
IJCNN-90-WASH DC

International
Joint
Conference on
Neural
Networks

January 15-19, 1990
Omni Shoreham Hotel
Washington, DC

Volume I
Theory Track
Neural and Cognitive Sciences Track

92-05676

co-sponsored by the
International Neural Network Society
and the
Institute of Electrical and Electronics Engineers, Inc.

IE• LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS
Hillsdale, New Jersey Hove and London

92 3 03 099

Extrapolatory Methods for Speeding Up the BP Algorithm

Hasanat M. Dewan Eduardo D. Sontag
Department of Computer Science SYCON-Center for Systems and Control

Rutgers University Rutgers University
New Brunswick, NJ 08903 New Brunswick, NJ 08903
dewan@paul.rutgers.edu sontag@fermat.rutgers.edu

August 8, 1989

Abstract

We describe a speedup technique that uses extrapolatory methods to predict the weights in a
Neural Network using Back Propagation (BP) learning. The method is based on empirical obser-
vations of the way the weights change as a function of time. We use numerical function fitting
techniques to determine the parameters of an extrapolation function and then use this function to
project weights into the future. Significant computational savings result by using the extrapolated
weights to jump over many iterations of the standard algorithm, achieving comparable performance
with fewer iterations.

1 Introduction

In this note we describe some extrapolation techniques that appear to speed up convergence in back.
propagation (BP). Numerical analysis techniques are often used in order to make BP more efficient than
straightforward gradient descent, and recently it has been proposed that stiff ODE solvers be used in-
stead of discrete approximations [1]. Our remark here is that in addition to these techniques one may be
able to exploit the particular form of the differential equation being solved (or its discretization). More
precisely, if one uses a sigmoidal response r4-! for neurons, then a rough and nonrigorous analysis sug-
gests that weights tend to grow logarithmically after many iterations, while they tend to behave as 1/t
for intermediate values of the number of iterations, t. The logarithmic asymptotic behavior is suggested
by an approximation of the differential equations (2], while the form 1/t is apparent from empirical
observations of the way the weights change as a function of time. We use these observations as a basis
of a speedup technique that uses extrapolatory methods to predict the weights in a network at a future
time, given the weights up to the present. By extrapolating the weights, it is possible to economize on
the iterations required by BP before an acceptable set of weights result. We use the general form

w(t) = a+ bit + clogt

and variants where either b or c are forced to be zero. The parameters are fit via least squares techniques,
and this function is then used to predict future weights. We then feed the projected weights back into
the BP simulator and continue iterating. The phases of extrapolation and iteration are alternated until
a satisfactory set of weights are obtained.

For simplicity, we base our experiments on a standard BP simulator, but the same technique could be
used with any variants such as those using stiff ODE solvers. Although this work is empirical in nature,
the simulation results are very encouraging, frequently affording considerable savings in computation
time.

I- 613

2 Weights as a Temporal Function

If the growth of the weights follow a logarithmic trend, given by the equation wut) a + 4l4st where
a and b are constants and t represents time cr the number of iterations, then for large t the expression
t(w(t + 1) - t(t)) would have to approach a constant since

t(w(t +) - w(t)) = t(-Wtt) - w t)

(tt+t (tt1) - t t

On the other hand, if the hyperbolic function o(t) = a+ I approximates the weights, then the expression
t2 (w(t + 1) - w(t)) should approach some constant for large t, since

t2 (w(t + 1) - -(t)) = teu(t + 1) - (Z t2 w(t) = t = -b(t+1)-t (2-

To verify these possibilities, we set up a 2-2.1 (2 input, 2 hidden, 1 output unit) network to learn the
XOR problem. The BP algorithm was allowed to run for some time after the network classified the four
inputs for XOR correctly. Any output unit is considered to have classified correctly if the desired output
is I and the sctivation is greater than 0.5, or if the desired output is 0 and the activation is less than
0.5. Some typical graphs for the products mentioned above are shown in fig. I as a function of t.

8 trw(t+l)-w(t)i vs t: Wt. HI-12/XOR 3 0 0f^2[w(t+l)-w(t)1 vs t: Wt. HI-12/XOR

~ I

4+

00 0 0 0

0 5000 0 5000
Iteration t Iteration t

Figure 1: Growth of Weights may be a Log or Combined Hyperbolic-Log Function

It appearm from the graphs in fig. 1 that the product t9w(t+1).t(t)) approaches some constant value
as t becomes large, hence the growth of the weights may indeed be logarithmic. However, the product
t2(w(t+ l)-w(t)) is asymptotically a straight line. Thus, for some constants B and C, tetw(t) = B+Ct.
Dividing by t' and integrating both sides, we get w(t) = A + Blt + Clogt. Thus the weights seem to
follow a combined hyperbolic-logarithmic evolution. Near zero, this is mostly hyperbolic, while for large
t it is logarithmic.

In fig. 2'we show typical weight curves from the XOR example, superposed with the hyperbolic-
logarithmic functions that approximate them. The actual data is shown in solid lines, while the functions
are shown in dashed lines. It is easy to see that the functions approximate the actual weights quite closely.

I- 614

Actual and Estimated H1-10 Actual and Estimated HI-Il
Si Function:'a+bA/+clgt

Actual: solid !
0 Estimate: dashed0~ ~ ~ ~~~~~ ."E tm t ~ a hd i........- i................

"Fut Interval: 200-600

.... c u l" s t di
....-2 unction: a+b/t+cl6gt

Actual: solid

Fit Interval: 150-750
-4 1 , 0-.- - .-"" - .•

0 200 400 600 800 0 200 400 600 800

Iteration t Iteration t

Figure 2: Some Actual and Estimated Weights from Hidden Layer to Input Layer

3 Experiments with Various Networks

3.1 Extrapolation Procedure

Briefly, the extrapolation procedure consists of first obtaining a value t, of t for which a given network
learns a certain problem. This is the 100% learning point, indicated by the fact that all output units
match their desired values according to the following criterion: An output unit is considered to have
classified correctly if the desired output is 1 and the activation is greater than 0.5, or if the desired
output is 0 and the activation is less than 0.5. For our experiments, we obtained t, by averaging over
several runs of training the network in question. However, this gueasing operation can be somewhat
automated by noting that as a rough approximation, t, can be considered to be directly proportional to
the sum of number of input and output units, while it is inversely proportional to the number of hidden
units, and then developing some heuristics based on these observations. It should be mentioned that
wich heuristics can only provide approximate values of t,, and will not perform well for every problem.

After obtaining t,, we set the extrapolation starting point to ta = 0.5t.. We then fit the hyperbolic
function w(t) = a+ b/t to typically 20 iterations of actual weight data starting at t,. Once the constants
are determined, we use the hyperbolic function to extrapolate the weights to t. = 2.0t,. The weights
thus obtained are then fed back into the BP simulator, and it is allowed to run until it maps 100%
correctly. We keep track of the total number of actual simulator iterations. This is denoted by t.. It
is frequently the case that t. < t., indicating computational savings in training the network. The ratio
(t, - t.)/t. is a measure of the improvement obtained.

At this point, the network has learned the training data. However, the normalized error per output
unit may still be quite high. To reduce this error, we perform the following steps repeatedly: the
combined hyperbolic-logarithmic function w(t) = a + b/t + clog t is fit to approximately 20 points of
weight data and the the weights are extrapolated for an aditional interval in the range 2.0t, to 3.0t,. The
weights are then fed back and the simulator restzrted for 0.25t0 iterations, and the process is alternated
until the error per output unit (a measure of convergence) reaches the desired value.

3.2 Test Cases

Our first test case is a 2-2-1 network, learning the Excusive OR function. Tl'e next test case is a 3-3-3
network which maps its binary inputs to their two's complement. The last case is a 3-2-8 network that
learns the 3-to-8 decoding function for binary inputs.

1- 615

4 Summary of Results

The results obtained by following the extrapolation procedure outlined above u applied to the three
tat cases is shown in the two tables below. The first table summarizes for three networks, the percent
improvement in terms of actual iterations of BP that was obtained in mapping inputs to outputs 100%
correctly by using extrapolation. For the same three networks, the second table shows the normalized
error per output unit at the iteration when all outputs were correct (Le at t.), the normalized error at
4 .0t, obtained by extrapolating from t, for an iterval of 3.0t,, and a percent reduction in the normalized
error per output unit.

Network t' t' t*. Improvement
2-2-1 XOR 300 150 162 46

3-3-3 Two's Compl 813 407 647 20
3-2-8 3 to 8 Decoder 1468 734 1221 17

Network Normalized Error Normalized Error X Reduction
per Output Unit per Output Unit in Norm. Error

at t" at 4.0t,
2-2-1 XOR 0.1499 0.0321 78

3-3-3 Two's Compl 0.0293 0.0127 56
3-2-8 3 to 8 Decoder 0.0319 0.0121 61

5 Conclusion

We have shown that extrapolatory techniques may substantially increase the speed of learning and the
speed of convergence in networks using the BP algorithm. This provides motivation for constructing
parametrized BP simulators with integrated ability for extrapolating weights using specified functions
and heuristics. It is observed from our experiments that the particular extrapolation function can affect
the acceleration of learning to a considerable degree. Discovering the extrapolation functions that work
best requires further work.

References

(1] A. J. Owens and D.L. Filkin, Efficient Training of the Back Propagation Network by Solving a
System of Stiff Oridinary Differential Equations; in Proceedings IJCNN, 1919, pp. II37813:7489.

[21 Eduardo D. Sontag, Some Remarks on the Backpropagation Algorithm for Neural Net Learning,
SYCON Report 88-02, Rutgers Center for Systems and Control, Dept. of Mathematics, Rutgers
University, July 198$.

[31 W. M. Kolb, Curve Fitting for Programmable Calculators, Syntec Inc., Bowie, MD 20716.

(41 J. L. McClelland and D. E. Rumelhart, Ezplorations in Parallel Distributed Processing: A Handbook
of Models, Programs, and Ezxerises, MIT Press, 1988.

1- 6"16

