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Abstract

Experimental data show that biological synapses behave quite differently
from the symbolic synapses in common artificial neural network models.
Biological synapses are dynamic, i.e., their “weight” changes on a short
time scale by several hundred percent in dependence of the past input
to the synapse. In this article we explore the consequences that these
synaptic dynamics entail for the computational power of feedforward
neural networks. We show that gradient descent suffices to approximate
a given (quadratic) filter by a rather small neural system with dynamic
synapses. We also compare our network model to artificial neural net-
works designed for time series processing. Our numerical results are
complemented by theoretical analysis which show that even with just a
single hidden layer such networks can approximate a surprisingly large
large class of nonlinear filters: all filters that can be characterized by
Volterra series. This result is robust with regard to various changes in the
model for synaptic dynamics.

1 Introduction

More than two decades of research on artificial neural networks has emphasized the central
role of synapses in neural computation. In a conventional artificial neural network, all units
(“neurons”) are assumed to be identical, so that the computation is completely specified by
the synaptic “weights,” i.e. by the strengths of the connections between the units. Synapses
in common artificial neural network models are static: the value ��� � of a synaptic weight
is assumed to change only during “learning”. In contrast to that, the “weight” ��� ���
	�� of
a biological synapse at time 	 is known to be strongly dependent on the inputs ����
	������
that this synapse has received from the presynaptic neuron � at previous time steps 	���� ,
see e.g. [1]. We will focus in this article on mean-field models for populations of neurons
connected by dynamic synapses.
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Figure 1: A dynamic synapse can produce quite different outputs for the same input. The
response of a single synapse to a step increase in input activity applied at time step 0 is
compared for three different parameter settings.

Several models for single synapses have been proposed for the dynamic changes in synaptic
efficacy. In [2] the model of [3] is extended to populations of neurons where the current
synaptic efficacy � � ���
	�� between a population

�
and a population � at time 	 is modeled as a

product of a facilitation term � � � �
	�� and a depression term ��� ���
	�� scaled by the factor � � � .
We consider a time discrete version of this model defined as follows:

� � ���
	������ � �	�
� � � �
	����
� � ���
	�� (1)
�� � � �
	��� ��� �� � ���
	�� �

�� � ���
	��� � � �� � ��� ��� � �� � � �
	������  � �
	�� (2)

� � ���
	��� ����� � ���
	��� � ��� � ���
	��� � � ��� � � �
	������ � ���
	����  � �
	�� (3)

� � � �
	���� �� � ���
	���� ��� ��� � � ���� � � (4)

with � � � ��� ����� and � � � ��� ����� . Equation (2) models facilitation (with time constant
� � � ),

whereas equation (3) models the combined effects of synaptic depression (with time con-
stant

� � � ) and facilitation. Depending on the values of the characteristic parameters � � � ,� � � , � � � a synaptic connection  
� �"! maps an input function �� �
	�� into the corresponding
time varying synaptic output � � ���
	��#�  � �
	�� . The same input  ���
	�� can yield markedly dif-
ferent outputs � � ���
	���� �� �
	�� for different values of the characteristic parameters ��� � , � � � ,� � � . Fig. 1 compares the output for three different sets of values for the parameters � � � ,� � � , � � � . These examples illustrate just three of the range of input-output behaviors that a
single synapse can achieve.

In this article we will consider feedforward networks coupled by dynamic synapses. One
should think of the computational units in such a network as populations of spiking neurons.
We refer to such networks as “dynamic networks”, see Fig. 2 for details.
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Figure 2: The dynamic network model.
The output �� �
	�� of the �%$�& unit is given
by �� �
	����(' �%) � � � ���
	��	�  � �
	���� , where
' is either the sigmoid function ' �+* ���
�-, ���.0/2143 � ��* ��� (in the hidden layers)
or just the identity function ' �+* �5�6* (in
the output layer) and � � ���
	�� is modeled ac-
cording to Equ. (1) to (4).



In Sections 2 and 3 we demonstrate (by employing gradient descent to find appropriate
values for the parameters ��� � , � � � , � � � and � � � ) that even small dynamic networks can
compute complex quadratic filters. In Section 4 we address the question which synaptic
parameters are important for a dynamic network to learn a given filter. In Section 5 we
give a precise mathematical characterization of the computational power of such dynamic
networks.

2 Learning Arbitrary Quadratic Filters by Dynamic Networks

In order to analyze which filters can be approximated by small dynamic networks we in-
vestigate the task of learning a quadratic filter � randomly chosen from a class ��� . The
class ��� consists of all quadratic filters � whose output ���  � �
	�� in response to the in-
put time series  �
	�� is defined by some symmetric ���	� matrix 
�� �� ������� of fil-
ter coefficients ��������� , � � ��������� ,  � ��������� through the equation ���  � �
	����
) �� !#" ) � �$!#" ������ �
	 �%� �� �
	 �& �'� An example of the input and output for one choice
of quadratic parameters ( � � �
� ) are shown in Figs. 3B and 3C, respectively. We view
such filter � as an example for the kinds of complex transformations that are important
to an organism’s survival, such as those required for motor control and the processing of
time-varying sensory inputs. For example, the spectrotemporal receptive field of a neu-
ron in the auditory cortex [4] reflects some complex transformation of sound pressure to
neuronal activity. The real transformations actually required may be very complex, but the
simple filter � provides a useful starting point for assessing the capacity of this architecture
to transform one time-varying signal into another.

Can a network of units coupled by dynamic synapses implement the filter � ? We tested
the approximation capabilities of a rather small dynamic network with just 10 hidden
units (5 excitatory and 5 inhibitory ones), and one output (Fig. 3A). The dynamics of
inhibitory synapses is described by the same model as that for excitatory synapses. For
any particular temporal pattern applied at the input and any particular choice of the synap-
tic parameters, this network generates a temporal pattern as output. This output can be
thought of, for example, as the activity of a particular population of neurons in the cor-
tex, and the target function as the time series generated for the same input by some un-
known quadratic filter � . The synaptic parameters � � � , � � � , � � � and � � � are chosen
so that, for each input in the training set, the network minimized the mean-square error(  )+*,)-�#��� ". ) .0/ "

$ !21 �3)��
	�� �4)-� �
	�����5 between its output )��
	�� and the desired output )6� �
	��
specified by the filter � . To achieve this minimization, we used a conjugate gradient al-
gorithm.1 The training inputs were random signals, an example of which is shown in
Fig. 3B. The test inputs were drawn from the same random distribution as the training in-
puts, but were not actually used during training. This test of generalization ensured that the
observed performance represented more than simple “memorization” of the training set.
Fig. 3C compares the network performance before and after training. Prior to training, the
output is nearly flat, while after training the network output tracks the filter output closely
(
(  )+*,)-�#� ���7� � �98;: ).

Fig. 3D shows the performance after training for different randomly chosen quadratic filters
�<�4��� for � �>=+*������2*��@? . Even for larger values of � the relatively small network with
10 hidden units performs rather well. Note that a quadratic filter of dimension � has
� �A� �� � ,6: free parameters, whereas the dynamic network has a constant number of 80
adjustable parameters. This shows clearly that dynamic synapses enable a small network
to mimic a wide range of possible quadratic target filters.

1In order to apply such a conjugate gradient algorithm ones has to calculate the partial derivativesB9C2D E$F E�G7HBJI-K L ,
B;C2D E$F E�GJHB9M�K L ,

B;C2D E$F E�GJHB9N@K L and
B9C2D E$F E�GJHB;O�K L for all synapses P�Q RTS in the network. For more details

about conjugate gradient algorithms see e.g. [5].
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Figure 3: A network with units coupled by dynamic synapses can approximate randomly
drawn quadratic filters. A Network architecture. The network had one input unit, 10 hidden
units (5 excitatory, 5 inhibitory), and one output unit, see Fig. 2 for details. B One of the
input patterns used in the training ensemble. For clarity, only a portion of the actual input
is shown. C Output of the network prior to training, with random initialization of the pa-
rameters, and the output of the dynamic network after learning. The target was the output
of a quadratic filter ��� ��" 1 . The filter coefficients ����� ( � � ��*, � �
� ) were generated
randomly by subtracting � ,6: from a random number generated from an exponential distri-
bution with mean � � 8 . D Performance after network training. For different sizes of 
 �
( 
 � is a symmetric � � � matrix) we plotted the average performance (mse measured on
a test set) over 20 different filters � , i.e. 20 randomly generated matrices 
 � .

3 Comparison with the model of Back and Tsoi

Our dynamic network model is not the first to incorporate temporal dynamics via dynamic
synapses. Perhaps the earliest suggestion for a role for synaptic dynamics in network com-
putation was by [7]. More recently, a number of networks have been proposed in which
synapses implemented linear filters; in particular [6].

To assess the performance of our network model in relation to the model proposed in [6]
we have analyzed the performance of our dynamic network model for the same system
identification task that was employed as benchmark task in [6]. The goal of this task is to
learn a filter

�
with � �  � �
	�� ���
	 � �+* �
	���� where * �
	�� is the output of a linear filter applied

to the input time series  �
	�� .2
The result is summarized in Fig. 4. It can clearly be seen that our network model (see
Fig. 3A for the network architecture) is able to learn this particular filter. The mean square
error (mse) on the test data is 0.0010, which is slightly smaller than the mse of 0.0013 re-
ported in [6]. Note that the network Back and Tsoi used to learn the task had 130 adjustable
parameters (13 parameters per IIR synapse, 10 hidden units) whereas our network model
had only 80 adjustable parameters (all parameters ��� � , � � � , � � � and � � � were adjusted
during learning).

2 ������ is the solution to the difference equation ������������ ��������������
����� �� �!�������"!#�����%$&� '(��)�*�������*+���-,.$&� $&����'�/�����0�1$&� $�'323!�/���#�4�����1$&� $�'323!�/���#�5!+���6�7$&� $&����'�/���#�8*9��� . Hence, ������ is the
output of a linear filter applied to the input /����� .
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Figure 4: Performance of our model on the system identification task used in [6]. The
network architecture is the same as in Fig. 3. A One of the input patterns used in the
training ensemble. B Output of the network after learning and the target. C Comparison
of the mean square error (in units of �
� /�� ) achieved on test data by the model of Back and
Tsoi (BT) and by the dynamic network (DN). D Comparison of the number of adjustable
parameters. The network model of Back and Tsoi (BT) utilizes slightly more adjustable
parameters than the dynamic network (DN).
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Figure 5: Impact of different synaptic parameters on the learning capabilities of a dynamic
network. The size of a square (the “impact”) is proportional to the inverse of the mean
squared error averaged over � trials. A In each trial ( � � �
� � ) a different quadratic filter
matrix 
 � ( �(� ? ) was randomly generated as described in Fig. 3. Along the diagonal
one can see the impact of a single parameter, whereas the off-diagonal elements (which are
symmetric) represent the impact of changing pairs of parameters. B The impact of subsets
of size three is shown where the labels indicate which parameter is not included. C Same
interpretation as for panel A but the results shown ( �(�<: � ) are for the filter used in [6].
D Same interpretation as for panel B but the results shown ( � � : � ) are for the same filter
as in panel C.

This shows that a very simple feedforward network with biologically realistic synaptic dy-
namics yields performance comparable to that of artificial networks that were previously
designed to yield good performance in the time series domain without any claims of bio-
logical realism.

4 Which Parameters Matter?

It remains an open experimental question which synaptic parameters are subject to use-
dependent plasticity, and under what conditions. For example, long term potentiation ap-
pears to change synaptic dynamics between pairs of layer 5 cortical neurons [8] but not in
the hippocampus [9]. We therefore wondered whether plasticity in the synaptic dynamics is
essential for a dynamic network to be able to learn a particular target filter. To address this
question, we compared network performance when different parameter subsets were opti-
mized using the conjugate gradient algorithm, while the other parameters were held fixed.
In all experiments, the fixed parameters were chosen to ensure heterogeneity in presynaptic
dynamics.



Fig. 5 shows that changing only the postsynaptic parameter � has comparable impact to
changing only the presynaptic parameters � or

�
, whereas changing only

�
has little im-

pact on the dynamics of these networks (see diagonal of Fig. 5A and Fig. 5C). However, to
achieve good performance one has to change at least two different types of parameters such
as
� � * � � or

� � * � � (all other pairs yield worse performance). Hence, neither plasticity
in the presynaptic dynamics ( � * � * � ) alone nor plasticity of the postsynaptic efficacy ( � )
alone was sufficient to achieve good performance in this model.

5 A Universal Approximation Theorem for Dynamic Networks

In the preceding sections we had presented empirical evidence for the approximation ca-
pabilities of our dynamic network model for computations in the time series domain. This
gives rise to the question, what the theoretical limits of their approximation capabilities
are. The rigorous theoretical result presented in this section shows that basically there
are no significant a priori limits. Furthermore, in spite of the rather complicated system
of equations that defines dynamic networks, one can give a precise mathematical charac-
terization of the class of filters that can be approximated by them. This characterization
involves the following basic concepts. An arbitrary filter

�
is called time invariant if a

shift of the input functions by a constant 	 1 just causes a shift of the output function by the
same constant 	�1 . Another essential property of filters is fading memory. A filter

�
has

fading memory if and only if the value of
�  ��� � can be approximated arbitrarily closely

by the value of
��� ��� � for functions

� that approximate the functions  for sufficiently
long bounded intervals  � � * �T� . Interesting examples of linear and nonlinear time invariant
filters with fading memory can be generated with the help of representations of the form
� �  � �
	�� �����1 ���������1  �
	�� �-" ��� ����� �  �
	�� �@� � � �
�-"T*������0*��@� ��� �-" ����� � �@� for measurable
and essentially bounded functions 
	;��� � (with � �� " ). One refers to such an integral
as a Volterra term of order � . Note that for � � � it yields the usual representation for a
linear time invariant filter. The class of filters that can be represented by Volterra series,
i.e., by finite or infinite sums of Volterra terms of arbitrary order, has been investigated for
quite some time in neurobiology and engineering.

Theorem 1 Assume that � is the class of functions from � into  � 1;*���",� which satisfy�  �
	����� ��� � � � � 5 �
� 	���� � for all 	$*���� � , where � 19*���"-*�� 5 are arbitrary real-valued

constants with ����� 1�����" and ����� 5 . Let
�

be an arbitrary filter that maps vectors
of functions  �  
2"T*������2*��� ! ��� � into functions from � into � . Then the following are
equivalent:

(a)
�

can be approximated by dynamic networks � defined in Fig. 2 (i.e., for any��� � there exists such network � such that
� � �  � �
	�� � � �  � �
	�� � � � for all

 ��� � and all 	 � � )

(b)
�

can be approximated by dynamic networks (see Fig. 2) with just a single layer
of sigmoidal neurons

(c)
�

is time invariant and has fading memory

(d)
�

can be approximated by a sequence of (finite or infinite) Volterra series.

The proof of Theorem 1 relies on the Stone-Weierstrass Theorem, and is contained as the
proof of Theorem 3.4 in [10].

The universal approximation result contained in Theorem 1 turns out to be rather robust
with regard to changes in the definition of a dynamic network. Dynamic networks with just
one layer of dynamic synapses and one subsequent layer of sigmoidal gates can approxi-
mate the same class of filters as dynamic networks with an arbitrary number of layers of



dynamic synapses and sigmoidal neurons. It can also be shown that Theorem 1 remains
valid if one considers networks which have depressing synapses only or if one uses the
model for synaptic dynamics proposed in [1].

6 Discussion

Our central hypothesis is that rapid changes in synaptic strength, mediated by mechanisms
such as facilitation and depression, are an integral part of neural processing. We have ana-
lyzed the computational power of such dynamic networks, which represent a new paradigm
for neural computation on time series that is based on biologically realistic models for
synaptic dynamics [11].

Our analytical results show that the class of nonlinear filters that can be approximated by
dynamic networks, even with just a single hidden layer of sigmoidal neurons, is remarkably
rich. It contains every time invariant filter with fading memory, hence arguable every filter
that is potentially useful for a biological organism.

The computer simulations we performed show that rather small dynamic networks are not
only able to perform interesting computations on time series, but their performance is com-
parable to that of previously considered artificial neural networks that were designed for
the purpose of yielding efficient processing of temporal signals. We have tested dynamic
networks on tasks such as the learning of a randomly chosen quadratic filter, as well as on
the learning task used in [6], to illustrate the potential of this architecture.
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