
Contraction methods for nonlinear systems:
a brief introduction and some open problems

Zahra Aminzare† and Eduardo D. Sontag†

Abstract— Contraction theory provides an elegant way to an-
alyze the behaviors of certain nonlinear dynamical systems.
Under sometimes easy to check hypotheses, systems can be
shown to have the incremental stability property that trajecto-
ries converge to each other. The present paper provides a self-
contained introduction to some of the basic concepts and results
in contraction theory, discusses applications to synchronization
and to reaction-diffusion partial differential equations, and
poses several open questions.

I. INTRODUCTION

Global stability is a central research topic in dynamical
systems theory. Stability properties are typically defined
in terms of attraction to an invariant set, for example to
an equilibrium or a periodic orbit, often coupled with a
Lyapunov stability requirement that trajectories that start near
the attractor must stay close to the attractor for all future
times.
A far stronger requirement than attraction to a pre-specified
target set is to ask that any two trajectories should (expo-
nentially, and with no overshoot) converge to each other,
or, in more abstract mathematical terms, that the flow be
a contraction in the state space. While this requirement
will be less likely to be satisfied for a given system, it is
sometimes comparatively easier to check. Indeed, checking
stability properties often involves constructing an appropriate
Lyapunov function, which, in turn, requires a priori knowl-
edge of the attractor location. In contrast, contraction-based
methods, discussed here, do not require the prior knowledge
of attractors. Instead, one checks an infinitesimal property,
that is to say, a property of the vector field defining the
system, which guarantees exponential contractivity of the
induced flow.
It is useful to first discuss the relatively trivial case of linear
time-invariant systems of differential equations ẋ = Ax,
with Euclidean norm. Since differences of solutions are also
solutions, contractivity amounts simply to the requirement
that there exists a positive number c such that, for all
solutions, |x(t)| ≤ e−ct |x(0)|, where | · | refers to the
Euclidean norm. This is clearly equivalent to the requirement
that A + AT be a negative definite matrix. In Lyapunov-
function terms, xTPx is a Lyapunov function for the system,
when P = I .
This property is of course stronger than merely asymptotic
stability of the zero equilibrium of ẋ = Ax, that is, that A
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be a Hurwitz matrix (all eigenvalues with negative real part).
Of course, asymptotic stability is equivalent to the existence
of some positive definite matrix P (but not necessarily the
identity) so that xTPx is a Lyapunov function, and this can
be interpreted, as remarked later, as a contractivity property
with respect to a weighted Euclidean norm associated to P .
This simple example with linear systems already illustrates
why an appropriate choice of norms when defining “contrac-
tivity” is critical; even for linear systems, contractivity is not
a topological, but is instead a metric property: it depends on
the norm being used, in close analogy to the choice of an
appropriate Lyapunov function.

Computing matrix measures, also called logarithmic norms
(see e.g. [1], [2]) of the Jacobian of the vector field,
evaluated at all possible states is an appropriate tool to
characterize contractivity of nonlinear systems. This idea is
a classical one, and can be traced back at least to work
of D.C. Lewis in the 1940s, see [3], [4]. Dahlquist’s 1958
thesis under Hörmander (see [5]) used logarithmic norms
to show contractivity of differential equations, and more
generally of differential inequalities, the latter applied to the
analysis of convergence of numerical schemes for solving
differential equations. The basic ideas have been rediscov-
ered independently by, for example, Demidovič [6], [7] and
Yoshizawa [8], [9]. In control theory, the field attracted
much attention after the work of Lohmiller and Slotine [10],
and follow-up papers by Slotine and collaborators, see for
example [11], [12], [13], [14]. These papers showed the
power of contraction techniques for the study of not only
stability, but also observer problems, nonlinear regulation,
and consensus problems in complex networks. (See also the
work of Nijmejer and coworkers [15].) We refer the reader to
the historical analysis given in [16], [17] and the survey [18].

In this paper, we first discuss the most basic results regarding
contraction for ODE systems. We frame our discussion in the
language of modern nonlinear functional analysis in the style
of [19]. This language provides the natural concepts needed
to understand abstract norms as well as extensions to infinite-
dimensional spaces, including partial differential equations.
We then turn to certain new developments regarding diffusive
synchronization of ODE systems as well as uniform solutions
of reaction-diffusion PDE systems. Given space constraints,
the choice of these other topics is strictly a question of taste.
We picked problems in which we have recently worked,
the emphasis being on contractions with respect to non-
Euclidean norms, and for which many problems remain
open. We only consider deterministic systems; see [13] for
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applications of contraction theory to the analysis of certain
stochastic systems. In addition, we restrict attention to norms
that do not depend on state variables nor time; powerful
tools that allow time-dependent and space-dependent norms
have been developed by Slotine and others, see for example
[11], [12], [13], [14]. These more general tools are especially
useful when they are applied to certify the global exponential
stability of an invariant manifold, for example to show that
a periodic orbit is an attracting limit cycle. In a similar vein,
problems involving synchronization (consensus) can be often
formulated as involving analysis and design of an attractive
invariant manifold. From a geometric point of view, space-
dependent norms may be naturally interpreted as changes of
coordinates on tangent spaces, and translate into “transverse
contractions” or, in global coordinates, contractions with
respect to a particular subset of variables. This more general
view has been the subject of much recent research, see for
example [20], [21], as well as the recent papers [22], [23].
Another paper in this tutorial session, [24], addresses this
topic. We remark that contractivity can also be thought of
as a very strong form of incremental stability [25]. Other
weaker notions of contractivity have also been proposed, in
which trajectories are required to start contracting only after
a very small (time and/or magnitude) transient, see [26], [27].

Outline of paper: We first study dynamical systems de-
scribed by possibly time-dependent systems of differential
equations ẋ = f(x, t), providing several basic results in
contraction theory, including their proofs, and show by
means of an example how even some very simple systems
(in this case, an elementary biochemical model) can benefit
from the use of non-L2 norms.

We then use the contraction theory to show synchronization
(or “consensus”) in diffusively connected identical ODE
systems. Synchronization results based on contraction-based
techniques, have been developed mostly by using measures
induced by L2 or weighted L2 norms, see for instance, [10],
[28], [29], [30], [12]. For non L2 norms, current results are
partial, applying only to certain types of graphs, see [31].

The convergence to uniform solutions in reaction-diffusion
partial differential equations ∂u/∂t = F (u, t)+D∆u where
u = u(ω, t), is a formal analogue of the synchronization
of ODE systems. Questions of convergence to uniform
solutions in reaction-diffusion PDE’s are also a classical
topic of research. The “symmetry breaking” phenomenon
of diffusion-induced, or Turing instability refers to the case
where a dynamic equilibrium ū of the non-diffusing ODE
system du/dt = F (u, t) is stable, but, at least for some
diagonal positive matrices D, the corresponding uniform
state u(ω) = ū is unstable for the PDE system ∂u/∂t =
F (u, t) + D∆u. This phenomenon has been studied at
least since Turing’s seminal work on pattern formation in
morphogenesis [32], where he argued that chemicals might
react and diffuse so as to give rise to heterogeneous spatial
patterns. Subsequent work by Gierer and Meinhardt [33],
[34] produced a molecularly plausible minimal model, us-
ing two substances that combine local autocatalysis and

long-ranging inhibition. Since that early work, a variety of
processes in physics, chemistry, biology, and many other
areas have been studied from the point of view of diffusive
instabilities, and the mathematics of the process has been
extensively studied, see for instance [35], [36], [37]. Most
past work has focused on local stability analysis, through
the analysis of the instability of nonuniform spatial modes
of the linearized PDE. Nonlinear, global, results are usually
proved under strong constraints on diffusion constants as
they compare to the growth of the reaction part. Contraction
techniques add a useful set of tools to that analysis. As with
synchronization, for non-Euclidean norms we only provide
results in special cases, the general problem being open.

II. CONTRACTIONS FOR ODE SYSTEMS

In this section we study systems described by nonlinear
deterministic systems of differential equations

ẋ = f(x, t) , (1)

where x(t) ∈ V ⊆ Rn is an n dimensional vector corre-
sponding to the state of the system, t ∈ [0,∞) is the time,
and f is a nonlinear vector field which is differentiable on
x. We assume that f(x, t), as well as

Jf (x, t) =
∂f

∂x
(x, t) ,

which denotes the Jacobian of f , are continuous in (x, t).
The goal is to find a condition that guarantees that any two
trajectories of (1) converge to each other exponentially.
As mentioned in the introduction, we focus here on con-
ditions based on matrix measures. We recall (see for in-
stance [1] or [2]) that, given a vector norm on Euclidean
space (|·|), with its induced matrix norm ‖A‖, the associated
matrix measure µ is defined as the directional derivative of
the matrix norm in the direction of A and evaluated at the
identity matrix, that is:

µ(A) := lim
h→0+

1

h
(‖I + hA‖ − 1) .

The limit is known to exist, and the convergence is mono-
tonic, see [38], [5]. For example, if |·| is the standard
Euclidean 2-norm, then µ(A) is the maximum eigenvalue
of the symmetric part of A. Matrix measures, also known
as “logarithmic norms”, were independently introduced by
Germund Dahlquist and Sergei Lozinskii in 1959, [5], [39].
More generally, it is useful, with a view to applications to
infinite dimensional systems and in particular PDEs, to study
generalizations to more general operators in Banach spaces.

A. Logarithmic Lipschitz constants

We now define and state elementary properties of logarithmic
Lipschitz constants. (For applications to ODE’s, we will
always take X = Y in the definitions to follow.)
Definition 1: [18] Let (X, ‖ · ‖X) be a normed space and
f : Y → X be a function, where Y ⊆ X . The least upper
bound (lub) Lipschitz constant of f induced by the norm
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‖ · ‖X , on Y , is defined by

LY,X [f ] = sup
u6=v∈Y

‖f(u)− f(v)‖X
‖u− v‖X

.

Note that LY,X [f ] <∞ if and only if f is Lipschitz on Y .
Definition 2: [18] Let (X, ‖ · ‖X) be a normed space and
f : Y → X be a Lipschitz function. The least upper bound
(lub) logarithmic Lipschitz constant of f induced by the
norm ‖ · ‖X , on Y ⊆ X , is defined by

MY,X [f ] = lim
h→0+

1

h
(LY,X [I + hf ]− 1) ,

or equivalently, it is equal to

lim
h→0+

sup
u6=v∈Y

1

h

(
‖u− v + h(f(u)− f(v))‖X

‖u− v‖X
− 1

)
.

If X = Y , we write MX instead of MX,X . Whenever it
is clear from the context, we drop the subscript and simply
write M instead of MX,Y .
Notation 1: Under the conditions of Definition 2, let M±Y,X
denote

sup
u 6=v∈Y

lim
h→0±

1

h

(
‖u− v + h(f(u)− f(v))‖X

‖u− v‖X
− 1

)
.

If X = Y , we write M±X instead of M±X,X . Whenever it
is clear from the context, we drop the subscript and simply
write M± instead of M±X,Y .
Remark 1: [19], [18] Another way to define M± is by the
concept of semi inner product which is in fact a generaliza-
tion of inner product to non Hilbert spaces. Let (X, ‖ · ‖X)
be a normed space. For x1, x2 ∈ X , the right and left semi
inner products are defined by

(x1, x2)± = ‖x1‖X lim
h→0±

1

h
(‖x1 + hx2‖X − ‖x1‖X) .

In particular, when ‖ · ‖X is induced by a true inner product
(·, ·), (for example when X is a Hilbert space), then (·, ·)− =
(·, ·)+ = (·, ·).
Using this definition,

M±Y,X [f ] = sup
u6=v∈Y

(u− v, f(u)− f(v))±
‖u− v‖2X

.

The following elementary properties of semi inner products
are consequences of the properties of norms. See [19], [18]
for a proof.
Proposition 1: For x, y, z ∈ X and α ≥ 0,

1) (x,−y)± = −(x, y)∓;
2) (x, αy)± = α(x, y)±;
3) (x, y)− + (x, z)± ≤ (x, y + z)± ≤ (x, y)+ + (x, z)±.

Remark 2: For any operator f : Y ⊂ X → X:

M−Y,X [f ] ≤M+
Y,X [f ] ≤MY,X [f ].

However, M−[f ] = M+[f ] = M [f ] if the norm is induced
by an inner product.
For linear f , one has the reverse of the second inequality
as well, so M+

Y,X [f ] = MY,X [f ]. See [40] for a detailed

proof. When identifying a linear operator f : Rn → Rn
with its matrix representation A with respect to the canonical
basis, we write “µ(A)” instead of M+

X [f ], and call M or µ
a “matrix measure”.

Remark 3: For a linear operator f , M and M+ can be
written as follows:

MY,X [f ] = lim
h→0+

sup
u6=0∈Y

1

h

(
‖u+ hf(u)‖X
‖u‖X

− 1

)
(2)

and

M+
Y,X [f ] = sup

u6=0∈Y
lim
h→0+

1

h

(
‖u+ hf(u)‖X
‖u‖X

− 1

)
. (3)

Notation 2: In this work, for (X, ‖ · ‖X) = (Rn, ‖ · ‖p),
where ‖·‖p is the Lp norm on Rn, for some 1 ≤ p ≤ ∞, we
sometimes use the notation “Mp” instead of MX for the least
upper bound logarithmic Lipschitz constant, and by “Mp,Q”
we denote the least upper bound logarithmic Lipschitz con-
stant induced by the weighted Lp norm, ‖u‖p,Q := ‖Qu‖p
on Rn, where Q is a fixed nonsingular matrix. Note that
Mp,Q[A] = Mp[QAQ

−1].

Remark 4: In Table I , the algebraic expression of the least
upper bound logarithmic Lipschitz constant induced by the
Lp norm for p = 1, 2, and ∞ are shown for matrices. For
proofs, see for instance [41].

TABLE I: STANDARD MATRIX MEASURES FOR A REAL n×
n MATRIX, A = [aij ].

vector norm, ‖ · ‖ induced matrix measure, M [A]

‖x‖1 =

n∑
i=1

|xi| M1[A] = max
j

ajj +
∑
i6=j
|aij |


‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

M2[A] = max
λ∈spec 1

2
(A+AT )

λ

‖x‖∞ = max
1≤i≤n

|xi| M∞[A] = max
i

aii +
∑
i6=j
|aij |



The following subadditivity property is key to diffusive
interconnection analysis.

Proposition 2: [18] Let (X, ‖ · ‖X) be a normed space. For
any f , g : Y → X and any Y ⊆ X:

1) M+
Y,X [f + g] ≤M+

Y,X [f ] +M+
Y,X [g];

2) M+
Y,X [αf ] = αMY,X [f ] for α ≥ 0.

The (lub) logarithmic Lipschitz constant makes sense even if
f is not differentiable. However, the constant can be tightly
estimated, for differentiable mappings on convex subsets of
finite-dimensional spaces, by means of Jacobians.

Lemma 1: [42] For any given norm on X = Rn, let M
be the (lub) logarithmic Lipschitz constant induced by this
norm. Let Y be a connected subset of X = Rn. Then for any
(globally) Lipschitz and continuously differentiable function
f : Y → Rn,

sup
x∈Y

MX [Jf (x)] ≤MY,X [f ]
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Moreover, if Y is convex, then

sup
x∈Y

MX [Jf (x)] = MY,X [f ] .

Note that for any x ∈ Y , Jf (x) : X → X . Therefore, we
use MX instead of MX,X , as we said in Definition 2.
We also recall a notion of generalized derivative, that can
be used when taking derivatives of norms (which are not
differentiable).
Definition 3: The upper left and right Dini derivatives for
any continuous function, Ψ: [0,∞)→ R, are defined by

(D±Ψ) (t) = lim sup
h→0±

1

h
(Ψ(t+ h)−Ψ(t)) .

Note that D+Ψ and/or D−Ψ might be infinite.

B. Single System of ODEs

Definition 4: [43] Given a norm ‖ · ‖, the system (1), or the
time-dependent vector field f , is said to be infinitesimally
contracting with respect to this norm on a set V ⊆ Rn if
there exists some norm in V , with associated matrix measure
M , such that, for some constant c > 0 (the contraction rate),
it holds that:

M [Jf (x, t)] ≤ −c, ∀x ∈ V, ∀t ≥ 0. (4)
The key result is that infinitesimal contractivity implies
global contractivity, see [3], [4], [10], [17], [44]:
Theorem 1: Suppose that V is a convex subset of Rn and
that f(x, t) is infinitesimally contracting with respect to a
norm, ‖ · ‖, with contraction rate c. Then, for every two
solutions x(t) and y(t) of (1), that remain in V , it holds
that:

‖x(t)− y(t)‖ ≤ e−ct‖x(0)− y(0)‖, ∀ t ≥ 0 . (5)
To prove Theorem 1, we will use the following general result
(with a proof as given in [45], and applied with “−c”), which
estimates rates of contraction (or expansion, if c > 0) among
any two functions, even functions that are not solutions of
the same system of ODEs (see comment on observers to
follow):
Lemma 2: Let (X, ‖ · ‖X) be a normed space and G : Y ×
[0,∞) → X be a C1 function, where Y ⊆ X . Suppose
u, v : [0,∞)→ Y satisfy

(u̇− v̇)(t) = Gt(u(t))−Gt(v(t)),

where u̇ = du(t)
dt and Gt(u) = G(u, t). Let

c := sup
t∈[0,∞)

MY,X [Gt].

Then for all t ∈ [0,∞),

‖u(t)− v(t)‖X ≤ ect‖u(0)− v(0)‖X . (6)

Remark 5: In the finite-dimensional case, Lemma 2 can be
verified in terms of Jacobians. Indeed, suppose that X = Rn,
and that Y is a convex subset of Rn. Then, by Lemma 1,

c = c̃ := sup
(t,w)∈[0,∞)×Y

MX [JGt(w)] .

Therefore,

‖u(t)− v(t)‖X ≤ ec̃t‖u(0)− v(0)‖X .

In fact, in the finite-dimensional case, a more direct proof
of Lemma 2 can instead be given. We sketch it next. Let
z(t) = u(t)− v(t). We have that

ż(t) = A(t)z(t),

where A(t) =

∫ 1

0

∂f

∂x
(su(t) + (1− s)v(t)) ds. Now, by

subadditivity of matrix measures, which, by continuity, ex-
tends to integrals, we have:

M [A(t)] ≤ sup
w∈V

M

[
∂f

∂x
(w)

]
.

Applying Coppel’s inequality, (see e. g. [46]), gives the
result.

Proof of Theorem 1. Since f is infinitesimally contracting,
i.e.,

sup
(x,t)

M [Jf (x, t)] = −c ,

and
ẋ− ẏ = f(x, t)− f(y, t),

by Remark 5, (5) can be obtained.
Note that we use the convexity of V to apply Remark 5 (or
Lemma 1). One can prove Theorem 1 for any arbitrary V
but for

M [f (x, t)] ≤ −c, ∀x ∈ V, ∀t ≥ 0,

instead of

M [Jf (x, t)] ≤ −c, ∀x ∈ V, ∀t ≥ 0.

In addition, one can prove the converse of Theorem 1 for
any arbitrary V , but for

M+ [f (x, t)] ≤ −c, ∀x ∈ V, ∀t ≥ 0,

see Proposition 3 below for more details.
Remark 6: The statement of Lemma 2 allows for consider-
ably more generality than Theorem 1. Suppose for example
that we consider a standard observer configuration:

ẋ = f(x, u)

ż = f(z, u) +K(h(z)− h(x))

where h is an output function and K is an observer gain
matrix. Let

Gt(y) := f(y, u(t)) +Kh(y)

evaluated along any given solution with an input u. Then,
ż − ẋ = Gt(z)−Gt(x), and thus, if Gt has a contractivity
property, it follows that the error z−x between the estimate
and the state converges exponentially to zero, by Lemma 2.
(Theorem 1 does not apply, since x and z solve different
equations.) This recovers the standard Luenberger observer
construction for linear time-invariant systems.
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Corollary 1: Under the assumptions of Theorem 1:

• IfA is a non-empty forward-invariant set for the dynam-
ics, then every solution must approach A. Indeed, take
any trajectory x(t) and a trajectory y(t) with y(0) ∈ A.
Then

dist (x(t),A) ≤ ‖(x− y)(t)‖ ≤ e−ct‖(x− y)(0)‖ → 0,

as t→∞.
• If an equilibrium exists, then it must be unique and

globally asymptotically stable.

When contractive systems are forced by periodic signals,
they are “entrained”, in the sense that solutions converge
to unique limit cycles. This property is very important in
applications, see for example [26] and [44].
Definition 5: Given a number T > 0, we will say that
system (1) is T -periodic if it holds that f(x, t + T ) =
f(x, t) ∀ t ≥ 0, x ∈ V . Notice that a system ẋ =
f (x, u(t)) with input u(t) is T -periodic if u(t) is itself a
periodic function of period T .
The basic theoretical result about periodic orbits is as fol-
lows. For more details see [10], [11], [43].
Theorem 2: Suppose that:

• V is a closed convex subset of Rn;
• f is infinitesimally contracting with contraction rate c;
• f is T -periodic.

Then, there is a unique periodic solution x̂(t) : [0,∞)→ V
of (1) of period T and, for every solution x(t), it holds that
‖x(t)− x̂(t)‖ → 0 as t→∞.

Proof of Theorem 2. We denote by ϕ(t, s, ξ) the value of
the solution x(t) at time t of the differential equation (1)
with initial value x(s) = ξ. Define now P (ξ) = ϕ(T, 0, ξ),
where ξ = x (0) ∈ V .
Claim. P k(ξ) = ϕ(kT, 0, ξ) for all positive integers k and
ξ ∈ V .
We will prove the claim by recursion. In particular, the
statement is true by definition when k = 1. Inductively,
assuming it is true for k, we have:

P k+1(ξ) = P (P k(ξ)) = ϕ(T, 0, P k(ξ))

= ϕ(T, 0, ϕ(kT, 0, ξ)) = ϕ(kT + T, 0, ξ).

This proves the claim.
Observe that P is a contraction with factor e−cT < 1:
‖P (ξ)− P (ζ)‖ ≤ e−cT ‖ξ − ζ‖ for all ξ, ζ ∈ V , as a con-
sequence of Theorem 1. The set V is a closed subset of Rn
and hence is complete as a metric space with respect to the
distance induced by the norm being considered. Thus, by the
contraction mapping theorem, there is a (unique) fixed point
ξ̄ of P . Let x̂(t) := ϕ(t, 0, ξ̄). Since x̂(T ) = P (ξ̄) = ξ̄ =
x̂(0), x̂(t) is a periodic orbit of period T . Moreover, again by
Theorem 1, we have that ‖x(t)− x̂(t)‖ ≤ e−ct‖ξ − ξ̄‖ → 0.
Uniqueness is clear, since two different periodic orbits would
be disjoint compact subsets, and hence at positive distance
from each other, contradicting convergence. This completes
the proof.

The next result is for the special case of Euclidean norms.
Lemma 3: Suppose that P is a positive definite matrix and
A is an arbitrary matrix.

1) If M2,P [A] = µ, then QA + ATQ ≤ 2µQ, where
Q = P 2.

2) If for some positive definite matrix Q, QA+ATQ ≤
2µQ, then there exists a positive definite matrix P such
that P 2 = Q and M2,P [A] ≤ µ.

Proof: First suppose M2,P [A] = µ. By definition of µ:

1

2

(
PAP−1 +

(
PAP−1

)T) ≤ µI.
Since P is symmetric, so is P−1, so

PAP−1 + P−1ATP ≤ 2µI.

Now multiplying the last inequality by P on the right and
the left, we get:

P 2A+ATP 2 ≤ 2µP 2.

This proves 1. Now assume that for some positive definite
matrix Q, QA + ATQ ≤ 2µQ. Since Q > 0, there exists
P > 0 such that P 2 = Q; moreover, because Q is symmetric,
so is P . Hence we have:

P 2A+ATP 2 ≤ 2µP 2.

Multiplying the last inequality by P−1 on the right and the
left, we conclude 2.
Remark 7: Lemma 3 implies that, for linear time-invariant
systems ẋ = Ax, contractivity with respect to some weighted
L2 norm (with a not necessarily diagonal weighting matrix)
is equivalent to A being a Hurwitz matrix. One direction is
clear, as contractivity obviously implies stability. Conversely,
suppose that A is Hurwitz. Then, one may pick a quadratic
Lyapunov function V (x) = xTQx, where Q is a positive
definite matrix. By definition of Lyapunov function, QA +
ATQ ≤ −βI , for some β > 0. Letting γ := β/λmax,
where λmax is the largest eigenvalue of Q, we have that
also QA + ATQ ≤ −γQ. (Conversely, an inequality of the
type QA+ATQ ≤ −µQ implies that QA+ATQ ≤ −βI , if
we define β := µλmin and λmin is the smallest eigenvalue of
Q.) Thus, there is a positive definite P so that M2,P [A] ≤
−γ/2 < 0, showing contractivity with respect to the P -
weighted L2 norm. Of course, contractivity with respect to
a diagonally weighted norm, a property which is required in
the interconnection and PDE results mentioned later, imposes
additional requirements even in the linear time invariant case,
amounting to asking that a quadratic Lyapunov function’s
principal axes align with the natural coordinates in Rn.
Systems admitting such Lyapunov functions are often called
“diagonally stable” [47], and the study of diagonal stability
is closely related to passivity [48].
The significance of Theorem 1 is that it is true for any norm.
Different norms are appropriate to different problems, just
as different Lyapunov functions have to be carefully chosen
when analyzing a nonlinear system. The choice of norms is
a key step in the application of contraction techniques. Non-
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Euclidean (i.e., not weighted L2) norms have been found to
be useful in the study of many problems. To illustrate this
fact, we next provide an example of a biochemical model
which can be shown to be contractive by applying Theorem 1
when using a weighted L1 norm, but which is not contractive
in any weighted Lp norm, for any p > 1. The proof that L1

norms suffice for this example is from [44], and the proof
of non-contractivity in Lp, p > 1, is from [40].

C. Example: Biochemical Model

A typical biochemical reaction is one in which a molecule
X (whose concentration is quantified by the non-negative
variable x = x(t)) binds to a second molecule S (whose
concentration is quantified by s = s(t) ≥ 0), to produce a
dimer Y (whose concentration is quantified by y = y(t) ≥
0), and the molecule X is subject to degradation and dilution
(at rate δx, where δ > 0) and production according to an
external signal z = z(t) ≥ 0. Examples of such reactions
might be an enzyme binding to a substrate to produce a
complex, or a transcription factor binding to an unoccupied
promoter to make an active promoter, and the enzyme or the
transcription factor is itself being continuously created and
destroyed. The diagram for such a reaction is as follows:

0
z−→ X

δ−→ 0 , X + S
k2−⇀↽−
k1

Y.

Using mass-action kinetics, and assuming a well-mixed
reaction in a large volume, the system of chemical reactions
is given by:

ẋ = z(t)− δx+ k1y − k2sx
ẏ = −k1y + k2sx
ṡ = k1y − k2sx.

We observe that y(t) + s(t) = SY remains constant along
solutions. Thus we can study the following reduced system:

ẋ = z(t)− δx+ k1y − k2(SY − y)x
ẏ = −k1y + k2(SY − y)x.

Note that

(x(t), y(t)) ∈ V = [0,∞)× [0, SY ]

for all t ≥ 0 (V is convex and forward-invariant), and SY ,
k1, k2, δ, d1, and d2 are arbitrary positive constants.
Let JF be the Jacobian of

F = (z− δx+ k1y− k2(SY − y)x,−k1y+ k2(SY − y)x)T ,

JF :=

(
−δ − k2(SY − y) k1 + k2x
k2(SY − y) −(k1 + k2x)

)
.

Following [44], we show

sup
(x,y)∈V

M1,Q [JF (x, y)] < 0,

where
Q = diag (1, 1 + δ/(k2SY )− ζ) ,

and we will pick a suitable 0 < ζ < δ
k2SY

. We will find a
q > 1 such that the above holds with Q = diag (1, q). For any

such q, we can always find ζ such that q := 1+ δ
k2SY

−ζ > 1.
With this form for Q,

QJFQ
−1 =

 −δ − a b

q
aq −b

 ,

where a = k2(SY − y) ∈ [0, k2SY ] and b = k1 + k2x ∈
[k1,∞). Since a ≥ 0, b > 0, and assuming q > 0, by Table
I, we have:

M1,Q[JF ] = M1

[
QJFQ

−1
]

= max{−δ − a+ |aq| ,−b+ |b/q|}
= max{−δ + a(q − 1), b (1/q − 1)}.

So to show that M1,Q[JF ] < 0, we need to find a range for
the values of q such that:

−δ + a(q − 1) < 0, (7)

and
b

(
1

q
− 1

)
< 0. (8)

Equation (8) holds if and only if q > 1. So we need to find
an appropriate q > 1 such that Equation (7) holds:

− δ + a(q − 1) < 0 iff

q < 1 +
δ

a
= 1 +

δ

k2(SY − y)
< 1 +

δ

k2SY
.

Hence for Q = diag (1, q), with 1 < q < 1 +
δ

k2SY
,

M1,Q[JF ] < 0. Therefore, by Theorem 1, the system is
contracting. Note that a weighted L1 norm is necessary, since
with Q = I we obtain M1 = 0.

We will show that for any p > 1 and any diagonal Q, it is
not true that Mp,Q[JF (x, y)] < 0 for all (x, y) ∈ V .

We first consider the case p 6= ∞. We will show
that there exists (x0, y0) ∈ V such that for any small
h > 0, ‖I + hQJF (x0, y0)Q−1‖p > 1. This will imply
Mp,Q [JF (x0, y0)] ≥ 0. Computing explicitly, we have the
following expression for ‖I + hQJFQ

−1‖p:

sup
(ξ1,ξ2)6=(0,0)

(∣∣∣∣ξ1 − h(δ + a)ξ1 + h
bξ2

q

∣∣∣∣p + |haqξ1 + ξ2 − hbξ2|p
) 1
p

(|ξ1|p + |ξ2|p)
1
p

≥

(∣∣∣∣1− h(δ + a) + h
bλ

q

∣∣∣∣p + |haq + λ− hbλ|p
) 1
p

(1 + |λ|p)
1
p

,

where we take a point of the form (ξ1, ξ2) = (1, λ), for a
λ > 0 which will be determined later. To show(∣∣∣∣1− h(δ + a) + h

bλ

q

∣∣∣∣p + |haq + λ− hbλ|p
) 1
p

(1 + |λ|p)
1
p

> 1,

we will equivalently show that for any small enough h > 0:

1

h

(∣∣∣∣1− h(δ + a) + h
bλ

q

∣∣∣∣p+|haq + λ− hbλ|p − 1− |λ|p
)

(9)
is positive. Note that the lim

h→0+
of the left hand side of the
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above inequality is f ′(0) where

f(h) =

∣∣∣∣1 + h(
bλ

q
− (δ + a))

∣∣∣∣p + |λ+ h(aq − bλ)|p .

Therefore, it suffices to show that f ′(0) > 0 for some value
(x0, y0) ∈ V (because f ′(0) > 0 implies that there exists
h0 > 0 such that for 0 < h < h0, the expression in (9) is
positive). Since p > 1, by assumption, f is differentiable and

f ′(h) = p

(
bλ

q
− (δ + a)

) ∣∣∣∣1 + h

(
bλ

q
− (δ + a)

)∣∣∣∣p−2

(
1 + h

(
bλ

q
− (δ + a)

))
+ p(aq − bλ) |λ+ h(aq − bλ)|p−2

(λ+ h(aq − bλ)) .

(Note that d
dx |u(x)|p = |u(x)|p−2u(x) du

dx (x).)
Hence, since λ > 0

f ′(0) = p

(
bλ

q
− (δ + a)

)
+ p(aq − bλ)λp−1

= p

(
bλ

q
− a
)

(1− λp−1q)− pδ.

Choosing λ small enough such that 1 − λp−1q > 0 and
choosing x, or equivalently b, large enough, we can make
f ′(0) > 0.
For p =∞, using Table I,

Mp

[
QJFQ

−1
]

= max

{
−δ − a+

∣∣∣∣ bq
∣∣∣∣ ,−b+ |aq|

}
.

For large enough x,

−δ − a+ |b/q| > 0

(and −b+ aq < 0) and hence M∞
[
QJFQ

−1
]
> 0.

D. Some relations to dissipative operators and passivity

In this section, we show that the converse of Theorem 1
is true as well, and in fact that contractivity is equivalent
to a number of other inequalities. After that, we review the
definitions of accretive and dissipative operators on Banach
spaces, and see how these are related to contractive operators.
We also provide a remark about passivity.
The following result summarizes the basic equivalences.
Proposition 3: Consider

ẋ = f(x, t), (10)

where x(t) ∈ Y ⊂ X , X is a Banach space with norm ‖ · ‖,
and t ∈ [0,∞). We assume that

f : Y × [0,∞)→ X

is globally (uniformly) Lipschitz vector field in x and con-
tinuous in (x, t).
Then the following are equivalent:

1) For any two solutions x, y of (10), and all t, s ≥ 0,

‖x(t+ s)− y(t+ s)‖ ≤ ect‖x(s)− y(s)‖.

2) For any t ≥ 0,
M+[ft] ≤ c,

where ft(x) = f(x, t).
3) For any two points x, y, and any t ≥ 0

(x− y, ft(x)− ft(y))+ ≤ c‖x− y‖2.

4) For any two solutions x, y of (10), and all t ≥ 0,

D+‖(x− y)(t)‖ ≤ c‖(x− y)(t)‖.

Proof:

• 1 ⇒ 2. Fix s ≥ 0 and let a 6= b ∈ Y be arbitrary.
For t ≥ s, let x(t), y(t) be the solutions of (10) with
x(s) = a and y(s) = b respectively.

‖x(s+ h)− y(s+ h)‖
= ‖x(s)− y(s) + h(fs(x(s))− fs(y(s)))) + o(h)‖
≤ ech‖x(s)− y(s)‖

Therefore, by subtracting ‖x(s)−y(s)‖ from both sides
of the above inequality and dividing by h > 0, and
taking the limh→0+ , we get: (we let x(s) = a and
y(s) = b for simplicity)

lim
h→0+

‖a− b+ h(fs(a)− fs(b)) + o(h)‖ − ‖a− b‖
h

≤ lim
h→0+

ech − 1

h
‖a− b‖,

dividing by ‖a− b‖, we get:

lim
h→0+

‖a− b+ h(fs(a)− fs(b))‖ − ‖a− b‖
h‖a− b‖

≤ c,

and now taking sup over all a 6= b ∈ Y , we get:

M+[fs] ≤ c.
• 2⇒ 3. For any fixed t, and any x 6= y ∈ Y

(x− y, ft(x)− ft(y))+

= ‖x− y‖ lim
h→0+

‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖
h

= ‖x− y‖2 lim
h→0+

‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖
h‖x− y‖

≤ M
+

[ft]‖x− y‖2

≤ c‖x− y‖2.

• 3 ⇒ 4. Using the definition of upper Dini derivative,
we have: (we drop the argument t for simplicity)

D+‖(x− y)(t)‖

= lim sup
h→0+

1

h
(‖(x− y)(t+ h)‖ − ‖(x− y)(t)‖)

= lim sup
h→0+

1

h
(‖x− y + h(ẋ− ẏ)‖ − ‖x− y‖)

= lim
h→0+

1

h
(‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖)

Note that if (x − y)(t) = 0, then using the above
inequality D+‖(x − y)(t)‖ = 0, and 4 hold. Assume
that (x−y)(t) 6= 0. Multiplying both sides of the above
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inequality by ‖(x− y)(t)‖, we get:

‖(x− y)(t)‖D+‖(x− y)(t)‖

= ‖x− y‖ lim
h→0+

1

h
(‖x− y + h(ft(x)− ft(y))‖ − ‖x− y‖)

= ((x− y)(t), ft(x(t))− ft(y(t)))+

≤ c‖(x− y)(t)‖2 using 3.

Dividing by (x− y)(t) 6= 0, we get 4.
• 4⇒ 1. Let φ(t) := ‖(x− y)(t)‖. A simple calculation

shows that

D+
(
φ(t)e−ct

)
≤ D+φ(t)e−ct + φ(t)(−ce−ct) ≤ 0.

Applying Gronwall’s Lemma in the form given for
example in [49], Appendix A, we have that

φ(t) ≤ ectφ(0)

for all t, as desired.

Note that even if Y is a convex subset of X , 1 ⇐⇒ 2, in
Proposition 3 is not a generalization of Theorem 1, because
M+[f ] ≤ c doesn’t imply M [f ] ≤ c, in general.
Definition 6: [19] An F : Y ⊂ X → X satisfying

(x− y, F (x)− F (y))+ ≥ 0, for any x, y ∈ Y

is said to be accretive (monotone when (·, ·)+ is a true
inner product), while F is dissipative if −F is accretive.
Equivalently, by the definition of M±, F is said to be
accretive if M+[F ] ≥ 0 and F is dissipative if M+[−F ] ≥
0, i.e. M−[F ] ≤ 0, (by the definition of M± and Proposition
1, part 1).
Note that in Hilbert spaces, M+[F ] = M−[F ] = M [F ].
Therefore, F − cI is dissipative, if M−[F ] = M+[F ] ≤ c.
In particular, when c < 0, F is dissipative if and only if F
is infinitesimally contractive.
There is a connection with passivity, as well. Recall (see
e.g. [50]) that, in control-theoretic terminology, an operator
F between Hilbert spaces is said to be passive provided that
(u, F (u)) ≥ 0 for all inputs u. (More precisely, this property
is defined for causal operators, and the inner product is taken
for all truncations of the signal. The terminology is motivated
by the special case where the input u and output F (u) are a
voltage and a current, respectively, and the energy absorbed
by the dynamical system, which is the inner product of the
input and output, is non-negative.) Incremental passivity is
usually defined by asking that (u − v, F (u) − F (v)) ≥ 0
for all inputs u and v (for linear systems this is of course
the same as passivity). Thus, in Hilbert spaces (where that
all variants of M coincide), the vector field F , seen as
a memoryless mapping, is accretive if and only if it is
incrementally passive.

III. DIFFUSIVE INTERCONNECTION OF ODE SYSTEMS

In this section, we study a network of identical ODE models
which are diffusively interconnected.
The state of the system will be described by a vector x which
one may interpret as a vector collecting the states xi (each

of them itself possibly a vector) of identical “agents” which
tend to follow each other according to a diffusion rule, with
interconnections specified by an undirected graph. Another
interpretation, useful in the context of biological modeling,
is a set of chemical reactions among species that evolve in
separate compartments (e.g., nucleus, cytoplasm, membrane,
in a cell); then the xi’s represent the vectors of concentrations
of the species in each separate compartment.
In order to formally describe the interconnections, we use
the following concepts in this section:

• For a fixed convex subset of Rn, say V , F̃ : V N ×
[0,∞)→ RnN is a function of the form:

F̃ (x, t) =
(
F (x1, t)

T , . . . , F (xN , t)
T
)T
,

where x =
(
xT1 , . . . , x

T
N

)T
, with xi ∈ V for each i, and

F (·, t) = Ft : V → Rn is a C1 function.
• For any x ∈ V N we define ‖x‖p,Q as follows:

‖x‖p,Q =
∥∥∥(‖Qx1‖p, · · · , ‖QxN‖p)T

∥∥∥
p
,

for a positive diagonal matrix Q = diag (q1, . . . , qn),
and 1 ≤ p ≤ ∞.
When N = 1, we simply have a norm in Rn:

‖x‖p,Q := ‖Qx‖p.

• D = diag (d1, . . . , dn) with di ≥ 0, and dj > 0 for
some j, which we call the diffusion matrix.

• L ∈ RN×N is a symmetric matrix and L1 = 0,
where 1 = (1, . . . , 1)T . We think of L as the Laplacian
of a graph that describes the interconnections among
component subsystems.

• ⊗ denotes the Kronecker product of two matrices.
Definition 7: For any arbitrary graph G with the associated
(graph) Laplacian matrix L, any diagonal matrix D, and
any F : V → Rn, the associated G−compartment system,
denoted by (F,G, D), is defined by

ẋ(t) = F̃ (x(t), t)− (L ⊗D)x(t), (11)

where x, F̃ , and D are as defined above.
The “symmetry breaking” phenomenon of diffusion-induced,
or Turing, instability refers to the case where a dynamic
equilibrium ū of the non-diffusing ODE system ẋ = F (x, t)
is stable, but, at least for some diagonal positive matrices D,
the corresponding interconnected system (11) is unstable.
The following theorem (from [40]), shows that, for contrac-
tive reaction part F , no diffusion instability will occur, no
matter what is the size of the diffusion matrix D.
Theorem 3: Consider the system (11). Let

c = sup
t∈[0,∞)

Mp,Q[Ft],

where Mp,Q is the (lub) logarithmic Lipschitz constant
induced by the norm ‖ · ‖p,Q on Rn defined by ‖x‖p,Q :=
‖Qx‖p. Then for any two solutions x, y of (11), we have

‖x(t)− y(t)‖p,Q ≤ e
ct ‖x(0)− y(0)‖p,Q .
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Remark 8: Under the assumptions of Theorem 3, by Re-
mark 5, if for any t ≥ 0 and any x, Mp,Q[JF (x, t)] ≤ c,
then

‖x(t)− y(t)‖p,Q ≤ e
ct ‖x(0)− y(0)‖p,Q .

Remark 9: Consider the linear system ẋ = Ax, where A =(
1 2
−2 −3

)
. It is easy to see that A is Hurwitz. Therefore

one may pick a quadratic Lyapunov function V (x) = xTQx,
where Q is a positive definite matrix. By definition of
Lyapunov function, QA + ATQ is negative definite. Next
we show that Q must be a non-diagonal: Suppose that Q is
a positive definite diagonal matrix Q = diag (q1, q2), and
V (x) = xTQx. We observe that QA + ATQ cannot be
negative definite. A simple calculation shows that

QA+ATQ =

(
2q1 2(q1 − q2)

2(q1 − q2) −6q2

)
.

The matrix QA + ATQ is negative definite if q1 < 0 and
det(QA + ATQ) < 0. But q1 < 0 contradicts positive
definiteness of Q.
Note that if QA + ATQ was negative definite for some
diagonal matrix Q, then by Remark 7, for some diagonal
positive definite matrix P , M2,P [A] < 0 and by Theorem 3,
x = 0 would remain a stable equilibrium for the intercon-
nected system, with any diffusion matrix D, (D diagonal).
On the other hand, for D = diag (1/4, 3), x = 0 loses its
stability in the interconnected system:

ẋ = (A−D)x+Dx′

ẋ′ = (A−D)x′ +Dx

diagrammed in Figure 1.

� -

� -

ẋ1=Ax+d1(x′1−x1) ẋ′1=Ax′+d1(x1−x′1)

ẋ2=Ax+d2(x′2−x2) ẋ′2=Ax′+d2(x2−x′2)

Fig. 1: Interconnection between two systems ẋ = Ax, for
x = (x1, x2)T

A simple calculation shows that(
A−D D
D A−D

)
has a positive eigenvalue, and therefore, (0, 0)T cannot be a
stable equilibrium. So diffusion de-stabilizes this system.

A. Synchronization

Definition 8: We say that the G−compartment system (11)
synchronizes, if for any solution x =

(
xT1 , . . . , x

T
N

)T
of (11),

and for all i, j ∈ {1, . . . , N}, (xi − xj)(t)→ 0 as t→∞.
An easy first result is as follows.
Proposition 4: Under the assumptions of Theorem 3, if c <
0, then the G−compartment system (11) synchronizes.

Proof: Note that z(t) := (z1(t), . . . , z1(t))
T is a solu-

tion of (11), where z1(t) is a solution of ẋ = F (x, t). By

Theorem 3, if for any t ≥ 0 and any x, Mp,Q[JF (x, t)] ≤ c,
then for any solution x(t) of (11),

‖x(t)− z(t)‖p,Q ≤ e
ct ‖x(0)− z(0)‖p,Q .

When c < 0, (xi − z1)(t) → 0, hence (xi − xj)(t) → 0 as
t→∞.
In Proposition 4, we imposed a strong condition on F , which
in turn leads to the very strong conclusion that all solutions
should converge exponentially to a particular solution, no
matter the strength of the interconnection (choice of diffusion
matrix). A more interesting and challenging problem is to
provide a condition that links the vector field, the graph
structure, and the matrix D, so that interesting dynamical
behaviors (such as oscillations in autonomous systems, which
are impossible in contractive systems) can be exhibited by
the individual systems, and yet the components synchronize.
In [31], we discuss several matrix measure based conditions
that guarantee synchronization of ODE systems in special
classes of graphs. As an example, we state a result for
the case where systems interconnected through a complete
graph.
Consider a G−compartment system with an undirected com-
plete graph G. (Note that an undirected complete graph of
N nodes has m =

(
N
2

)
= N(N−1)

2 vertices.) The following
system of ODEs describes the evolution of the interconnected
agents xi’s:

ẋi = F (xi, t) +D

N∑
j=1

(xj − xi) (12)

Proposition 5: Let ‖·‖ be an arbitrary norm on Rn. Suppose
x is a solution of Equation (12) and let

c := sup
(x,t)

M [JF (x, t)−ND]

where M is the logarithmic norm induced by ‖ · ‖. Then
m∑
i=1

‖ei(t)‖ ≤ ect
m∑
i=1

‖ei(0)‖, (13)

where ei, for i = 1, . . . ,m are the edges of G, meaning the
differences xi(t)−xj(t) for i < j. In particular, when c < 0,
the system synchronizes.

Proof: For any fixed i, j ∈ {1, . . . , N}, using Equation
(12), we have:

ẋi − ẋj = Gt(xi)−Gt(xj),

where Gt(x) := F (x, t)−NDx. By Remark 5,

‖ei(t)‖ ≤ ect‖ei(0)‖,

where c = sup
(x,t)

M [JGt(x)] = sup
(x,t)

M [JF (x, t) − ND]. By

taking
∑

over all the edges (the differences xi−xj), we get
Equation (13).

B. Open problems

Although synchronization of the interconnected system (11)
in weighted L2 norms is a well-understood problem, current
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results in non-L2 norms so far only apply to certain spe-
cial classes of graphs (line, complete, star graphs and the
cartesian products of these graphs); good generalizations to
arbitrary graphs are the subject of current research.

IV. CONTRACTIONS FOR PDE SYSTEMS

In this section, we study reaction-diffusion PDE systems of
the general form:

∂u1

∂t
(ω, t) = F1(u(ω, t), t) + d1∆u1(ω, t)

...
∂un
∂t

(ω, t) = Fn(u(ω, t), t) + dn∆un(ω, t)

subject to the Neumann boundary condition:

∂ui
∂n

(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞), ∀i = 1, . . . , n,

which can be written as the following closed form:

∂u

∂t
(ω, t) = Ft(u(ω, t)) +D∆u(ω, t)

∂u

∂n
(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞),

(14)

where

• Ft(x) = F (x, t) and F : V × [0,∞) → Rn is a
(globally) Lipschitz vector field with components Fi:

F (x, t) = (F1(x, t), · · · , Fn(x, t))T ,

for some functions Fi : V × [0,∞)→ R, where V is a
convex subset of Rn.

• D = diag (d1, . . . , dn) with di ≥ 0, and dj > 0 for
some j, which we call the diffusion matrix.

• Ω is a bounded domain in Rm with smooth boundary
∂Ω and outward normal n.

•
∂u

∂n
=

(
∂u1

∂n
, . . . ,

∂un
∂n

)T
.

In biology, a PDE system of this form describes individuals
(particles, chemical species, etc.) of n different types, with
respective abundances ui(ω, t) at time t and location ω ∈
Ω, that can react instantaneously, guided by the interaction
rules encoded into the vector field F , and can diffuse due to
random motion.
We show that if the reaction system is “contractive” in the
sense that trajectories globally and exponentially converge
to each other with respect to a diagonally weighted Lp

norm, then the same property is inherited by the PDE. In
particular, if there is an equilibrium ū of du/dt = F (u, t),
it will follow that this equilibrium is globally exponentially
stable for the PDE system. When the time-dependence of
F on t is periodic (as in the example below when z(t) is
periodic), there will be convergence to a (unique) globally
asymptotically stable solution, uniform in space. This is
because the corresponding ODE system admits a periodic
limit cycle, which is also a solution of the associated PDE,
as shown in Theorem 2.

Definition 9: By a solution of the PDE

∂u

∂t
(ω, t) = Ft(u(ω, t)) +D∆u(ω, t)

∂u

∂n
(ξ, t) = 0 ∀ξ ∈ ∂Ω, ∀t ∈ [0,∞),

on an interval [0, T ), where 0 < T ≤ ∞, we mean a function
u = (u1, · · · , un)T , with u : Ω̄× [0, T )→ V , such that:

1) for each ω ∈ Ω̄, u(ω, ·) is continuously differentiable;
2) for each t ∈ [0, T ), u(·, t) is in Y, where

Y =

{
v : Ω̄→ V, v = (v1, · · · , vn),

vi ∈ C2
R
(
Ω̄
)
, ∂vi

∂n (ξ) = 0, ∀ξ ∈ ∂Ω ∀i

}
and C2

R
(
Ω̄
)

is the set of twice continuously differen-
tiable functions Ω̄→ R; and

3) for each ω ∈ Ω̄, and each t ∈ [0, T ), u satisfies the
above PDE.

Under the additional assumptions that F (x, t) is twice con-
tinuously differentiable with respect to x and continuous
with respect to t, theorems on existence and uniqueness for
PDEs such as (14) can be found in standard references, e.g.
[51], [52]. One must impose appropriate conditions on the
vector field, on the boundary of V , to insure invariance of
V . Convexity of V insures that the Laplacian also preserves
V . Since we are interested here in estimates relating pairs
of solutions, we will not deal with existence and well-
posedness. Our results will refer to solutions already assumed
to exist.
Now we state the main theorem of this section, which is
analogous to Theorem 3 in the discrete case. For a proof
and more details, see [40].
Theorem 4: Consider the reaction diffusion PDE (14). Let
c = sup

t∈[0,∞)

Mp,Q[Ft] for some 1 ≤ p ≤ ∞, and some

positive diagonal matrix Q. Then for every two solutions
u, v of the PDE (14) and all t ∈ [0, T ):

‖u(·, t)− v(·, t)‖p,Q ≤ e
ct ‖u(·, 0)− v(·, 0)‖p,Q .

A generalization of Theorem 4, to spatially-varying diffusion,
for non diagonal matrices Q, but restricted to p = 2, is given
in [53].
Back to the example in Section II-C, consider the same
system in a spatial domain, (let’s say Ω = (0, 1)) and assume
that the species diffuse. We let the domain Ω represent the
part of the cytoplasm where these chemicals are free to
diffuse. Taking equal diffusion constants for S and Y (which
is reasonable since typically S and Y have approximately the
same size), a natural model is given by a reaction diffusion
system (dropping the arguments (ω, t) for simplicity)

∂x

∂t
= z(t)− δx+ k1y − k2sx+ d1∆x

∂y

∂t
= −k1y + k2sx+ d2∆y

∂s

∂t
= k1y − k2sx+ d2∆s.

If we assume that initially S and Y are uniformly distributed,
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it follows that ∂
∂t (y(ω, t) + s(ω, t)) = 0, so y(ω, t) +

s(ω, t) = y(ω, 0) + s(ω, 0) = SY is a constant. Thus we
can study the following reduced system:

∂x

∂t
= z(t)− δx+ k1y − k2(SY − y)x+ d1∆x

∂y

∂t
= −k1y + k2(SY − y)x+ d2∆y.

(15)

Note that

(x(ω, t), y(ω, t)) ∈ V = [0,∞)× [0, SY ]

for all t ≥ 0 and ω ∈ (0, 1) (V is convex and forward-
invariant), and SY , k1, k2, δ, d1, and d2 are arbitrary positive
constants.
In Section II-C, we showed that the ODE system is con-
tractive under a weighted L1 norm. Now by Theorem 4, we
conclude that (15) is also contractive, no matter what the di’s
are.

V. UNIFORM SOLUTIONS OF PDE SYSTEMS

As in the discrete case, we are also interested in finding
some conditions on F and D that guarantee the synchrony
behavior of the solutions of the PDE (14). Note that under
the conditions of Theorem 4, if c < 0, any solution u of the
PDE (14) with u(ω, 0) = u0(ω) exponentially converges to
the spatially uniform solution ū(t) which is itself the solution
of the following ODE system:

ẋ = F (x, t),

x(0) =
1

|Ω|

∫
Ω

u0(ω) dω.
(16)

But, just as remarked for interconnections of ODE systems,
the condition c < 0 rules out any interesting non-equilibrium
behavior. So we look for a weaker condition than c < 0,
to conclude spatial uniform convergence result (which is a
weaker property than contraction).
Recall that for any bounded, open subset Ω ⊂ Rm, there
exists a sequence of positive eigenvalues 0 ≤ λ1 ≤
λ2 ≤ . . . (going to ∞) and a sequence of corresponding
orthonormal eigenfunctions: φ1, φ2, . . . (defining a Hilbert
basis of L2(Ω)) satisfying the following Neumann eigenvalue
problem:

−∆φi = λiφi in Ω

∇φi · n = 0 on ∂Ω
(17)

Note that the first eigenvalue is always zero, λ1 = 0, and the
corresponding eigenfunction is a nonzero constant (φ(ω) =
1/
√
|Ω|).

The following re-phasing of a theorem from [28], provides
a sufficient condition on F and D using the Jacobian matrix
of the reaction term and the second Neumann eigenvalue of
the Laplacian operator on the given spatial domain to insure
the convergence of trajectories, in this case to their space
averages in weighted L2 norms. The proof is based on the use
of a quadratic Lyapunov function, which is appropriate for
Hilbert spaces. We have translated the result to the language
of contractions. (Actually, the result in [28] is stronger, in

that it allows for certain non-diagonal diffusion and also
certain non-diagonal weighting matrices P , by substituting
these assumptions by a commutativity type of condition.)
Theorem 5: Consider the reaction-diffusion system (14). Let

c := sup
(x,t)∈V×[0,∞)

M2,P [JF (x, t)− λ2D] ,

where P is a positive diagonal matrix. Then

‖u(·, t)− ũ(t)‖2,P ≤ ect‖u(·, 0)− ũ(0)‖2,P . (18)

where ũ(t) =
1

|Ω|

∫
Ω

u(ω, t) dω.

We remark that the L2 conditions given in [28] do not hold
for the biochemical example discussed in Section II-C.
A generalization of Theorem 5 to spatially-varying diffusion
is given in [53].
We next prove an analogous result to Theorem 5 for any
norm but restricted to the linear operators F , F (u, t) =
A(t)u, where for any t, A(t) ∈ Rn×n.
Theorem 6: For a given norm ‖ · ‖ in Rn, consider the
reaction-diffusion system (14), for a linear operator F . Let

c := sup
(x,t)∈V×[0,∞)

M [JF (x, t)− λ2D] ,

where M is the logarithmic norm induced by ‖ · ‖. Then for
any ω ∈ Ω and any t ≥ 0,

‖u(ω, t)− ū(t)‖ ≤
∑
i≥2

‖αi(t)φi(ω)‖

≤ ect
∑
i≥2

‖αi(0)φi(ω)‖ .

where ū(t) is the solution of the system (16) with u0(ω) =
u(ω, 0), and αi(t) =

∫
Ω
u(ω, t)φi(ω) dω. In particular, when

c < 0,

‖u(ω, t)− ū(t)‖ → 0 exponentially, as t→∞.

Proof: We first show that the solution of Equation (16),
ū, is equal to ũ(t) = 1

|Ω|
∫

Ω
u(ω, t) dω. Note that both ū and

ũ satisfy ẋ = A(t)x. In addition, by the definition, ū(0) =
ũ(0) = 1

|Ω|
∫

Ω
u(ω, 0) dω. Therefore, by uniqueness of the

solutions of ODEs, ū(t) = ũ(t). The solution u(ω, t) can be
written as follows:

u(ω, t) =
∑
i≥1

φi(ω)αi(t) (19)

where for any t, αi(t) =
∫

Ω
u(ω, t)φi(ω) dω ∈ Rn and φi’s

are the eigenfunctions of (17).
Claim 1.

u(ω, t)− ū(t) =
∑
i≥2

αi(t)φi(ω). (20)

Using the expansion of u as in (19), we have

u(ω, t)−ū(t) = α1(t)φ1(ω)−ū(t)+
∑
i≥2

φi(ω)αi(t). (21)

Multiplying both sides of the above equality by the constant
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eigenfunction φ1 and taking integral over Ω, by orthonor-
mality of φi’s, we get:∫

Ω

(u(ω, t)− ū(t)) dω = α1(t).

We showed that ū(t) = 1
|Ω|
∫

Ω
u(ω, t) dω, hence α1(t) = 0.

This proves Claim 1.

Claim 2. Fix ω ∈ Ω. Then for any i ≥ 1,

α̇i(t) = (A(t)− λiD)αi(t). (22)

Using the expansion of u as in (19) and after omitting the
arguments ω, t for simplicity, we have:∑

i≥1

α̇iφi = u̇ = A(t)u+D∆u

= A(t)

∑
i≥1

αiφi

+D∆

∑
i≥1

αiφi


=
∑
i≥1

(A(t)− λiD)αiφi.

Multiplying both sides of the above equality by φi and taking
integral over Ω, by orthonormality of φi’s we get:

α̇i(t) = (A(t)− λiD)αi(t).

This proves Claim 2.

If for any t, M [A(t)− λ2D] ≤ c, then for any t and any
i > 2, M [A(t)− λiD] ≤ c too. Then by Theorem 1 and
Claim 2:

‖αi(t)‖ ≤ ect‖αi(0)‖. (23)

Using the above inequality and triangle inequality in Equa-
tion (20), for any ω ∈ Ω and any t, we get the following
inequality:

‖u(ω, t)− ū(t)‖ ≤
∑
i≥2

‖αi(t)φi(ω)‖

≤ ect
∑
i≥2

‖αi(0)φi(ω)‖ .

Specifically, when c < 0, ‖u(ω, t)−ū(t)‖ → 0, exponentially
as t→∞.

The following theorem from [45] presents a condition which
guarantees spatial uniformity for the asymptotic behavior
of the solutions of a nonlinear reaction-diffusion PDE with
Neumann boundary conditions in one dimension, using the
Jacobian matrix of the reaction term and the first Dirichlet
eigenvalue of the Laplacian operator (which in one dimen-
sional space, it is equal to the second Neumann eigenvalue
of the Laplacian operator) on the given spatial domain. Very
different techniques, from nonlinear functional analysis for
normed spaces, than the quadratic Lyapunov function ap-
proaches, appropriate for Hilbert spaces, are used. Also, the
following theorem is an analogous result to ([31], Proposition
1) in the discrete case.

Theorem 7: Let u(ω, t) be a solution of (14), defined for all
t ∈ [0, T ) for some 0 < T ≤ ∞, where Ω = (0, L). In

addition, assume that u(·, t) ∈ C3(Ω), for all t ∈ [0, T ). Let

c = sup
(x,t)

M1,Q,φ

[
JFt(x)− π2

L2
D

]
,

where M1,Q,φ is the least upper bound logarithmic Lipschitz
constant induced by the following norm:

‖ · ‖1,Q,φ := ‖sin(πω/L)(·)‖1,Q .

Then for all t ∈ [0, T ):∥∥∥∥ ∂u∂ω (·, t)
∥∥∥∥

1,Q,φ

≤ ect
∥∥∥∥ ∂u∂ω (·, 0)

∥∥∥∥
1,Q,φ

.

Note that −π2/L2 is equal to the second Neumann eigen-
value of the Laplacian operator on (0, L).
The significance of Theorem 7 lies in the fact that sin(πω/L)
is nonzero everywhere in the domain (except at the bound-
ary). In that sense, we have exponential convergence to
uniform solutions in a weighted L1 norm. We remark that,
more generally, the extension to general domains of non-L2

results is still an open problem, just as with the analogous
question of synchronization.
We now revisit the Goodwin oscillator example, assuming
a continuous model where species diffuse in space. This
example has been studied in [28]. The following system of
PDEs, subject to Neumann boundary conditions, describe the
evolution of X , Y , and Z on (0, 1)× [0,∞):

∂x

∂t
=

a

k + z
− b x+ d1∆x

∂y

∂t
= α x− β y + d2∆y

∂z

∂t
= γ y − δz

kM + z
+ d3∆z

(24)

In ([28], Equation 55), the following sufficient condition is
given for synchronization, where λ = π2:

αγa

k(b+ λd1)(β + λd2)λd3
< 4. (25)

In [45], it has been shown that for the weighted matrix Q =
diag (1, 12, 11), and for 2.2/π2 < d1, and d2 = d3 = 0,

sup
w=(x,y,z)T

M1,Q[JF (w)− π2D] < 0.

Applying Theorem 7, the authors concluded that for
2.2/π2 < d1, and d2 = d3 = 0, (24) synchronizes, meaning
that solutions tend to uniform solutions. Note that when d3 =
0, one cannot apply (25) directly to get synchronization.
In ([54], Equation 3), Othmer provides a sufficient condition
for uniform behavior of the solutions of the reaction-diffusion
(14) on (0, L), subject to Neumann boundary conditions:

sup
w
‖JF (w)‖ < π2/L2 min{di}. (26)

In Goodwin’s example (24), supw ‖JF (w)‖ is positive and
finite (the sup is taken at z = 0), and min{di} = 0, hence
(26) doesn’t hold and this condition is not applicable for this
example.
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[7] B. P. Demidovič. Lektsii po matematicheskoi teorii ustoichivosti. Izdat.
“Nauka”, Moscow, 1967.

[8] T. Yoshizawa. Stability theory by Liapunov’s second method. Publica-
tions of the Mathematical Society of Japan, No. 9. The Mathematical
Society of Japan, Tokyo, 1966.

[9] T. Yoshizawa. Stability theory and the existence of periodic solutions
and almost periodic solutions. Springer-Verlag, New York-Heidelberg,
1975. Applied Mathematical Sciences, Vol. 14.

[10] W. Lohmiller and J. J. E. Slotine. On contraction analysis for non-
linear systems. Automatica, 34:683–696, 1998.

[11] W. Lohmiller and J.J.E. Slotine. Nonlinear process control using
contraction theory. AIChe Journal, 46:588–596, 2000.

[12] W. Wang and J. J. E. Slotine. On partial contraction analysis for
coupled nonlinear oscillators. Biological Cybernetics, 92:38–53, 2005.

[13] Q. C. Pham, N. Tabareau, and J.J.E. Slotine. A contraction theory
approach to stochastic incremental stability. IEEE Transactions on
Automatic Control, 54(4):816–820, 2009.

[14] G. Russo and J.J.E. Slotine. Symmetries, stability, and control in
nonlinear systems and networks. Physical Review E, 84(4), 2011.

[15] A. Pavlov, N. van de Wouw, and H. Nijmeijer. Uniform output
regulation of nonlinear systems: a convergent dynamics approach.
Springer-Verlag, Berlin, 2005.

[16] J. Jouffroy. Some ancestors of contraction analysis. In Decision and
Control, 2005 and 2005 European Control Conference. CDC-ECC ’05.
44th IEEE Conference on, pages 5450–5455, Dec 2005.

[17] A. Pavlov, A. Pogromvsky, N. van de Wouv, and H. Nijmeijer. Con-
vergent dynamics, a tribute to Boris Pavlovich Demidovich. Systems
and Control Letters, 52:257–261, 2004.

[18] G. Soderlind. The logarithmic norm. history and modern theory. BIT,
46(3):631–652, 2006.

[19] K. Deimling. Nonlinear Functional Analysis. Springer, 1985.
[20] F Forni and R Sepulchre. A differential Lyapunov framework for

contraction analysis. IEEE Trans. Automat. Control, 59(3):614–628,
2014.

[21] J. W. Simpson-Porco and F Bullo. Contraction theory on Riemannian
manifolds. Systems Control Lett., 65:74–80, 2014.

[22] I.R. Manchester and J.J.E. Slotine. Transverse contraction criteria for
existence, stability, and robustness of a limit cycle. In Proc. IEEE
Conf. Decision and Control, Florence, Dec. 2013, pages 5909–5914,
2013.

[23] V. Andrieu, B. Jayawardhana, and L. Praly. On transverse exponential
stability and its use in incremental stability, observer and synchroniza-
tion. In Proc. IEEE Conf. Decision and Control, Florence, Dec. 2013,
pages 5915–5920, 2013.

[24] F. Forni and R. Sepulchre. A differential view of systems, through
the nonlinear pendulum example. In Proc. IEEE Conf. Decision and
Control, Los Angeles, Dec. 2014, 2014. To appear.

[25] D. Angeli. A lyapunov approach to incremental stability properties.
Automatic Control, IEEE Transactions on, 47(3):410–421, 2002.

[26] M. Margaliot, E.D. Sontag, and T. Tuller. Entrainment to periodic
initiation and transition rates in a computational model for gene
translation. PLoS ONE, 9(5):e96039, 2014.

[27] E.D. Sontag, M. Margaliot, and T. Tuller. On three generalizations of
contraction. In Proc. IEEE Conf. Decision and Control, Los Angeles,
Dec. 2014, 2014. To appear.

[28] M. Arcak. Certifying spatially uniform behavior in reaction-diffusion
pde and compartmental ode systems. Automatica, 47(6):1219–1229,
2011.

[29] W. Lohmiller and J.J.E. Slotine. Contraction analysis of nonlinear
distributed systems. International Journal of Control, 2005.

[30] G. Russo and M. di Bernardo. Contraction theory and master stability
function: Linking two approaches to study synchronization of complex
networks. IEEE Trans. Circuits Syst. II, Exp. Briefs., 56(2):177–181,
2009.

[31] Z. Aminzare and E.D. Sontag. Remarks on diffusive-link synchroniza-
tion using non-hilbert logarithmic norms. Proc. IEEE Conf. Decision
and Control, LA, Dec. 2014, IEEE Publications, 2014.

[32] A. M. Turing. The Chemical Basis of Morphogenesis. Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences, 237(641):37–72, 1952.

[33] A. Gierer and H. Meinhardt. A theory of biological pattern formation.
Kybernetik, 12(1):30–39, Dec 1972.

[34] A. Gierer. Generation of biological patterns and form: some physical,
mathematical, and logical aspects. Prog. Biophys. Mol. Biol., 37(1):1–
47, 1981.

[35] H.G. Othmer and L.E. Scriven. Interactions of reaction and diffusion
in open systems. Ind. Eng. Chem. Fundamentals, 8:302–313, 1969.

[36] J.D. Murray. Mathematical Biology, I, II: An Introduction. Springer-
Verlag, New York, 2002.

[37] L. Edelstein-Keshet. Mathematical Models in Biology. Society for
Industrial and Applied Mathematics (SIAM), 2005.

[38] T. Strom. On logarithmic norms. SIAM J. Numer. Anal., 12:741–753,
1975.

[39] S. M. Lozinskii. Error estimate for numerical integration of ordinary
differential equations. I. Izv. Vtssh. Uchebn. Zaved. Mat., 5:222–222,
1959.

[40] Z. Aminzare and E. D. Sontag. Logarithmic Lipschitz norms and
diffusion-induced instability. Nonlinear Analysis: Theory, Methods
and Applications, 83:31–49, 2013.

[41] C. A. Desoer and M. Vidyasagar. Feedback Systems: Input-Output
Properties. Electrical Science. Academic Press [Harcourt Brace
Jovanovich, Publishers], 1975.

[42] G. Soderlind. Bounds on nonlinear operators in finite-dimensional
Banach spaces. Numer, 50(1):27–44, 1986.

[43] E.D. Sontag. Contractive systems with inputs. In Jan Willems,
Shinji Hara, Yoshito Ohta, and Hisaya Fujioka, editors, Perspectives in
Mathematical System Theory, Control, and Signal Processing, pages
217–228. Springer-verlag, 2010.

[44] G. Russo, M. di Bernardo, and E. D. Sontag. Global entrainment of
transcriptional systems to periodic inputs. PLoS Comput. Biol., 6(4),
2010.

[45] Z. Aminzare and E.D. Sontag. Some remarks on spatial uniformity
of solutions of reaction-diffusion pde’s and a related synchronization
problem for ode’s. Technical report, arXiv:1312.7145, 2014.

[46] M. Vidyasagar. Nonlinear systems analysis, volume 42 of Classics in
Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2002. Reprint of the second (1993) edition.

[47] E. Kaszkurewicz and A. Bhaya. Matrix Diagonal Stability in Systems
and Computation. Birkhauser, Boston, 2000.

[48] M. Arcak and E.D. Sontag. Diagonal stability for a class of cyclic
systems and applications. Automatica, 42:1531–1537, 2006.

[49] T. Lorenz. Mutational analysis. A joint framework for Cauchy
problems in and beyond vector spaces. Springer-Verlag, Berlin, 2010.

[50] A.R. Teel, T.T. Georgiou, L. Praly, and E.D. Sontag. Input-output
stability. In The Control Systems Handbook: Control System Advanced
Methods, Second Edition., pages 44.1–44.23 (1011–1033). CRC Press,
Boca Raton, 2011.

[51] H. Smith. Monotone Dynamical Systems: An Introduction to the The-
ory of Competitive and Cooperative Systems. American Mathematical
Society, 1995.

[52] R. S. Cantrell and C. Cosner. Spatial ecology via reaction-diffusion
equations. Wiley Series in Mathematical and Computational Biology,
2003.

[53] Z. Aminzare, Y. Shafi, M. Arcak, and E.D. Sontag. Guaranteeing
spatial uniformity in reaction-diffusion systems using weighted L2-
norm contractions. In V. Kulkarni, G.-B. Stan, and K. Raman, editors,
A Systems Theoretic Approach to Systems and Synthetic Biology:
Models and System Characterizations, page To appear. Springer-
Verlag, 2014.

[54] H.G Othmer. Current problems in pattern formation. In S.A. Levin,
editor, Some mathematical questions in biology, VIII, Lectures on
Math. in the Life Sciences Vol. 9, pages 57–85. Amer. Math. Soc.,
Providence, R.I., 1977.

3847


