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ABSTRACT 

This  paper  studies  time-optimal  control  questions for a 
certain class of nonlinear  systems.  This  class  includes a 
large  number of mechanical  systems, in particular, rigid 
robotic  manipulators  with  torque  constraints. As nonlinear 
systems,  these  systems  have  many  properties  that  are false 
for  generic systems of the  same  dimensions. 

1. Introduction. 
-4 recent  paper by the  authors ([SS]) established a 

number of results  about  the  time  optimal  control  problem 
for the  two link rigid rotational  manipulator model 
described in  Paul's book ([PA], equations 6.16 and 6.20). 
It  became  evident  later  that  many of the  results  could  in 
fact  be  derived  just  from  the general form of the  equations 
of a manipulator,  and  in  fact  that a great  deal of these 
results  apply to (rigid)  manipulators  with  more  than  two 
links as well as to  a rather general class of nonlinear 
systems.  This class of systems, which  we shall call 
mechanical  systems  with  full  control, i s  characterized by the 
fact  that,  as  with  many  Lagrangian  formulations of 
mechanical  systems,  the  evolution  equations  arise  from a 
nonsingular  set of second order  differential  equations  (an 
Euler-Lagrange  equation,  typically) for a  set of variables 
("ppsitions"),  and  are  such  that  derivatives of these 
variables ("velocities") appear only quadratically. 
(Alternatively, a Hamiltonian  formulation is also possible.) 
This  note will establish a number of basic optimal  control 
results for mechanical  systems,  and  then  apply  them to  a 
two-link manipulator model. We view this work as only a 
(small)  first  step  towards  the  understanding of this class of 
systems. 

Of course:  we do  not  mean to  imply that  our 
"mechanical  systems"  encompass  all possible models of 
control  systems in mechanics. For  instance,  certain  types 
of frictional effects cannot  be included in such models. 

Mechanical  systems -in the sense of this  paper- 
constitute  a very restrictive  class of systems when viewed in 
the  context of  general nonlinear  systems. In particular,  the 
Lie algebra of vector fields associated to  such a system 
must  satisfy a large  number of nongeneric relations. Since 
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the  structure of this Lie algebra  characterizes most 
interesting  optimal  control  properties,  one  can  expect,  and 
indeed  one finds: many  properties of the  time  optimal 
problem for these  systems which are false in general for 
nonlinear  systems of the  same  order. For instance, it is 
almost  trivial t o  establish that  if all  controls except 
possibly one  are  singular  along  an  extremal,  then  the 
remaining  control  cannot  be  singular,  and if fact must be 
bang-bang. 

Most of the  results  that we obtain  are  about  the 
singular  structure of the  optimal  control  problem,  rather 
than  about  optimal  controls  themselves.  The  study of the 
singular  structure of the  problem is of great  interest  in 
itself, for the following reason.  One of the  main  techniques 
used in practical  robotic  control  consists  in  dividing  the 
design  effort into  two  stages: (1) find an open-loop control 
which achieves  the desired state  transfer,  and (2) linearize 
along  the  resulting  trajectory,  and use a linear  controller to 
regulate  deviations  from  this  trajectory.  The  essential  point 
is that  this  last  step will typically  depend on controllability 
of the  obtained  linearization  (as a time-varying linear 
system),  and a  trajectory i s  singular  precisely  when  this 
linearization is uncontrollable. Thus, our characterizations 
of singular  trajectories  should  help in determining if a 
trajectory suggesbed by step (1)  is  suitable for step (2). 

The  literature  in  (numerical)  optimal  control of 
manipulators is rather  extensive; see for instance  the  papers 
[RA], ISD], and [SH], as well as  the references there  and 
other  papers in the conference volume in which  they 
appear. As far  as we are  aware, a systematic  study of 
singularities as the  one  started  here  has  not been attempted 
in previous work. We intend to direct  further research 
both to theoretical  topics  and to the  understanding of what 
implications  our  results  have for the  algorithms given in the 
literature.  For  instance,  they  may help in the  "pruning" of 
possibilities in dynamic  programing  numerical  methods. 
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The only other  theoretical work on  this  problem  that we 
are  aware of is that  in [AL]. That  paper is devoted 
mainly to  the proof of existence of optimal  controls 
(basically,  one  needs to establish  that  there  are  no  finite 
escape  times),  but  the  last  section  proves  that for a two 
link manipulator  both  controls  cannot be simultaneously 
singular.  Note  that  the  result  proved  here,  mentioned 
earlier, will imply a much  stronger  fact,  namely,  that  one 
of the  controls  has only finitely  many  switchings.  (The 
proof  given in [AL] does  not  rule  out a phenomenon like 
"Fuller's  problem", which occurs in many  systems,  and  in 
which  optimal  controls  switch  infinitely  often in a bounded 
interval,  nor for that   matter even more  pathological 
behaviors, like Cantor  sets of discontinuities for the 
switching  function.) 

We  shall  not  repeat  most of the  material  in [SS], which 
should be consulted  for  further  and  more  detailed 
discussions.  The model in that reference was, as mentioned 
earlier,  that  in  Paul's  textbook.  We have  since  noticed 
that  there  seems  to  be  an  error  in  the  Lagrangian 
derivations in the book, which  results in an  extra  term 
which  cannot be disregarded if both links are moving at 
high  speed.  This  means  that a few of the  statements in 
[SS], while  true  for  the  system  studied  in  [PA],  are  not 
necessarily true  for a two-link  manipulator, -specifically, 
lemmas 4.5 and 5.4, and  formulas 4.2-4.5,- though  they  can 
be in most  cases modified in  trivial  ways.  The  theorems in 
[SS] are  still valid (with  signs  interchanged  in 6.1), using 
the  corrected  formulas,  and in fact will be established in 
more  generality in this  note. 

2. Mechanical systems with full control. 

purposes we shall  often  display  them as rows. 
All vectors will be  column  vectors,  but for printing 

A (finite  dimensional)  mechanical  system  (with  full 
control) will be,  for  the  purposes of this  paper, a system 
defined by equations  (omitting  the  time  arguments  for 
simplicity): 

u = M(6)8 + N(0,B) , 
where 0 is a vector (of positions) in P", u is a vector (of 
controls) in Pn, and  where M is  an  nxn  matrix of functions 
of e, symmetric  positive  definite for each BEP", and N is  an 
n-vector of functions of 0 and e with  the  property  that,  as 

functions of e ,  each of its  entries  is  quadratic, i.e. is a 
polynomial of degree at most 2. (In  the  robotics  literature, 
N is usually  displayed  as a sum of two  terms, N+Q, the 

first  homogeneous of degree 2 in  and  the second 
independent of 6; we are allowing also for linear  terms in 
the velocities.) The  entries  ui  are  bounded in magnitude: 

L, 5 ui 2 Mi , i=l,-. rn, 

where  the Li < Mi are  given  constants. As a  function of 
t, each  ui  is  measurable  essentially bounded. We assume 

that  all the  functions of 6 and e that  appear  are real- 
analytic  (in  most  applications,  functions belong to finitely 
generated  algebras  spanned by trigonometric  functions  and 
polynomials). 

This  model  includes  mechanical  manipulators  with rigid 
rotational  links as well as  many  other  systems of interest. 
(The "full control" qualifier  refers to  the  fact  that every 
degree of freedom  can be independently  controlled;  certain 
lumped  models for  flexible arms, as well as models that  
include actuator  dynamics,  result in very similar  equations 
but  without  this  latter  property.)  We  take  the  positions e 
as belonging to  I" rather  than  to a subset  '-or even a 
manifold  like S', as  is  natural for some  robotics  problems- 
for notational  simplicity; in any  case, all of the  results 
obtained  depend  on local methods. 

The  state  space model associated to  the  above is given 
by equations 

x = f(x) + G(x)u , (2.1) 

where x  is a vector  in P2"; denoting  the  first  n  entries of x 

as 0 and  last  n  entries as i ,  f(x) is the  fn-vector 

(-M(B)-lN(O,O) e 4 
(thus  as  functions of 0 the  last  n  coordinates of f are 
polynomials of degree at most 2) and 

(4x1 = (& 
with L(0)  being the inverse of M(0) -hence also  symmetric 
positive definite for each x. 

Such systems  are  "linearizable  under feedback", in the 
sense that  the  the  transformation 

u = N(0,i) + M(0)v , 
where  v is a new control,  results  in a set of decoupled 
double  integrators.  This  transformation  is  typically used in 
control  (ncomputed  torque  method",  etc.); however in 
optimal  control  it does not  seem  to  be useful, since  the 
torque  constraints  get  transformed  into  state-dependent 
constraints  for  the  linear  problem.  A  discussion  is given in 
[SS] showing that full-control  mechanical  systems  may  have 
very different behavior  than  double  integrators, in terms of 
certain degeneracies that  may  appear  in  optimal  problems. 

For  each  i=l,-,n, we shall  let gi denote  the  ith  column 
of G ;  its  entries  are all functions of the  first  n  coordinates 
0 of x,  and  are  nonzero for  every x  (positive  definiteness of 
L). 

2.1. Basic Lie theoretic properties. 
We  shall  identify  functions P2n-+P2n with  vector fields 

on !Xzn, and  apply  differential  geometric  notation. In 
particular,  ada(b) = [a,b]  denotes  the Lie bracket of the 
vector fields a and  b, i.e.  b'a-a'b, where  prime  indicates 
Jacobian. When we refer to the  "ith  coordinate" of a 
vector field, we mean  coordinates  with  respect t o  above 
identification. 

We  denote by 9 the  module over C"(W2") generated by 
the  vector fields gl,-,gn, and by L the Lie algebra of 
vector fields generated by {f,g,,-.,gn}, , the  vector fields 
appearing  in  the model  (2.1); we also use the  shorthand 
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These coefficients can  be  computed  explicitely, as follows. 
Let  v  be  any  vector field whose first  n  coordinates  vanish 
identically,  and  let  w  be  the  vector  function  obtained  from 
the last n  coordinates.  Then,  v  can  be  expressed as 

x:=, akgk, where a, is  the  k-th  entry of the n-vector 
M(8)w.  When  v = gifgj, which is in Svl, the  obtained 
coefficients are  in  fact  functions of 8 alone. 

Assume an  extremal (x,X,u) has been  fixed. Taking a 
further  derivative in (3.2) results for each  i in: 

= <X,ffgi> + cf, Pi,$, 7 (3.4) 

where for each i,k: 

= x;=l “ijk(x(t))uj(t) ’ 

This  formula  holds  under  no  assumptions of singularity 
whatsoever.  Assume now,  however, that  the  extremal  in 
question is ui-singular for all i#k,  for some given  k. This 
means  that di vanishes  identically for ifk,  and hence (3.4) 
reduces  to: 

$in = <X,ffgi> + Pik4, . (3.5) 

Thus, for every ifk,  the  equations  in (3.3) hold a t  all t, as 
well as  the  almost  everywhere  vanishing of 4i” for such i. 
Assume that ,   a t  some to in  the  interval of definition of the 
extremal,  $,(to) = 0. In that case, 

for all  i+k.  (The precise argument is as follows: the 

coefficient Pik(t) is essentially  bounded,  and 4,+0 as t 
approaches  to.  Thus  the last term in (3.5) approaches 0 
except at most  along a set of measure zero.  Since the  first 
term is continuous,  it  must  be zero at to.)  Consider, for 
the given  k, the  set of vector fields 

{gi,i=l,~~~,n}~{fgi,i=l,~~~,n,i#k}u{ffgi,i=l,~~~,n7i~k} , 
and  let S, be the set of states x a t  which  these  span  the 
entire  (2n-dimensional)  tangent  space.  This  set S, is  an 
open  set,  and since the  vector fields are  all  analytic  it is in 
fact  open  dense,  provided only that  it be nonempty. Since 
there  are 3n-2 vectors in !Xzn, one  may  expect  that  it is 
indeed nonempty  (assuming  n>2),  and  this does happen in 
the 2-link manipulator  example discussed later.  The  above 
arguments  establish, by contradiction,  the following fact: 

Theorem 3.1: If (x,X,u) is an  ui-singular  extremal for all 
ifk  and  x(t)  remains  in S, for all  t,  then u, is constant 
(equal t o  L, or M,).I 

(Of course, as with  all  statements  in  optimal  control, 
’constant”  here  means  equal t o  a constant  almost 
everywhere.)  Later,  we  shall  see how one  may  sometimes 
determine  whether u, is equal t o  L, or M,, based on 
higher  order  conditions. 

For  each  k=l,-.,n,  let A, be  the  (n-l)x(n-1)  matrix 
(aijk), where  i  and j each  take  the  values  l,-.,k-l,k+l,-,n. 
(That is, delete  the  k-th row and  column of (aik), seen for 

fixed k as an   nxn  matrix.)  Let 

A, := det(Ak) . 
This  is  again  an  analytic  function of x.  Finally,  let 

R, := S, n {x I Ak+O} . 
This  set  is  either  empty  or  open  dense. If an  extremal as 
in  the  previous  theorem  is  such  that  x(t) in fact  remains in 
R,, then  not only is u, constant,  but we may  determine 
the  remaining  controls.  Fix  one  such  extremal,  and  assume 
u=c  constant  (one of the  above  two  values).  The  set of 
simultaneous  equations {$:=O, i+k}, is by (3.5) equivalent 
to  the following matrix  equation: 

where W ,  is  the  column  (n-1)-vector  (u1,-.,~,,.~~,un)’ (we use 
the  to  indicate a missing  element),  and  where 

(Recall that  $, is always  nonzero  along  this  type of 
extremal.) If x(t)  remains  in R,, then we can solve (3.6) 
for W ,  as an  analytic  function of X ( t )  and  x(t).  We  may 
substitute  the  obtained  expressions for ui(t),  ifk, as well as 
uk=c,  into  the  system  equation (2.1) and  the  adjoint 
equation (3.1). These  two  together  become a system of 2n 
ordinary  differential  equations  with  analytic  right-hand side 

(there  are  no  controls u left),  and  the  solutions,  that  is 
both X(t) and  x(t),  are  analytic  functions of time. Since W ,  

was expressed as  an  analytic  function of them, we also 
conclude: 

Theorem 3.2: If (x,X,u) is  an  ui-singular  extremal for all 
i#k and  x(t)  remains  in R, for  all t, then  all  controls ui 
are  analytic as functions of time.  (And  can  in  fact  be 
computed in the  above  way.)l 

Note that  the  conditions <X,gi> 5 <X:fgi> E 0 for i f k  
result in 2n-2 independent  constraints, by (2.3).  So the 
costate X depends globally on only two  parameters,  and it 
is possible to give  thus a 2-dimensional .equation for these 
parameters.  We  discuss  this  in  more  detail below when 
treating  the 2-link manipulator  case. 

5.2. A degenerate ease. 
It may happen  that A, is  identically zero, so that R, is 

empty  and  the  above  theorem doesn’t provide  any 
information.  On  sets  where  the  rank of A, is  constant, I t  

is possible to provide  some  results, using pseudoinverses 
instead of inverses. In  particular,  assume  that  there  is a 
row,  say  the  i-th, of some A,, which is identically zero. 
For this  particular  i,  then,  (3.5)  says  that  the  equation 

= <X,ff&> 3 0 

must  also  hold.  There  are now 2n-1 conditions for X: and 
if independent  these  determine X up to  a constant  multiple 
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(and  hence  essentially  uniquely as a multiplier). If the 
rank of  A, is constantly n-2,  one  also can  determine by an 
argument as above  the  controls  uj,  jfi,k as feedback 
functions of the  state alone.  However,  also the condition 
g.”kO must  then  hold,  and  this  may  result in yet  another 
equation  for X, inconsistent  with  the  previous 2n-1. This 
case  appears in the two-link  manipulator  discussed  next. 

4. A manipulator example. 
We  computed explicitely with  the 2-link (n=2)  model 

given  in [SH], with  the  numerical  parameters  provided  in 
their  Figure 1. With  the use of MACSYMA, we deduced 
the following facts: 

aijl = 0 for  all i j  (so A,-O); (4.1) 
A ,  = A, = all, = r(Oz)sin2Bz, 

S, = 1x1  p(e,)(i,+i,)sine, = 01, 
where 7 and p are  functions  which  are  nonzero,  (in  fact, 
always  negative,)  for  all 0,. Note  also that  

g,ffg, = fg,fg, = Lf(”,,,)82+a,,,fg, . (4.2) 

4.1. Second  cont ro l  singular. 
We  first  consider  the  case  corresponding to  k = l  in  the 

discussion  in the previous  section. Thus fix any  extremal 
which is u,-singular. We calculate  the  third  derivative of 
$,, and  obtain: 

0,“’ = <X,fffg,> + u,<X,glffgz> + u,<X,g,ffg,> . 

By (4.2), the  last  term is a linear  combination of dZ and 
+,”, and hence  vanishes by singularity.  The  control u1 
must  be  constant.  Let B be  the  set  in  which  the  vectors 

{g,,fg,,ffg,,fffg,+cg,ffg,} 

are linearly  independent,  for  c=Li  and  c=Mi.  This is open, 
and a calculation  shows  that it is nonempty;  thus: 

Theorem 4.1: There  are  no v-singular  extremals  for which 
x(t)  intersects  the open dense  set B . 1  

States  with O=O are especially interesting.  The 
intersection of B with  the  set of such states is still 
nonempty  (hence, open  dense  in that  subset). 

4.2. First cont ro l  singular. 
Consider now the case  k=2. From the  calculations  in 

(4.1) i t  follows that  there is an easy  geometric 
characterization of R2: 

R, = {x 1 B,fks/2 and b,+e,fO} . 

There,  u2  is  constant=c (=M, or L2):  and u1 is  analytic,  as 
discussed  earlier.  We now provide  some  details of the way 
u1 is computed. 

Note  that g, has  the  form (O:O,p,v)’, where  -by  positive 
definiteness of M- p is everywhere  nonzero  (positive). 
Correspondingly,  fgl  has  the  form (-p,-v,O,O)’. The vectors 

a := (-v/p,l,O,O)’ and 
b := (O,O,-v/p,l)’ 

are  orthogonal  to fg, and g,  respectively.  Since X is  also 
orthogonal  to  these  vectors  along a ul-singular  trajectory,  it 
follows that  X is a combination of the  two  independent 
vectors arb, i.e.: 

Because of the  fact  that  the  last 2 entries of a vanish, a is 
also  ortogonal t o  g, and g, along  this  trajectory.  It 
follows from  the definition of S, that  <a,ffgl> can  never 
vanish.  Further, 

9, = <X,g2> = X,<b,g,> > 

so X, cannot  vanish at any  point of the  interval  (otherwise, 
this  would  give 9,=0, a contradiction).  It follows that  

q( t )  := X,(t)/X,(t) 

is well-defined. We  compute  the  derivative of q  using the 
adjoint  equations for X; this  results  in a Riccati  differential 
equation 

q( t )  = s2 ( t )  + 4 x ( t ) ) s ( t )  + x(x(t),u,(t)) 1 (4.3) 

where x(x,ul)  and  $(x)  are  explicitely  computed  functions, 
the  former  linear in u1 (and  dependent  on  the  constant 
value  c of the  control u,). If x(t)  remains in R,, then we 
may  as before  solve $J~”=O for ul ,  there  resulting  the 
control law 

U l ( t )  = r(x(t))q(t) + s(x(t)) 9 (4.4) 

where  s(x)  is easily computed  (and  depends  on c) and 
where 

r(x) := -<a,ffgl> (4.5) 

is  always  nonzero as remarked  earlier. If we  substitute  the 
control  law (4.4) into (4.3),  we get  a  similar  equation  but 
with  the  function x now independent of u. Alternatively, 
we  may  solve for q  in (4 .4) ,  and  substitute  into (4.3) in 
order  to  obtain a similar  differential  equation for u. 

The  construction can be  reversed,  in the following  sense. 
Given  any x. in R,, solving (4.3) for  any given initial  q(0) 
results, via  the rule (4.4),  in a singular  extremal (for either 
fixed  value of u,), defined a t  least  for  small  time. 
Moreover, s ince  r(x) is never zero, we may  always  find 
q(0) so that  L,<u,(O)<M,,  and hence so that  the  extremal 
is  admissible  (for  small  enough  time). We have  then 
recovered theorem 5.1 of [SS], for the  present  system  (and 
with a somewhat  simpler  proof,  based  on  considerably less 
computations): 

T h e o r e m  4.2: Assume that  (x,p,u) is a u,-singular 
extremal  such  that  x(t)  is  in  the  open  set R,  for all t in I 
= [O,T]. Then  there  is a solution  q(t) of the Riccati 
equation (4.3) on I such  that  the  control law (4.4) holds, 
while u, equals  one of the  constant values  c = L, or M,. 

Conversely,  for  each xoeR2, each  c = E, or M,, and  each 
real  go,  there is a u,-singular  extremal  (x,p,u),  and a 
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solution of equation  (4.3),  both defined  on an  interval I 
which contains 0 in its  interior,  such  that  x(0)=xo, 
q(0)=qo,  and  equation (4.4) holds. Moreover,  there is for 
each x. in R, a nonempty open interval Q(xo)G!R with  the 
following property: If qocQ  then  the  singular  extremal so 
constructed, for either of the  two  values of c, is 
admissib1e.l 

One  can  apply a higher  order  test  for  optimality in 
order t o  determine  the  exact  value of c for the  above 
extremals,  just as done  in [SS]. Various  authors (see e.g. 
[KR],  [HE],  [MO],  and references in these  papers,)  have 
found  stronger  constraints  than  those  implied by the 
maximum principle. The  simplest of these generalizes the 
classical Legendre-Clebsch condition  from  variational 
calculus. We  apply  these  conditions to the single-control 
system  that  results when uz is set  identically  equal t o  c. 
The necessary condition  is  then that,  along  the  singular 
extremal, 

<X,g,fg,> 2 0 . 
Note that,  by definition of al12, 

Since aIl2 here  equals A,, we know that   i t  is never  zero 
along  an  extremal for  which x(t)  is in R,. Thus, since 42 
never  vanishes  either, it follows that  the  inequality (4.6) i s  
strict, and hence: 

sign of 4, = sign of A z  . 
Equivalently, we obtain  the following  precise 
characterization of the  value of the  constant  control: 

5 .  References. 

[AL]  Ailon,A.  and  G.Langholz,  "On  the  existence of time- 
optimal  control of mechanical  manipulators," J.Opt.Theory 
€4 Appls. 46(1985): 1-21. 

[HE] Hermes,H., "Lie  algebras of vector fields and local 
approximation of attainable  sets," SZAM  J.Cntr. and  Opt. 
16(1978): 715-727. 

[KRj Krener,A.J.,  "The high order  maximal principle and 
its  application  to  singular  extremals," SZAM  J.Contr. and 
Opt., 15(1977): 256-293. 

IMO] Moyer,H.G., "Sufficient conditions for a strong 
minimum  in  singular  control problems,'! SZAM J.Contro1 
l l (1973):  620-636. 

[PA]  Paul,  Richard P., Robot  Manipulators:  Mathematics, 
Programming,  and  Control, MIT Press, 1982. 

IRA] Rajan, V.T., "Minimum  time  trajectory planning," 
IEEE 1985  International  Conf.on  Robotics  and  Automation, 
IEEE  Computer  Society,  St.Louis,  MO 1985, pp.759-764. 

ISH] Sahar,G.  and  J.M.Hollerbach,  "Planning of minimum- 
time  trajectories for robot  arms," IEEE  1985  International 
Conf.on  Robotics  and  Automation, IEEE  Computer Society, 
St.Louis, MO 1985: pp. 751-758. 

[SD]  Shiller,Z.  and  S.Dubowsky,  "On  the  optimal  control of 
robotic  manipulators  with  actuator  and end-effector 
constraints," IEEE  1985  Znternational  Conf.on  Robotics and 
Automation, IEEE  Computer  Society,  St.Louis, M O  1985, 
pp.614-626 

[SS] Sontag, E.D., and H.J. Sussmann,  "Remarks on the 
time-optimal  control of two-link manipulators," Proc. IEEE 
Conf.  Dec. and  Control,  1985,  pp.1643-1652. 

1697 


