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Abstract

The notion of input to state stability (ISS)

qualitatively describes stability of the mapping

from initial states and inputs to internal states

(and more generally outputs). This entry focuses

on the definition of ISS and a discussion of

equivalent characterizations.
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Introduction

We consider here systems with inputs in the usual

sense of control theory:

Px.t/ D f .x.t/; u.t//

(the arguments “t” are often omitted). There

are n state variables and m input channels.

States x.t/ take values in Euclidean space

Rn, and the inputs (also called “controls”

or “disturbances” depending on the context)

are measurable in locally essentially bounded

maps u.�/ W Œ0; 1/ ! Rm. The map f W
Rn � Rm ! Rn is assumed to be locally

Lipschitz with f .0; 0/ D 0. The solution, defined

on some maximal interval Œ0; tmax.x0; u//, for

each initial state x0 and input u, is denoted as

x.t; x0; u/ and, in particular, for systems with

no inputs Px.t/ D f .x.t//; just as x.t; x0/. The

zero system associated to Px D f .x; u/ is by

definition the system with no inputs Px D f .x; 0/.

Euclidean norm is written as jxj. For a function

of time, typically an input or a state trajectory,

kuk, or kuk1 for emphasis, is the (essential)

supremum or “sup” norm (possibly C1, if u is

not bounded). The norm of the restriction of a

signal to an interval I is denoted by kuI k1 (or

justkuI k).

Input-to-State Stability

It is convenient to introduce “comparison func-

tions” to quantify stability. A class K1 function
is a function ˛ W R�0 ! R�0 which is con-

tinuous, strictly increasing, and unbounded and

satisfies ˛.0/ D 0, and a class KL function is

a function ˇ W R�0 � R�0 ! R�0 such that

ˇ.�; t/ 2 K1 for each t and ˇ.r; t/ decreases to

zero as t ! 1, for each fixed r .
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For a system with no inputs Px D f .x/, there

is a well-known notion of global asymptotic

stability (for short from now on, GAS, or

“0-GAS” when referring to the zero system

Px D f .x; 0/ associated to a given system with

inputs Px D f .x; u/) due to Lyapunov and usually

defined in “–-ı” terms. It is an easy exercise

to show that this standard definition is in fact

equivalent to the following statement:

.9ˇ 2 KL/jx.t; x0/j � ˇ
�jx0j; t

	 8 x0; 8 t � 0:

The notion of input to state stability (ISS) was

introduced in Sontag (1989), and it provides theo-

retical concepts used to describe stability features

of a mapping .u.�/; x.0// ’x.�/ that sends initial

states and input functions into states (or, more

generally, outputs). Prominent among these fea-

tures are that inputs that are bounded, “eventually

small,” “integrally small,” or convergent should

lead to outputs with the respective property. In

addition, ISS and related notions quantify in what

manner initial states affect transient behavior. The

formal definition is as follows.

A system is said to be input to state stable
(ISS) if there exist some ˇ 2 KL and � 2 K1
such that

jx.t/j � ˇ.
ˇ̌
x0

ˇ̌
; t/ C � .kuk1/ (ISS)

holds for all solutions (meaning that the estimate

is valid for all inputs u.�/, all initial conditions

x0, and all t � 0). Note that the supremum

sups2Œ0;t � �.ju.s/j/ over the interval Œ0; t � is the

same as �.kuŒ0;t �k1/ D �.sups2Œ0;t �.ju.s/j//,
because the function � is increasing, so one may

replace this term by �.kuk1/, where kuk1 D
sups2Œ0;1/ �.ju.s/j/ is the sup norm of the input,

because the solution x.t/ depends only on values

u.s/; s � t (so, one could equally well consider

the input that has values � 0 for all s > t).

Since, in general, maxfa; bg � a C b �
maxf2a; 2bg, one can restate the ISS condition

in a slightly different manner, namely, asking for

the existence of some ˇ 2 KL and � 2 K1
(in general, different from the ones in the ISS

definition) such that

≈ x0

≈ |u|∞

x

t

Input-to-State Stability, Fig. 1 ISS combines over-

shoot and asymptotic behavior

jx.t/j � max
˚
ˇ.jx0j; t/ ; � .kuk1/

�

holds for all solutions. Such redefinitions, using

“max” instead of sum, are also possible for each

of the other concepts to be introduced later.

Intuitively, the definition of ISS requires that,

for t large, the size of the state must be bounded

by some function of the sup norm – that is to say,

the amplitude – of inputs (because ˇ.jx0j ; t/ ! 0

as t ! 1). On the other hand, the ˇ.jx0j ; 0/

term may dominate for small t , and this serves

to quantify the magnitude of the transient (over-

shoot) behavior as a function of the size of the

initial state x0 (Fig. 1). The ISS superposition the-
orem, discussed later, shows that ISS is, in a pre-

cise mathematical sense, the conjunction of two

properties, one of them dealing with asymptotic

bounds on jx0j as a function of the magnitude of

the input and the other one providing a transient

term obtained when one ignores inputs.

For internally stable linear systems Px D Ax C
Bu, the variation of parameters formula gives

immediately the following inequality:

jx.t/j � ˇ.t/
ˇ̌
x0

ˇ̌ C � kuk1 ;

where

ˇ.t/ D ��etA
�� ! 0 and

� D kBk
Z 1

0

��esA
�� ds < 1:
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This is a particular case of the ISS estimate,

jx.t/j � ˇ.jx0j; t/ C � .kuk1/, with linear

comparison functions.

Feedback Redesign

The notion of ISS arose originally as a way to

precisely formulate, and then answer, the follow-

ing question. Suppose that, as in many problems

in control theory, a system Px D f .x; u/ has been

stabilized by means of a feedback law u D k.x/

(Fig. 2), that is to say, k was chosen such that the

origin of the closed-loop system Px D f .x; k.x//

is globally asymptotically stable. (See, e.g., Son-

tag 1999 for a discussion of mathematical aspects

of state feedback stabilization.) Typically, the de-

sign of k was performed by ignoring the effect of

possible input disturbances d.�/ (also called ac-

tuator disturbances). These “disturbances” might

represent true noise or perhaps errors in the calcu-

lation of the value k.x/ by a physical controller

or modeling uncertainty in the controller or the

system itself. What is the effect of considering

disturbances? In order to analyze the problem, d

is incorporated into the model, and one studies

the new system Px D f .x; k.x/ C d/, where d is

seen as an input (Fig. 3). One may then ask what

is the effect of d on the behavior of the system.

Disturbances d may well destabilize the system,

and the problem may arise even when using a rou-

tine technique for control design, feedback lin-

earization. To appreciate this issue, take the fol-

lowing very simple example. Given is the system

Px D f .x; u/ D x C .x2 C 1/u:

In order to stabilize it, substitute u D Qu
x2C1

(a pre-

liminary feedback transformation), rendering the

system linear with respect to the new input Qu: Px D
xCQu, and then use Qu D �2x in order to obtain the

closed-loop system Px D �x. In other words, in

terms of the original input u, the feedback law is

k.x/ D �2x

x2 C 1

x = f (x,u)

u = k(x)

u x

Input-to-State Stability, Fig. 2 Feedback stabilization,

closed-loop system Px D f .x; k.x//

x = f (x, u)

u = k(x)

u

ud

x

Input-to-State Stability, Fig. 3 Actuator disturbances,

closed-loop system Px D f .x; k.x/ C d/

so that f .x; k.x// D �x. This is a GAS system.

The effect of the disturbance input d is analyzed

as follows. The system Px D f .x; k.x/ C d/ is

Px D �x C .x2 C 1/ d :

This system has solutions which diverge to

infinity even for inputs d that converge to zero;

moreover, the constant input d � 1 results in

solutions that explode in finite time. Thus k.x/ D
�2x
x2C1

was not a good feedback law, in the sense

that its performance degraded drastically once

actuator disturbances were taken into account.

The key observation for what follows is that

if one adds a correction term “�x” to the above

formula for k.x/, so that now,

Qk.x/ D �2x

x2 C 1
�x;

then the system Px D f .x; Qk.x/ C d/ with

disturbance d as input becomes instead

Px D � 2x � x3 C .x2 C 1/ d

and this system is much better behaved: it is still

GAS when there are no disturbances (it reduces



578 Input-to-State Stability

to Px D �2x � x3), but, in addition, it is ISS (easy

to verify directly, or appealing to some of the

characterizations mentioned later). Intuitively, for

large x, the term �x3 serves to dominate the term

.x2 C 1/d , for all bounded disturbances d.�/, and

this prevents the state from getting too large.

This example is an instance of a general result,

which says that, whenever there is some feedback

law that stabilizes a system, there is also a (pos-

sibly different) feedback so that the system with

external input d is ISS.

Theorem 1 (Sontag 1989). Consider a system
affine in controls

Px D f .x; u/ D g0.x/ C
mX

iD1

uigi .x/ .g0.0/ D 0/

and suppose that there is some differentiable
feedback law u D k.x/ so that

Px D f .x; k.x//

has x D 0 as a GAS equilibrium. Then, there is a
feedback law u Dek.x/ such that

Px D f .x;ek.x/ C d/

is ISS with input d.�/.
The reader is referred to the book Krstić et al.

(1995), and the references given later, for many

further developments on the subjects of recursive

feedback design, the “backstepping” approach,

and other far-reaching extensions.

Equivalences for ISS

This section reviews results that show that ISS

is equivalent to several other notions, including

asymptotic gain, existence of robustness mar-

gins, dissipativity, and an energy-like stability

estimate.

Nonlinear Superposition Principle
Clearly, if a system is ISS, then the system with

no inputs Px D f .x; 0/ is GAS: the term kuk1

vanishes, leaving precisely the GAS property.

In particular, then, the system Px D f .x; u/ is

0-stable, meaning that the origin of the system

without inputs Px D f .x; 0/ is stable in the sense

of Lyapunov: for each – > 0, there is some ı > 0

such that jx0j < ı implies jx.t; x0/j < –. (In

comparison-function language, one can restate 0-

stability as follows: there is some � 2 K such that

jx.t; x0/j � �.jx0j/ holds for all small x0.)

On the other hand, since ˇ.jx0j; t/ ! 0 as t !
1, for t large one has that the first term in the

ISS estimate jx.t/j � max fˇ.jx0j; t/; � .kuk1/g
vanishes. Thus an ISS system satisfies the fol-

lowing asymptotic gain property (“AG”): there

is some � 2 K1 so that:

lim
t!C1

ˇ̌
x.t; x0; u/

ˇ̌ � � .kuk1/ 8 x0; u.�/
(AG)

(see Fig. 4). In words, for all large enough t ,

the trajectory exists, and it gets arbitrarily close

to a sphere whose radius is proportional, in a

possibly nonlinear way quantified by the function

� , to the amplitude of the input. In the language

of robust control, the estimate (AG) would be

called an “ultimate boundedness” condition; it

is a generalization of attractivity (all trajectories

converge to zero, for a system Px D f .x/ with

no inputs) to the case of systems with inputs; the

“lim sup” is required since the limit of x.t/ as

t ! 1 may well not exist. From now on (and

analogously when defining other properties), we

x(0)

γ (⏐⏐u⏐⏐)
x(t)

Input-to-State Stability, Fig. 4 Asymptotic gain prop-

erty
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will just say “the system is AG” instead of the

more cumbersome “satisfies the AG property.”

Observe that, since only large values of t mat-

ter in the limsup, one can equally well consider

merely tails of the input u when computing its sup

norm. In other words, one may replace �.kuk1/

by �.limt!C1 ju.t/j/, or (since � is increasing)

limt!C1�.ju.t/j/.
The surprising fact is that these two necessary

conditions are also sufficient. This is summarized

by the ISS superposition theorem:

Theorem 2 (Sontag and Wang 1996). A sys-
tem is ISS if and only if it is 0-stable and AG.

A minor variation of the above superposition

theorem is as follows. Let us consider the limit
property (LIM):

inf
t�0

jx.t; x0; u/j � �.kuk1/ 8 x0; u.�/ (LIM)

(for some � 2 K1).

Theorem 3 (Sontag and Wang 1996). A sys-
tem is ISS if and only if it is 0-stable and LIM.

Robust Stability
In this entry, a system is said to be robustly stable
if it admits a margin of stability �, that is, a

smooth function � 2 K1 so the system

Px D g.x; d/ WD f .x; d�.jxj//

is GAS uniformly in this sense: for some ˇ 2
KL, ˇ̌

x.t; x0; d /
ˇ̌ � ˇ.

ˇ̌
x0

ˇ̌
; t/

for all possible d.�/ W Œ0; 1/ ! Œ�1; 1�m. An al-

ternative way to interpret this concept (cf. Sontag

and Wang 1995) is as uniform global asymptotic

stability of the origin with respect to all possible

time-varying feedback laws � bounded by �:

j�.t; x/j � �.jxj/. In other words, the system

Px D f .x; �.t; x//

(Fig. 5) is stable uniformly over all such pertur-

bations �. In contrast to the ISS definition, which

deals with all possible “open-loop” inputs, the

x = f (x, u)

Δ

u x

Input-to-State Stability, Fig. 5 Margin of robustness

present notion of robust stability asks about all

possible closed-loop interconnections. One may

think of � as representing uncertainty in the

dynamics of the original system, for example.

Theorem 4 (Sontag and Wang 1995). A sys-
tem is ISS if and only if it is robustly stable.

Intuitively, the ISS estimate jx.t/j � max

fˇ.jx0j; t/; � .kuk1/g says that the ˇ term

dominates as long as ju.t/j 	 jx.t/j for all t , but

ju.t/j 	 jx.t/j amounts to u.t/ D d.t/:�.jx.t/j/
with an appropriate function �. This is an instance

of a “small gain” argument, see below. One

analog for linear systems is as follows: if A is

a Hurwitz matrix, then A C Q is also Hurwitz,

for all small enough perturbations Q; note that

when Q is a nonsingular matrix, jQxj is a K1
function of jxj.

Dissipation
Another characterization of ISS is as a dissipation

notion stated in terms of a Lyapunov-like func-

tion. A continuous function V W Rn ! R is said

to be a storage function if it is positive definite,

that is, V.0/ D 0 and V.x/ > 0 for x 6D 0, and

proper, that is, V.x/ ! 1 as jxj ! 1. This

last property is equivalent to the requirement that

the sets V �1.Œ0; A�/ should be compact subsets

of Rn, for each A > 0, and in the engineering

literature, it is usual to call such functions radi-
ally unbounded. It is an easy exercise to show that

V W Rn ! R is a storage function if and only if

there exist ˛; ˛ 2 K1 such that

˛.jxj/ � V.x/ � ˛.jxj/ 8 x 2 Rn
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(the lower bound amounts to properness and

V.x/ > 0 for x 6D 0, while the upper

bound guarantees V.0/ D 0). For convenience,
PV W Rn � Rm ! R is the function:

PV .x; u/ WD rV.x/:f .x; u/

which provides, when evaluated at .x.t/; u.t//,

the derivative dV.x.t//=dt along solutions of

Px D f .x; u/.

An ISS-Lyapunov function for Px D f .x; u/

is by definition a smooth storage function V for

which there exist functions �; ˛ 2 K1 so that

PV .x; u/ � �˛.jxj/ C �.juj/ 8 x; u :

(L-ISS)

Integrating, an equivalent statement is that, along

all trajectories of the system, there holds the

following dissipation inequality:

V.x.t2// � V.x.t1// �
Z t2

t1

w.u.s/; x.s// ds

where, using the terminology of Willems

(1976), the “supply” function is w.u; x/ D
�.juj/ � ˛.jxj/. For systems with no inputs,

an ISS-Lyapunov function is precisely the same

object as a Lyapunov function in the usual sense.

Theorem 5 (Sontag and Wang 1995). A sys-
tem is ISS if and only if it admits a smooth ISS-
Lyapunov function.

Since �˛.jxj/ � �˛.˛�1.V .x///, the ISS-

Lyapunov condition can be restated as

PV .x; u/ � � Q̨ .V .x// C �.juj/ 8 x; u

for some Q̨ 2 K1. In fact, one may strengthen

this a bit (Praly and Wang 1996): for any ISS

system, there is a always a smooth ISS-Lyapunov

function satisfying the “exponential” estimate
PV .x; u/ � �V.x/ C �.juj/.

The sufficiency of the ISS-Lyapunov condi-

tion is easy to show and was already in the orig-

inal paper Sontag (1989). A sketch of proof is as

follows, assuming for simplicity a dissipation es-

timate in the form PV .x; u/ � �˛.V .x//C�.juj/.
Given any x and u, either ˛.V .x// � 2�.juj/

or PV � �˛.V /=2. From here, one deduces by

a comparison theorem that, along all solutions,

V.x.t// � max
˚
ˇ.V .x0/; t/; ˛�1.2�.kuk1//

�
;

where the KL function ˇ.s; t/ is the solution y.t/

of the initial value problem

Py D �1

2
˛.y/ C �.u/; y.0/ D s:

Finally, an ISS estimate is obtained from

V.x0/ � ˛.x0/.

The proof of the converse part of the theorem

is based upon first showing that ISS implies

robust stability in the sense already discussed

and then obtaining a converse Lyapunov

theorem for robust stability for the system

Px D f .x; d�.jxj// D g.x; d/, which is

asymptotically stable uniformly on all Lebesgue-

measurable functions d.�/ W R�0 ! B.0; 1/. This

last theorem was given in Lin et al. (1996) and

is basically a theorem on Lyapunov functions

for differential inclusions. The classical result of

Massera (1956) for differential equations (with

no inputs) becomes a special case.

Using “Energy” Estimates Instead of
Amplitudes
In linear control theory, H1 theory studies L2 !
L2 induced norms, which under coordinate

changes leads to the following type of estimate:

Z t

0

˛ .jx.s/j// ds � ˛0.
ˇ̌
x0

ˇ̌
/ C

Z t

0

�.ju.s/j/ ds

along all solutions and for some ˛; ˛0; � 2 K1.

Just for the statement of the next result, a system

is said to satisfy an integral-integral estimate if

for every initial state x0 and input u, the solution

x.t; x0; u/ is defined for all t > 0 and an estimate

as above holds. (In contrast to ISS, this definition

explicitly demands that tmax D 1.)

Theorem 6 (Sontag 1998). A system is ISS if
and only if it satisfies an integral-integral esti-
mate.
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This theorem is quite easy to prove, in

view of previous results. A sketch of proof

is as follows. If the system is ISS, then

there is an ISS-Lyapunov function satisfying
PV.x; u/ � �V.x/ C �.juj/, so, integrating along

any solution:

Z t

0

V .x.s// ds �
Z t

0

V .x.s// ds C V.x.t//

� V.x.0// C
Z t

0

�.ju.s/j/ ds

and thus an integral-integral estimate holds. Con-

versely, if such an estimate holds, one can prove

that Px D f .x; 0/ is stable and that an asymptotic

gain exists.

Integral Input to State Stability

A concept of nonlinear stability that is truly

distinct from ISS arises when considering a

mixed notion which combines the “energy” of the

input with the amplitude of the state. A system

is said to be integral-input to state stable (iISS)
provided that there exist ˛; � 2 K1 and ˇ 2 KL
such that the estimate

˛ .jx.t/j/ � ˇ.
ˇ̌
x0

ˇ̌
; t/ C

Z t

0

�.ju.s/j/ ds

(iISS)

holds along all solutions. Just as with ISS, one

could state this property merely for all times

t 2 tmax.x0; u/. Since the right-hand side is

bounded on each interval Œ0; t � (because, recall,

inputs are by definition assumed to be bounded

on each finite interval), it is automatically true

that tmax.x0; u/ D C1 if such an estimate

holds along maximal solutions. So forward-

completeness (solution exists for all t > 0) can

be assumed with no loss of generality.

One might also consider the following type of

“weak integral to integral” mixed estimate:

Z t

0

˛.jx.s/j/ ds � 	.jx0j/

C ˛


Z t

0

�.ju.s/j/ ds

�

for appropriateK1 functions (note the additional

“˛”).

Theorem 7 (Angeli et al. 2000b). A system
satisfies a weak integral to integral estimate if
and only if it is iISS.

Another interesting variant is found when consid-

ering mixed integral/supremum estimates:

˛.jx.t/j � ˇ.jx0j; t/ C
Z t

0

�1.ju.s/j/ ds

C �2.kuk1/

for suitable ˇ 2 KL and ˛; �i 2 K1. One then

has

Theorem 8 (Angeli et al. 2000b). A system
satisfies a mixed estimate if and only if it is iISS.

Dissipation Characterization of iISS
A smooth storage function V is an iISS-Lyapunov
function for the system Px D f .x; u/ if there are

a � 2 K1 and an ˛ W Œ0; C1/ ! Œ0; C1/

which is merely positive definite (i.e., ˛.0/ D 0

and ˛.r/ > 0 for r > 0) such that the inequality

PV .x; u/ � �˛.jxj/ C �.juj/ (L-iISS)

holds for all .x; u/ 2 Rn � Rm. To compare,

recall that an ISS-Lyapunov function is required

to satisfy an estimate of the same form but where

˛ is required to be of class K1; since every K1
function is positive definite, an ISS-Lyapunov

function is also an iISS-Lyapunov function.

Theorem 9 (Angeli et al. 2000a). A system is
iISS if and only if it admits a smooth iISS-
Lyapunov function.

Since an ISS-Lyapunov function is also an iISS

one, ISS implies iISS. However, iISS is a strictly

weaker property than ISS, because ˛ may be

bounded in the iISS-Lyapunov estimate, which

means that V may increase, and the state become

unbounded, even under bounded inputs, so long
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as �.ju.t/j/ is larger than the range of ˛. This

is also clear from the iISS definition, since a

constant input with ju.t/j D r results in a term

in the right-hand side that grows like rt .

An interesting general class of examples is

given by bilinear systems

Px D
 

A C
mX

iD1

uiAi

!
x C Bu

for which the matrix A is Hurwitz. Such systems

are always iISS (see Sontag 1998), but they are

not in general ISS. For instance, in the case when

B D 0, boundedness of trajectories for all con-

stant inputs already implies that A C Pm
iD1 uiAi

must have all eigenvalues with nonpositive real

part, for all u 2 Rm, which is a condition

involving the matrices Ai (e.g., Px D �x C ux

is iISS but it is not ISS).

The notion of iISS is useful in situations where

an appropriate notion of detectability can be

verified using LaSalle-type arguments. There

follow two examples of theorems along these

lines.

Theorem 10 (Angeli et al. 2000a). A system is
iISS if and only if it is 0-GAS and there is a
smooth storage function V such that, for some
� 2 K1:

PV .x; u/ � �.juj/
for all .x; u/.

The sufficiency part of this result follows from

the observation that the 0-GAS property by itself

already implies the existence of a smooth and

positive definite, but not necessarily proper, func-

tion V0 such that PV0 � �0.juj/ � ˛0.jxj/ for all

.x; u/, for some �0 2 K1 and positive definite

˛0 (if V0 were proper, then it would be an iISS-

Lyapunov function). Now, one uses V0 C V as an

iISS-Lyapunov function (V provides properness).

Theorem 11 (Angeli et al. 2000a). A system is
iISS if and only if there exists an output function
y D h.x/ (continuous and with h.0/ D 0)
which provides zero detectability (u � 0 and
y � 0 ) x.t/ ! 0) and dissipativity in the

following sense: there exists a storage function V

and � 2 K1, ˛ positive definite, so that

PV .x; u/ � �.juj/ � ˛.h.x//

holds for all .x; u/.

Angeli et al. (2000b) contains several additional

characterizations of iISS.

Superposition Principles for iISS
There are also asymptotic gain characterizations

for iISS. A system is bounded energy weakly
converging state (BEWCS) if there exists some

� 2 K1 so that the following implication holds:

Z C1

0

�.ju.s/j/ ds < C1 )

lim inf
t!C1

ˇ̌
x.t; x0; u/

ˇ̌ D 0 BEWCS

(more precisely: if the integral is finite,

then tmax.x0; u/ D C1 and the liminf

is zero). It is bounded energy frequently
bounded state (BEFBS) if there exists some

� 2 K1 so that the following implication

holds:

Z C1

0

�.ju.s/j/ ds < C1 )

lim inf
t!C1

ˇ̌
x.t; x0; u/

ˇ̌
< C1 BEFBS

(again, meaning that tmax.x0; u/ D C1 and the

lim inf is finite).

Theorem 12 (Angeli et al. 2004). The follow-
ing three properties are equivalent for any given
system Px D f .x; u/:
• The system is iISS.
• The system is BEWCS and 0-stable.
• The system is BEFBS and 0-GAS.

Summary and Future Directions

This entry focuses on stability notions relative to

steady states, but a more general theory is also
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possible that allows consideration of more

arbitrary attractors, as well as robust and/or

adaptive concepts. Much else has been omitted

from this entry. Most importantly, one of the key

results is the ISS small-gain theorem due to Jiang

et al. (1994), which provides a powerful sufficient

condition for the interconnection of ISS systems

being itself ISS.

Other topics not treated include, among many

others, all notions involving outputs; ISS proper-

ties of time-varying (and in particular periodic)

systems; ISS for discrete-time systems; questions

of sampling, relating ISS properties of continuous

and discrete-time systems; ISS with respect to

a closed subset K; stochastic ISS; applications

to tracking, vehicle formations (“leader to fol-

lowers” stability); and averaging of ISS systems.

Sontag (2006) may also be consulted for further

references, a detailed development of some of

these ideas, and citations to the literature for

others. In addition, the textbooks Isidori (1999),

Krstić et al. (1995), Khalil (1996), Sepulchre

et al. (1997), Krstić and Deng (1998), Freeman

and Kokotović (1996), and Isidori et al. (2003)

contain many extensions of the theory as well as

applications.
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