequence
‘A, A, «..), vhere the A are
mYp matrices over the commutative ring R.
Py realization, one means trkar (T G.H) is
2 {r*nlp of matrices such that ﬁi =
HE ¢ ’or all 1, as 1n the classical
case. More generally, one may allow an
arbitrary P--module Y as state--space,
with TF: ¥Y=o>Y  G: R-->Y, and M:
y-->eP a1 R-~linear. ™his was Adiscus-
gsed 1n SFP. For mesny problems 1t is neces-
sary t0 study realizations for whick X 1is
a projecrtive module: these will be called
projective realizarions. OMver many rings of
system-theoretic interest, proiective =
free, so that in thar rase "projecrive re-
slization” can be repleced by "triple of
matrices 'F,0,4H ", ™his 1s valid 1in partic-
ular 1f P 1is » rine of polynomials over a
field, or the ring of real rational func-
Tions vith no real poles. The notion of
"proiective” is the correct one for the
general statements and proofs, however,
since the equslity projective = free is nort
valid for peneral rings, and is in any case
nontrivial to establish. (Tn peometric
1anguage, one first construcrs vector bund-
les, and then uses other results to corclude
that they are trivial,)

Further reslization studies, nor men-
rioned in FFR, have d4ealt mainly with spec-
1¥1ic types of rings, like those of interest
for delay systems. For exesmple, Cliff and
Rurns{1070) srudied special realizations
over single variahle polynomi2l rings, and
Fising and Fautus/197R) gave an alternative
elporithm for reslizations over princinal
ideal domeins (of which single varisble
polynomial rings are one of the mein exam-
ples). For more general polynomial rings,
the results of Rouchaleau and Sontag!1078)
apply to show that minimal realizations of
dimension equal to the ¥cMillan degree exist
when dealing with polynomial rings in two
variables, bur not in the three or more
variables case. 0On a related erea,
Famen(1970) based his realization theory for
linear time varying systems on ideas very
analogous to those used for systems over
rings.
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Vat-1x fracrions

Probably the most important recent
developments have dealt with the study of
martrix fracrion descriptions for systems
over rings.

A (proper or cnusal) transfer matrix over
the ring P 1s a matrix kW = ip..izi7q..fz)‘
of rational functions with all > e
monic s2nd the Aegree of a.. gre%%er or
equal to that of Pyse Srrict causality
correponis to these deprees being strictly
greater. Via an expansion

Wiz) = E Aiz-l "

transfer matrices correspond to impulse
responses, with A = (0 for strice
cnusnli{z1 "he reg]izntion requirement:

A = HF G for all 1, 1s equiva- -1

lénr to the equelity W(z) = u(zI-F) C.

Tn the nonstrictly causal case one adds a
feedforward term, as usual. See SSR for
more details on the general relationship
between transfer matrices and realizations.

A ripht {resp., symmetric) polynomial
matrix fraction decomposition of a transfer
matrix W 1s given by a pzir of matrices
(p,0) (resp., three matrices (P,0,R)) over
er? such that W = PQ (resp.,

PC” R)., One requires also that the

leading coefficient of the determinant of C
be invertible in R. A ]Jeft decomposition
is one for which W = Q "P., Tt is well
known in the theory over fields that these
types of decomposition are very useful in
studying regulation problems. Recently,
Khargonekar {see Khargonekar/19R0) and
Kharponekar and Fmre/1780)), and independ-
ently Conte and Perdon/10R0), have derived
results which clarify the relations between
the existence of various types of matrix
fraction decompositions and the existence of
different classes of internal realizations
of systems over rings. The results of Conte
and Perdon hold over principal idea)
domains, and those of Khargonekar over ar-
bitrary commutative rings, and are based on
rather deep algebraic results.

In order to explain the connections be-
tween matrix fractions and realizations, we
need some more terminology. A pair (P,0)
is right coprime if whenever T 1is 2 common
right factor of P and 0, 1.e. P = PoT
snd O =Q T, then T has to be
unimodu]are A similar definition holds for
left coprimeness.

The results of Conte and Perdon for prin-
cipal ideal Aomains, and the results of
Kharponekar for arbitrary commutative rings
with identity, prove that proiective (in the

case of p.i.d.'s free) strongly observable
realizations are in a one to one corre-
ag?ndpnce with left representations

Q@ P; the corresponding realization has
minimal dimension if and enly if P and O
are left coprime. Dually, (free) reachable
realizati?ns correspond to right factoriza-
tions PO , with right coprimeness corre-
sponding to realizations being canonical.
(These one to one correspondences all hold
modulo unimodular common factors of P, O,

and modulo system isomorphrisms.) Tr was
shown furtrer by ¥Yhargonelar that one rlso
has a one-to-one corresrvonfence berween
projective realizarions and symmeriric marrix
descriptions ‘modulo "strier sysrtem
equivalence").

Recall from SSP that s projective’ re-
alization is splirt if (F,0) end (F' k')
nre hoth reachable: equivalenlyv, 1f the
matrices (2T7-T G) and (27-F' ¥'Y bhotk
admit right inverses over the ring plal,
Vhargonakar proved that an inrutr/output map
admits A split reelization 1f ard only 1f 17
admits a Rezour righr polyromial rmarriy
factorizarion, or eguivelenvtly, 1f 1t admits
a Pezout lefrt onp._1ﬁ Rezout righr Aec-
omposition W = PO 1s one for whichk
there exisrt polynomial matrires / and F
suck thar

AP + PO = T ¢

similarly for left Pezout. 0Mf course =
Rezout right resp., left) facrorization 1s
also riebt (resvo., left) coprime, hut the
converse is in general false (excepr in thre
"clessical"” case).

For a polynomial ring R = Erp1,....p LE
reachability of (F,C) is equivalent to r
(F(p*),6(p*)) being reackahle for all par-
ticular values p = p* over the complexes.
Thus a reachable system over P correponds
to a femily of linear sysrtems each of which
is reachable. This pives 2n interpretation
to the nortior of splir realization: each
system (F(p*), G p*), Hip*)) must be can-
onicnl in the usual finite dimensional
sense. The Hankel matrix criterion in
Sontag/1Q72a) can be used to determine if a
transfer matrix a24dmits a splir realization,
using the impulse response parameters. A
recent result of Lee and Olbrot/19R0) stares
that reachability is generic for systems
over a polynomial ring s long as the number
of input channels is larpger than r. Ilsing
also the dual version, this implies for
instance for the case r=1 thar systems with
2t least two control and measurement chan-
nels are "in general” split systems. Here
"genericelly” means the following: for each
n and ¥k, restrict attention to all those
dimension-n systems whose coefficients are
polynomials in p of degree (at most) V.
Let v be a vector listing 8ll the coef-
ficients of all the polynomials appearing;
"peneric” then means "containing an open
dense set” in the space of all1 these vecrors
v. Since systems over rings of single
variable polynomials are good models of many
delay differential situations, it appears
that the "split” condition is somewhat less

restrictive than 1t may seen.

For various ressons in regulation
problems, one is interested also in studying
matrix factorizations into "stable" rational
matrices. The notion of stability 1is in-
troduced in this abstrsct context by
postulating the existence of a subset of
"Hurwitz" or stable polynomials S of Rl 213
this set is assumed to consist of monic
polynomials and to be closed under mul-
tiplication. For a given such set S5, a
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‘stable rtransfer motrix" is ore 211 whose
cnTries are stahls rariopael fun~tions

r. ./a.., witr g,
"Zrahis system” 18 one “or whink tha akarnn-
Terisric polvnomial! of T
stabiliry ser S, (Tn applicnvions to 4nlay

sraple, A

18 11N ke

sysrters, -s2y with r=1. cone rakps  or © the
set o€ ;o]ynomiﬁls with ro roots ‘p,z) witk
p=e " and penl parr of 2 to0 rha

'efr 0f some pPiven npumber, ard @~ = lopporh
0f delov.
ennsh nolvnomial ¢

for eack velue of rthe paramereare,) Alen with

For fami1lies 0f sysrtems, nast rhaq
Fave ra ynerahle reoocts
respect To 2 “1yed srabiliry se-, one

Aefines the rorcepr o0f a2 svabilizohle eys-
\

rem, "his 18 a5 [ Free
f27-2,0) i riphr inver+tible over +the ringe
of stable *ranefer funections: rquivalen+ly,
the mirors o0 rthis matriy must eenerate =

uni* 14eal over thar rine, Simileorly for

IET-?'qul‘ ﬂﬂq 4PTﬂ“*ﬂh1]1*V-

syartem for whinh

These no-
Tione ~re 1r*roduce? ir Yau-pus and
Sonrtasf1070Y | yhern specrrel eguivrlenrts of
The above ~onditions are nlep Ajscnssed,
Cre may 1nrterprer erabhilizabiliry /api
Aually, detectabiliry,) vin +he asymproric
controllsahility of the oripinal sysrem !aee
Vhargonekar and Sontaes/1099)),

issume piven a srtahiliry ser & as
nbove. A ripghr farable) rationn) €actoriza-
Tion of 2 rransfer marrixy ¥ is piven by a
pair of1srah]n rarjonn? merrices T 0, with
W = PC . This factorizertion iz cs]'aAd
fsrable-) Regour 19 thoare ara arable ra-
Tion2] martrices A and B suel rthar
AP+PO=T, Tr is proved in ¥Yharponebnr apd
Sontapl10°91) _eybircr to the cordfition +hat
projective = free over rho rinpg- thar g
rrensfer matrix 24drmire sueck a Facrorization
1f and only if rhe corresroniine i’/o map
admiTs 9 reslization which 18 free, vo-
achkable, and Aetecrable, Tt 15 29sier to
unierstand threse results if¥ one has a rrane-
fer matrix which a24mits = reslization $1th f
= jdentivy: in that pfase, W = Hi,T_®\"
and the Aerecrabili*y condition translates
e¥actly into rthe Pazour oroperty,

Pepuleartion

The problem ‘over rings) of modifving by

feedback rhre characrerisrtic polynomial of a
reachable pair (F,60) was Aiscussed in SR,
Tr was seen there thar i+ 18 in penera)
impossible to 2pply rthe arguments
("Heymann's lemma" ,or canonical forme), used
in the classicae]l case. Ilsing an alpebraic-
geometric appro2ch, Pyrnes/1079) showed that
the arpument can be applied, for R = g
polynomisl ring, if one makes the exrtra
assumption thkat the ¥ronecker indexes remain

constant over all linear systems obtained by
specislization of the parameter. ™his con-
dition is analogous to the "index in-
variance” conditions used for linear time
varying systems and in dealing with the
local feedback linearization of nonlinear
systems. One can extend the result to any
ring over which projective = free, following
the method used hy Lee et al.(10RN) for
systems over principal ideal domains. A
paper of Wyman(1Q97R2) studied homological
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aspects 0f rthege prohlems and showeAd Ther
In A very precise sense, the problem of
coefficient nssienment ‘of the orarac-
terisric rolynomial of F by feadbark) isg
1ual! o rhe problem of reachability. "he
auestions of wherher coeffirient nssiprmert
1s possible over principal iden]l domeins,
ar? of wherther pole snssignment 18 possihle
over rings of more than one varinable (evten-
Aine resulrts of Yorse “or rrincipa) 14eal
domains -see °TR) were oven until recently:
thry =2re both answered i1n the nepstive 1in
Pumby o+ a1,71021), 411 rhese guestions of
feedbark by » mar~1x over the same ring have
rurned our to te very di1fficulr: aven in rthe
c2se of polvnominl rines, 1+ 18 open wherher
sTobhilizaPility of the 1ndividyal systome
suffices ro0 1nsure svabhi1lizabili-y hy 1
rolyrominl €aedbank  or to pive 2 constrrun-
Tive rronedure to anhinve arahilyzarior 1in
tThe reankahle rngn,

An alrerrarive o usinge “"conaront” fepAd-
barlk 18 T0 use Avnamic feedbnol. Yote rthart
in fact » "conerert" fepdbhack is nor no,
sinte the elementes 0€ the fasdhank marrixy ¥
Py contain "memory” ir some applicartions
‘e.p., delry systems). Pspecially under
1171721 control, there 18 no ressor to re-
STrict arrtention to feedbank over P: jr is
‘ust 2s simple to 1mplement a rrapafer
matrix 1n rthe feadhack loop. ™oreover, when
The sratae feedhnrk problem 18 seen as just
one srtep 1n the Pﬁﬂplpfn "1‘1’:;*11\!'*"{'nn']:u;n;"I
repulator construction, a dynamic feedhack
will be implemented in ~Any case., Tr was
proved 1n Hautus and Sonrap/1070) thar  over
any ring »n1 for any given element "a" 1in
P, reachnble systems can slways he made pars
0 a feedhack system with craracteristie
polynomial 2 power of fz-a): this pgives
stabilizartion with arhitrary converpence
rartes. A much stronper result was obrteined
by Fmre and Yhargonekasr/1090) . who showed
that the charscteristiec polynomial of the
closed loop system /plant + feedhack com-
pensator' can be essigned arbitrarily, prov-
1ded 2 certain minimal dimension bhe allowend
for the €eedbaclk nompensator. Tn fect, they
prove that a complete ragulator construction
1s rossible, irncluding an observer, when the
system 18 split. Tn this case, rthe charac-
teristic polynomial of the overall closed
loop system is the profucr of two polyno-
mials -one facror representing dvnamic state
feedback as expleained nbove and the other
factor representing the characteristic
rolynomial of the observer. ™his resembles
the "separation princinle” of the classical
case. This should be compared withk the
methods based on matrix fracriors -see for
instance Pesoer et a1./1920)- which give an
input/output version for transfer matrices
sdmitting a Rezout factorization [ the
"rolyromial" ecase of the setup of Desoer et
al.). T™e i/o results provide stability, bur
not pole assignment. The relationship he-
tween the i/o and state approachtes follows
from the results mentioned before.

For systems which 2re only reachable and
detectable, not necessarily split, Fmre and
Khergonekar show how to combine their state
feedback construction with the results on



Linear Systems over Commutative Rings 329

ohservers of Fautus 2nd Sonvtapf/1079% 4n
order to schkieve regulator avnthesis /+he
ohserve~ 4yramices sre not arhirrary in *his
cnse'. Thie correspon?s in tre inrur/ourtpur
sense to ravirng 2 s*able Pepzout ravional
famrrtarization. This compares to the "ra-
rional” ecagse of +re =serup of Tesoer et
21.71090Y yrere the rariones) Rezout condi-
tion ‘plus ore more rondirion' 1s used o
ackhieve rapulartion: the rorrespondence 18
wor¥ed ourt in der2il 1n Vharponelar ani
Sonrap/1091Y . Pinally, Fmraf10921Y hng now

proved that a system whirh is [ 3usr)
atahilizahle 2apd Aerecrahle ndmire a rep-
nlator: arbhirrary sssipnment of closed loor
inpurt‘ourpur Aynamics 28 1n thke reachabhle
‘ is not rossihle =n-
ymore, =8 cre srould eyper-,

and Aepvtecrtnrle rasr

A sperin)l rose

We summsarize here some resylTs on repg-
ul=ation for *he crse 0 2 princiral 14en]
dom=2in P and gstabjiliry ser €, The sTate-
rents sre esarPri1nlly sirple 1n thar ecnasge,
Proofs are piven ir Vharpgoneknar asnid
Sontapl 1021,

"he following f2e+e ara mrquivalent for =2n
1’0o mep £ a2nd 1ts tronsfer matriy W

(a2l £ has »n reachable Aeveactabhle

regqlization.

(b)Y £ bas 2 stabilizahle derertahle

renljzerior.
¢) Tha eanonies)l panlizarion of €

18 reachahlp Aptrernrahle,

fA) Tha eanonical realization of

1e8 stabilizable dAerectehle,

fel ¥ hag a serahle Pezoutr rorional

facrtorizartion.

(£ ¢ hae a repularle realizarion.
(Mare “repulsable” means thar +here i1s an
inpur/outpur repuleror which mskes the cor-
reaponding close loop system stahle, This
implies 311 reasonshle norions of i’o rep-
ulartion for f.)

Two interesting examples 0€¢ the ahove ore
delay systems and families of linear systems
over a field. The 3elny case is somewhat
complicated to exrlain in devaill here,
because of A1ffirul t1es 1n dertermining
precisely the specrtrum of the ring of stable
rransfer funcrions; see Ysurus nand
Sontapl1070), T¥or families of ren) sysrems
one has £ = the set of real polynomials 1in
(p.z‘, monic 1n 2z, With no roots 2z with
ref2z) > 2 (a = depree of srtability', for
any real p. ‘TFor discrete time, lzl_l £
Then (F,0,H) is reackahle if and only if

‘e{p®) clp*))  is reachable
for all p* complex,
2nd? 1t is detectable 1f and only 1f

(F(p*) F(p*)' 1is derectable

for all real p¥*.

f

2+ OTHEFR RESUL™S

Reasons of space preclude us from treat-
ing some recent results on optimal reg-
ulation for systems over rings. In these
results, the ring in question is assumed tO
have 2 normed structure 8o that optimization
problems can be posedi. For example, for
imege processing one may want to consider

infinire vecrors ?f fcolurns of) 1mapes ns
hoeloneing to =on | space, wi1th the ring
orerators corrersponfinge to 2 column ty
column rroserssine. "he Type of quesrtion
asked bhoere bkas 1o 40 wi*h» the rossibility of
solvinge rroblems 0f repsula+ion 1n the =same
ring. The papars o€ Vamen/1070) apa of
Ryrnes’1080)  and +ha raforepcas tharein,
should he ~oreulred 1n this repard, “ome
questions of oprima! €ilrering for Aelay
SYySTems, USINg SYySsSToME OVEer TINFSs, were
stundiied ty Tuncanfl1079)Y,

2 preatr den! of probtlems remein open.
Furrthermore, ever 1n those rages 1n which
one do0es bkave rtheorervicn]l resulrs, the me-
ttode are far from easily 1mrlementable. In
princinle, one mey use matkods from elim-
inarion theory in order to carrv out many of
the construcrtiors 1nvolved 1n repgulator
synthesis, vhen working with polvnomizl
rines,. Yowever, such mervthpo<a are com-
rurtationally ineffirient, excert in the
single variahle cagse. "he development of
FO00” alporithme 18 ar 1mporrtant fos'! 1o be
attained in order for rthe rthenry of sysrtems
over rings o recome a useful rtool 1n prac-
rical sysvtem Jesgign: since most 0¢° the pro-
cedures are bhasgsic=zlly consTrucTive, 1T
shnuld ke possibtle 1o ackieve rthis poal 1n
the near furure,
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