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1 Motivation and history of the problems 

The main objective of control is to modify the behavior of a dynamical 
system, typically with the purpose of regulating certain variables or of 
tracking desired signals. Often, either stability of the closed-loop system 
is an explicit requirement, or else the problem can be recast in a form 
that involves stabilization (e.g., of an error signal). For linear systems, the 
associated problems can now be treated fairly satisfactorily, but in the 
nonlinear case the area is still far from being settled. Both of the late 
1980s reports [9] and [18], with dealt with challenges and future directions 
for research in control theory, identified the problem of stabilization of 
finite-dimensional deterministic systems as one of the most important open 
problems in nonlinear control. We discuss some questions in this area. 
Specifically, this chapter deals with systems of the following general form: 

x(t) = f(x(t), u(t)). (40.1) 

The states x(t) take values in Euclidean space IRn and the controls u(t) 
take values in IRm. The map f(x, u) is continuous, and is locally Lipschitz 
in x, uniformly for u in compacts. In addition, f(O, 0) = 0, that is to say, 
the zero state -is an equilibrium when no inputs are applied. By a control we 
mean a measurable function u : [0, +00) - IRm which is locally essentially 
bounded (meaning that, for each T > ° there is some compact subset 
K ~ IRm so that u(t) E K for a.a. t E [0, TJ). In general, we use the 
notation x(t;xo,u) to denote the solution of (40.1) at time t :::: 0, with 
initial condition Xo and control u. The expression x(t; xo, u) is defined on 
some maximal interval [0, tmax(XO,u)). 
A common approach for the stabilization of (40.1) to x = 0 relies on the 
use of abstract "energy" or "cost" functions which can be made to in-
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finitesimally decrease in directions corresponding to possible controls. Let 
us review some basic definitions. A function V : IRn -+ IR>o is said to be 
positive (definite) if -

V(x) > 0 V x f. 0, V(O) = 0, (40.2) 

and it is proper if the sublevel set {xlV(x) ::; a} is compact, for each a> o. 
The function V is said to be infinitesimally decreasing if there exists a 
continuous positive function W : IRn -+ IR~o such that, for each compact 
set KeIRn, there exists a compact set U c IRm so that 

min (V'V(x), f(x, u)) ::; -W(x) V x E K. 
uEU 

(40.3) 

Note that this implies, in particular, the Hamilton-Jacobi inequality 

sup inf (V'V(x), f(x, u)) + W(x) ::; o. ( 40.4) 
xEIR" uEIRm 

Definition. A continuously differentiable function V : IRn -+ IR~o is called 
a differentiable control Lyapunov function (CLF) if it is positive, proper, and 
infinitesimally decreasing. 

From a numerical point of view, given the objective of approaching the state 
x = 0, the use of control-Lyapunov functions reduces the search for stabiliz­
ing inputs to the iterative solution of a static nonlinear programming prob­
lem: when at state~, find u such that minuEu(V'V(X), f(x, u)) ::; -W(x). 
This paradigm underlies the optimal control approach of Bellman, "arti­
ficial intelligence" techniques based on position evaluations in games and 
"critics" in learning programs, and several "neural-network" approaches to 
control. 
Mathematically, the main implication of the existence of a CLF is null­
asymptotic controllability. This means that for each initial state ~ there is 
some control function u(·) which steers the state ~ asymptotically to the 
origin, while not producing large excursions. More precisely: 

Definition. The system (40.1) is (globally) null-asymptotically controllable 
if: 

1. (attractiveness) for each Xo E IR n there exists some control u such 
that the trajectory x(t) = x(t; Xo, u) is defined for all t2=:O and 
x(t) -+ 0 as t -+ +00; 

2. (Lyapunov stability) for each c > 0 there exists J > 0 such that 
for each Xo E IRn with Ixol < J there is a control u as in 1. such that 
Ilx(t)11 < c for all t 2: 0; 

3. (bounded controls) there are a neighborhood X of 0 in IRn, and a 
compact subset U ofIRm such that, if the initial state Xo in 2. satisfies 
also Xo EX, then the control in 2. can be chosen with u( t) E U for 
almost all t. 
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This is a natural generalization to control systems of the concept of uniform 
asymptotic stability of solutions of differential equations. 

2 Past work and new questions 

A natural question is: can one use a known eLF in order to effectively 
design control laws that achieve stabilization? For systems affine in controls, 
Artstein's Theorem says that the existence of a differentiable eLF implies 
(and is also implied by) the existence of a continuous feedback stabilizer, cf. 
[1], meaning a k : IRn ---) IRm with the property that the closed-loop system 
i: = f(x, k(x)) has the origin x = 0 as a globally asymptotically stable 
equilibrium, and k is continuous away from the origin. eLF-based feedback 
designs provide one of the main current approaches to nonlinear control, 
and are discussed in detail in several recent textbooks, including [11, 10, 
16, 20]. More precisely, one can find universal formulas for the stabilizer, 
which depend analytically on the directional derivatives of the eLF V. For 
example, for systems with one input (m = 1):i: = f(x,u) = go(X)+Ugl(X), 
one has that 

k(x) .-
a(x) + Ja(x)2 + b(x)4 

b(x) 
(0 if b = 0) 

stabilizes the system, where we are denoting a(x) := V'V(x) go(x) and 
b(x) := V'V(x) gl(X). (This expression is analytic on a(x), b(x) when x f. 0; 
cf. [23,20].) 
Often, controls are restricted to lie in constrained sets 1[J ~ IRm , for in­
stance due to actuator saturation effects. As Artstein's Theorem holds for 
arbitrary convex input-value sets 1U, it would be desirable for design pur­
poses to have universal formulas that lead to controls satisfying the same 
constraints, under the assumption that the eLF satisfies condition (40.3) 
with controls in 1U. Examples of such formulas are given in ([14]), for open 
balls in IR n . 

Problem. Find universal formulas for eLF stabilization, for general (con­
vex) control-value sets 1[J. 

The above considerations motivate an obvious fundamental theoretical 
question: is the existence of a differentiable eLF equivalent to null-asymptotic 
controllability? 
When there are no controls, the equivalence between asymptotic control­
lability and the existence of eLF's amounts to the equivalence between 
(global) asymptotic stability of an equilibrium and the existence of clas­
sical Lyapunov functions, and in that case the answer to the question is 
positive, and even an infinitely differentiable eLF always exists, as shown 
in the fundamental contributions of Massera and Kurzweil [15, 12]. When 
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there are controls, but the system is linear, again the answer is positive, and 
there is a quadratic eLF, as discussed in linear systems textbooks, e.g. [20]. 
In general, however, the answer to the question is negative. There do exist 
systems which are null-asymptotically controllable yet for which there is no 
possible differentiable eLF. There are various ways to prove this negative 
result. One is as a corollary of Artstein's Theorem, since in general con­
tinuous stabilizers are known not to exist for asymptotically controllable 
systems, cf. [17,24,21,3,2,20]. See also [19, 7, 13] for many further recent 
results regarding the connection between continuous stabilizability and the 
existence of differentiable eLF's. 
Faced with the negative answer, a very attractive relaxation of the question 
involves dropping the requirement that V be differentiable, and reinter­
preting the differential inequality (40.3) in a weak sense. There are many 
candidates for this interpretation: viscosity solutions, generalized differen­
tials, proximal subgradients, and others. These different interpretations, for 
the purpose of this note, are equivalent, as discussed in [5]. We pick one 
of them, proximal subgradients, for concreteness. Specifically, we say that 
a continuous function V is infinitesimally decreasing if the same definition 
as earlier holds, except that we substitute (40.3) by: 

min((,f(x,u)) ::; -W(x) 'VXEK'V(E8pV(X), 
uEU 

(40.5) 

where 8p V(x) is the proximal subdifferential of the function Vat the point 
x. We say that a continuous V : lRn ---t lR~o is a (continuous) eLF if it is 
positive, proper, and infinitesimally decreasing in this sense. 
Recall that a vector ( E lRn is a proximal subgradient of V at x if there 
exists some a> 0 such that, for all y in some neighborhood of x, 

V(y) ~ V(x)+((,y-x)-ally-xIl 2 • 

That is, ( is the gradient of a supporting quadratic function at x to the 
graph of V. The set of proximal subgradients of V at x (which may be 
empty) is 8pV(x). The use of proximal subgradients as substitutes for 
the gradient for a nondifferentiable function was originally proposed in 
nonsmooth analysis for the study of optimization problems, see [4]. It is 
also possible to use continuous eLF's as a basis for feedback design; see [6]. 
The following positive result holds: 

Theorem. A system is globally null-asymptotically controllable if and only 
if there exists a continuous eLF for it. 

This was proved in [22]. More preCisely, it was stated there in terms of Dini 
derivatives; the translation into the far more elegant and powerful language 
of proximal subgradients was later remarked in [6]. 
Thus, there is always a continuous V, but not always a differentiable V. 
This leads us to state: 
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Problem. What is the best degree of regularity that can be assured for a 
CLF, for any globally null-asymptotically controllable system? 

Specifically, one may ask if one can always find a CLF that is piecewise 
differentiable on a locally finite (away from the origin) partition of IRn, so 
that universal formulas for feedback stabilization can be employed locally. 
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