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Abstract— This paper adopts a contraction approach to the
analysis of the tracking properties of dynamical systems under
high gain feedback when subject to inputs with bounded
derivatives. It is shown that if the tracking error dynamics
are contracting, then the system is input to output stable with
respect to the input signal derivatives and the output tracking
error. This result is then used to demonstrate that the negative
feedback connection of plants composed of two strictly positive
real LTI subsystems in cascade can follow external inputs with
tracking errors that can be made arbitrarily small by applying
a sufficiently large feedback gain. We utilize this result to design
a biomolecular feedback for a synthetic genetic sensor to make
it robust to variations in the availability of a cellular resource
required for protein production.

I. INTRODUCTION

High gain feedback can be an effective control strategy
for achieving stabilization, disturbance rejection and tracking
in applications where there is little scope for sophisticated
control algorithms to be implemented and where there is
knowledge of the structure, but not the exact parameters,
of a plant to be regulated [2], [3], [4], [5], [6]. Motivated
by design constraints in the regulation of synthetic genetic
circuits, this paper presents an input to output stability
approach [7], [8], [9] that derives from contraction theory
[10], [11], [12], [13] to the problem of tracking inputs with
bounded derivatives.

Control via high gain feedback has been extensively
researched for several decades. Early works on linear time
invariant systems investigated the asymptotic behavior of
the root loci of multivariable systems under high feedback
gains [14], [15], [16]. In [17], it was shown that high gain
feedback introduces a separation of timescales in relative
degree one LTI systems, dividing the state space into modes
with slow eigenvalues and modes with eigenvalues that can
be made arbitrarily fast by sufficiently strengthening the
feedback gain. When the fast eigenvalues are stable, singular
perturbation theory shows that high gain feedback stabilizes
the system trajectories to a small neighborhood of the slow
manifold, the subspace spanned by the slow eigenvectors.
Reference [6] extended [17] to nonlinear systems with affine
inputs. In [18], the results of [17] were also extended to
LTI systems of relative degree greater than one. These
methods and their applications to input tracking in singularly
perturbed systems are summarized in [3], [2], [19], [20].
Following [18], [21] used a singular perturbation approach
to construct a decentralized dynamic feedback controller
with high observer gain for LTI systems. This controller
ensures that the effect of exogenous disturbances on the
output of an LTI system is attenuated below a pre-specified
tolerance. Nonlinear extensions to [18] were reported in [5].
Problems of disturbance attenuation for nonlinear systems
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were addressed using singular perturbation techniques in
[22], [23].

In contrast to the singular perturbation techniques used
in the above references, in this paper we analyze the
tracking properties of systems under high gain feedback
using an input to output stability approach [7], [8]. In [24],
Hoppensteadt’s lemma [25] is used to show that for systems
with slowly varying exogenous inputs, uniform asymptotic
stability for all constant inputs of a system’s equilibrium
implies that the system is ISS with respect to input
derivatives. Here, we leverage a result originally reported
in [26] to show that systems that satisfy a contraction
property [10] are input to state stable [27] and, under
further assumptions, also input to output stable. Using this
result, we show that if the feedback system’s error dynamics
are contracting, then it is input to output stable from the
derivatives of the exogenous input to the tracking error. We
then use this result to show that LTI systems composed of the
cascade of two strictly positive real (SPR) subsystems under
high gain feedback are able to track external inputs with
a tracking error that is inversely proportional to the square
root of the feedback strength and proportional to a bound
on the input time derivatives. With respect to [21], we are
only interested in quantifying the tracking error bounds that
are achievable with a static output feedback, without access
to state information. Furthermore, the approach we present
here is applicable to nonlinear systems.

As discussed in [10], [12], a system can be shown to
have the contraction property over a domain if there exists a
common Lyapunov-type function for the system Jacobian at
all points in the domain. To prove this contraction property
for the cascaded SPR feedback system, we use the fact that a
diagonal Lyapunov function for the interconnection of SPR
systems can be constructed from the storage functions of the
individual subsystems [28], [29], which exist by virtue of
the KYP lemma [20]. By appropriately scaling the resulting
composite diagonal Lyapunov function, we are able to arrive
at a matrix measure that proves contraction.

The case of cascaded strictly positive real systems under
feedback is of interest in design applications in synthetic
biology as many chemical reactions can, at a certain level
of abstraction, be dynamically modeled as processes that
are SPR. For our purposes, we are interested in designing
a genetic sensor, the protein output concentration of which
tracks the concentration of an input transcription factor.
Often, such sensors are subject to perturbations arising
from changes in the availability of cellular resources [30],
[31], [32], [33]. We propose to use high gain negative
feedback to regulate the sensor against such perturbations.
With our results, we are able to show that the effects
of varying resource availability are diminshed under high
gain autoregulation by a biomolecular feedback that is
engineered into the gene network of interest. Because SPR
is a structural property of the sensor’s chemical reactions,
this tracking property is preserved regardless of the exact
reaction parameter values.



This paper is organized as follows. In Section II, we
present the main theoretical result, which gives conditions
under which contracting dynamical systems are input to
output stable. Then, we show how this result can be applied
to determine the input to output stability of a tracking error
with respect to the derivatives of input signals. In Section
III, the main result is applied to a class of LTI systems. We
present examples in the design of a genetic sensor in Section
IV and summarize our results in Section V.

II. MAIN RESULT

Consider a system of the form:

ξ̇ = F̄ (ξ, t) + B̄v̄

e = h̄(ξ, t)
(1)

evolving on a convex set of states E ⊆ R
n. We assume that

F̄ is C1 on E , for each fixed t ≥ 0, and denote by DF̄ (ξ, t)
the Jacobian of F̄ with respect to ξ, evaluated at (t, e). The
map h̄ : E → R

q is thought of as an output map (if we are
only interested in state results, we let e = ξ). Inputs v̄(t) take
values on a set V ⊆ R

m and outputs e(t) on a set Z ⊆ R
q .

We use the same notation |v̄| and |e| for two arbitrary
p-norms on R

m (for input signals v̄) and R
q (for output

signals e). For norms on state vectors, we adopt the notation
|ξ|p,Q to denote a weighted p-norm induced by the symmetric
positive matrix Q on R

n, so that |ξ|22,Q = ξTQ2ξ. We define
µp,Q(Ā) := limhց0

1
h

(∥

∥I + hQ−1ĀQ
∥

∥− 1
)

as the matrix
measure of Ā ∈ R

n×n associated to the weighted norm on
states |·|p,Q. For further details on the computation of matrix
measures, we refer the reader to [34], [13]. For an input
v̄ : [0, t] → V , ‖v̄‖[0,t] is by definition the supremum norm
sup0≤s≤t |v̄(s)|. An “input” will be, by definition, a function
which is continuous except at most in a discrete set, and
one-sided limits exist at all discontinuities. Finally, we write
∥

∥B̄
∥

∥

2,Q
to denote the induced operator norm of B̄ : Rm →

R
n, so that

∥

∥B̄
∥

∥

2,Q
= sup|v̄|≤1

(

∣

∣B̄v̄
∣

∣

p,Q
/ |v̄|

)

. The main
result is as follows.

Theorem 1: Assume that F̄ (0, t) = 0 for all t ≥ 0.
Suppose that two positive constants c and d are such that:

sup
t≥0, ξ∈E

µp,Q[DF̄ (ξ, t)] ≤ −c (2)

and
d |e| ≤ |ξ|p,Q for all ξ ∈ E . (3)

Then, for every solution ξ(·) corresponding to an input v̄(·),
and each t ≥ 0, we have the following input to output
stability estimate:

d |e(t)| ≤exp(−ct)|ξ(0)|p,Q +
1− exp(−ct)

c

∥

∥B̄
∥

∥

2,Q
‖v̄‖[0,t] .

(4)
In particular,

lim sup
t→∞

|e(t)| ≤ 1

cd

∥

∥B̄
∥

∥

2,Q
‖v̄‖[0,∞] . (5)

Proof: See Appendix I.
We should like to apply Theorem 1 to analyze tracking

error e := h(x)− v in the dynamical system

ẋ = F (x, v), x ∈ R
n
, v ∈ R

y = h(x), y ∈ R.
(6)

Suppose there exists a coordinate transformation ξ =
ψ(x, v̄) such that it is possible to represent (6) in the affine
input form (1), where v̄ is a function of the derivatives of v.
If the conditions of Theorem 1 are satisfied, then it follows

that system (1) is input to output stable with respect to input
v̄ and output e.

In the following sections, we will analyze the tracking
error in a class of linear systems under negative output
feedback of gain g. Since the systems considered are linear,
the error dynamics can be written in the affine form (1).
Under additional assumptions, including assumptions of
observability, we will construct, in Lemma 1, a matrix
weighting Q to show that condition (2) is met. Under the
same assumptions, we will show, in Lemma 2 that when
z = h̄(e) = e (the tracking error), condition (3) is satisfied
with d = O(

√
g).

With these results we can apply Theorem 1 to obtain
the tracking error estimates (4) and (5). Subsequently,
we demonstrate in Lemma 3 that the quantity

∥

∥B̄
∥

∥ /c is
independent of the feedback gain g, from which we show,
in Theorem 2, that the tracking error upper bound estimate
is O(1/

√
g), so that, given a bound ‖v̄‖[0,∞] on the input v

and its derivatives, the tracking error can be made arbitrarily
small by sufficiently increasing the feedback gain g.

III. APPLICATION TO LTI SYSTEMS

Consider the LTI dynamical system in Figure 1.
Assumption 1: It is assumed that

1) Subsystems Σ1, Σ2 have strictly positive real, strictly
proper, real rational transfer functions H1(s), H2(s),
respectively, with minimal realizations given by

Σi=
{

ẋi = Aixi +Biui,
yi = Cixi

x1∈Rm1 , x2∈Rm2 , ui ∈ R,
yi ∈ R

(7)
2) The transfer function H1(s)H2(s) contains no pole-zero

cancelations.
3) Subsystems Σ1, Σ2 are connected via the

interconnection rules

u1 = g(v − y2), u2 = y1, g ∈ R, (8)

where v is an external input.
The feedback system composed of (7), (8), satisfies

ẋ = Ax+ gBv, y = Cx (9)

where x =
[

xT1 xT2
]T

, y = y2 and

A :=

[

A1 −gB1C2

B2C1 A2

]

B :=

[

B1

0

]

C := [ 0 C2 ]
Define the tracking error between input v and output y2

to be e := y2 − v and v̄ :=
[

v v̇ v̈ · · · v(n)
]T

.
We will show that the upper bound on |e| can be made
arbitrarily small by sufficiently increasing g as long as |v̄| is
bounded. For brevity and without loss of generality, we will
henceforth consider the case where Σ2 is a scalar system
(m2 = 1), with C2 = 1. The analysis of the case of higher
dimensional Σ2, which will be presented in later work, is
similar to that presented here, and involves expressing the
state space realization of Σ2 in Isidori normal form.

Theorem 2: Under Assumption 1, suppose (9) is subject
to an input signal v with v̄ ∈ L∞. Then, the tracking error
e(t) satisfies lim supt→∞ |e(t)| = O(1/

√
g).

As a direct consequence of Assumption 1, we have the
following proposition.

Proposition 1: Under Assumption 1 the feedback
interconnection (9) is observable from output y2.
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Fig. 1. Feedback interconnection of systems Σ1, Σ2 and feedback gain g.

Since (9) is observable by Proposition 1, it has an
invertible observability matrix. We denote the inverse of the
observability matrix by T , so that

T−1 =
[

CT (CA)T · · · (CAn−1)T
]T
. (10)

Proposition 2: Under Assumption 1, there exist
symmetric matrices Pi > 0, i = 1, 2 and scalars λi > 0
such that AT

i Pi + PiAi < −λiPi, and PiBi = CT
i

Proof: The result follows from the application of the
KYP lemma [20] to systems Σ1, Σ2.

Proposition 3: Let P :=

[

P1 0
0 gP2

]

. Then, the matrix

P satisfies ATP + PA < −λP where λ := min{λ1, λ2},
with λ1, λ2 given in Proposition 2.

Proof: Note that

A
T
P + PA =

[

AT
1 P1 + P1A1 S

ST g(AT
2 P2 +P2A2)

]

where S = g(P2B2C1)
T − gP1B1C2. From Proposition 2,

PiBi = CT
i for i = 1, 2, and therefore g(P2B2C1)

T −
gP1B1C2 = g(CT

2 C1)
T − gCT

1 C2 = 0. It follows that

A
T
P + PA =

[

AT
1 P1 + P1A1 0

0 AT
2 P2 + P2A2

]

< −λP

which concludes the proof.

For system (9), we will show that when bounds are placed
on the derivatives of v, the tracking error e := y − v =
C2x2 − v becomes small as feedback gain g grows. To
this end, let Hi(s), the strictly proper transfer function of
subsystem Σi, be such that Hi =

Ni(s)
Di(s)

, where Ni(s), Di(s)
are polynomials in s, the roots of which are respectively the
zeros and poles of Hi(s). Denoting the Laplace transforms
of y, e, v as Y (s), E(s), V (s), respectively, the transfer
function from V (s) to E(s) is then

E(s)

V (s)
=
Y (s)− V (s)

V (s)
=

D1(s)D2(s)

D1(s)D2(s) + gN1(s)N2(s)
.

Let n := m1 + m2 be the dimension of (9). Then, for
constants a0, · · · , an−1, ā0, · · · , ān−2, b0, · · · , bn that are
independent of g, we have

(sn + an−1s
n−1 + (an−2 + gān−2)s

n−2

+ · · ·+ (a1 + gā1)s+ (a0 + gā0))E(s)

= (bns
n + bn−1s

n−1 + · · ·+ b1s+ b0)V (s).

Defining e :=
[

e ė ë · · · e(n−1)
]T

, it follows that
the error vector e obeys the state space description

ė = Āe+ B̄v̄ (11)

where

Ā :=









0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−(a0 + gā0) −(a1 + gā1) · · · −an−1









and

B̄ :=











0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
b0 b1 · · · bn−1 bn











.

Proposition 4: The dynamics of the error system (11) are
such that Ā = T−1AT , where T is the inverse of the
observability matrix in (10).

Proof: This follows by taking n− 1 derivatives of the
error e = Cx − v to form an new n-dimensional basis for
system (9) to take it into canonical form.

For any Ā ∈ R
n×n, the matrix measure µ2,Q(Ā) is the

largest eigenvalue of the symmetric part of QĀQ−1, which
is the largest number τ such that ĀTQ2+Q2Ā ≤ 2τQ2 (see
Lemma 3 in [13]). Hence, we have the following lemma:

Lemma 1: The matrix measure µ2,Q(Ā) associated with
the weighted norm induced by the symmetric positive matrix
Q := (TTPT )

1
2 on R

n satisfies µ2,Q(Ā) ≤ −λ
2 where λ =

min{λ1, λ2}.
Proof: From Proposition 3 we have the relation ATP+

PA < −λP , from which it follows that AT (T−1)TTTP +
PTT−1A < −λP . Pre-multiplying both sides of this
inequality by TT and post-multiplying both sides by T yields

T
T
A

T (T−1)TTT
PT + T

T
PTT

−1
AT < −2

λ

2
T

T
PT

which gives the result using the fact that, from Proposition
4, Ā = T−1AT .

Lemma 2: Define the output z ∈ R as z := h̄(e) = e.
Then, d

∣

∣h̄(e)
∣

∣ ≤ |e|2,Q, with Q := (TTPT )
1
2 and d =√

gP2.
Proof: Since the first row of the observability matrix

T−1 is C = [ 0m1
1 ], we can deduce that its inverse has

the structure

T =

[

T̃
1 0m1

]

where T̃ ∈ R
m1×m1+1. Then, |e|22,Q = eTTTPTe =

eT T̃TP1T̃e
T + gP2e

2 > gP2e
2, from which the result

follows.
With the upper bound on the matrix measure µ2,Q from

Lemma 1 and d from Lemma 2, we can apply Theorem 1
to system (9), as in the following corollary.

Corollary 1: Suppose (9) satisfies Assumption 1 and that
it is subject to an input signal v which is such that v̄ ∈ L∞.
Then the tracking error e(t) satisfies

lim sup
t→∞

|e(t)| ≤ 2

λ
√
gP2

∥

∥B̄
∥

∥

2,Q
‖v̄‖[0,∞] . (12)

where Q := (TTPT )
1
2 .

To arrive at Theorem 2, we will need the following lemma.
Lemma 3: The induced matrix norm

∥

∥B̄
∥

∥

2,Q
, with Q :=

(TTPT )
1
2 is independent of the feedback gain g, and

therefore there exists K > 0 such that for all g > 0,
∥

∥B̄
∥

∥

2,Q
< K.

Proof: With Q := (TTPT )
1
2 , we have

∥

∥B̄
∥

∥

2,Q
=

B̄TTTPTB̄. We will show that the elements of B̄TTTPTB̄
are not functions of g. For a matrix M , denote by {M}i,j
the matrix resulting from the deletion of the ith row and jth

column of M . For a row vector R, denote by {R}j the row
vector resulting from the deletion of the jth element of R.



We also re-write the matrix A in (9) as A = Ã−gBC where

Ã :=

[

A1 0m1×1

B2C1 A2

]

.

To show that elements of B̄TTTPTB̄ do not grow
unbounded with g, we first make the following two claims,
the first of which is proven in Appendix II.

Claim 1: The determinants det({T−1}n,j) and det(T−1)
are independent of g.

Claim 2: The determinant det({T−1}n,n) = 0.
This latter claim follows from the fact that the first row

of T−1 is C =
[

0T
m1

C2

]

and C2 ∈ R.
Next, note that the only non-zero elements of the matrix B̄

lie along its nth row. Therefore columns of the matrix TB̄ are
scalings of the nth column of T . The jth element of the nth

column of T is given by (−1)n+j det({T−1}n,j)/det(T−1).
From Claims 1 and 2 the nth column of T can be expressed
as

[

qT
1 qT

2

]T
, where

q1 =

[

(−1)n+1 det({T−1}n,1) · · · (−1)n+n−1 det({T−1}n,n−1)
]T

detT−1

is independent of g. Hence

TB̄ =
[

b0

[

q1

q2

]

· · · bn

[

q1

q2

] ]

and, from the definition of P in Proposition 3,

B̄
T
T

T
PTB̄ = q

T
1 P1q1











b20 b0b1 · · · b0bn
b1b0 b21 · · · b1bn

...
...

. . .
...

bnb0 bnb1 · · · b2n











(13)

the elements of which are independent of g. It therefore
follows that ‖B̄‖2,Q is bounded for all g, and K is the
subordinate norm of (13) on R

n×m, induced by the norms
on R

m and R
n.

Since, by Lemma 3,
∥

∥B̄
∥

∥

2,Q
does not depend on g,

Corollary 1 shows that the upper bound error estimate (12)
can be made arbitrarily small by sufficiently increasing g, as
was formalized in Theorem 2.

IV. EXAMPLE

This example is motivated by design considerations that
arise in the construction of synthetic genetic circuits in which
it is desired that the total concentration of a protein p is
made to track the concentration of a transcription factor v
(see Table I). As many translational processes simultaneously
take place inside the cell, significant variations in the
concentration of available ribosomes R arise [31], [30], [33],
[32], [35], making the process of translating the mRNA
to the protein subject to disturbances. Here, we propose a
design where the rate of transcription can be amplified by the
introduction of high concentrations of the RNA polymerase
T7RNAP [36], resulting in a transcription rate g, where g is
large. Furthermore, it is assumed that the mRNA degrades at
a rate δ, the protein p degrades at a rate γ and the translation
rate is R, the concentration of available ribosomes.

To analyze the potential of feedback regulation to attenuate
disturbances that affect the protein’s ability to track the
transcription factor concentration v, we analyze a circuit in
which the protein p is an RNAase that regulates its own
translation by binding with, and degrading, the mRNA m
(Table II). Since the binding and unbinding reactions take

place on relatively fast timescales, those reaction rates are
scaled by a factor of 1/ǫ, where ǫ is small.Thus, when the
amount of protein p falls, due to a shortage of ribosomes,
the rate of mRNA degradation by p also falls, leading to a
resurgence in the protein concentration.

R-1 ∅
gv
−−→ m Transcription

R-2 m
δ
−→ ∅ Natural mRNA degradation

R-3 m
R
−→ p +m Translation

R-4 p
γ
−→ ∅ Protein degradation

TABLE I
REACTIONS OF THE GENE EXPRESSION MODEL.

R-5 p +m
k1/ǫ
−−−⇀↽−−−
k2/ǫ

Γ RNAase p binds mRNA, forms complex Γ

R-6 Γ
k3
−−→ p RNAase p degrades mRNA

R-7 Γ
δ
−→ p Natural mRNA degradation

R-8 Γ
R
−→ p +m Translation of mRNA in complex Γ

R-9 Γ
γ
−→ m Natural protein degradation

TABLE II
REACTIONS OF THE MRNA REGULATION MECHANISM.

From the reactions in Tables I and II, we obtain the
following ODE model:

Γ̇ =
k1

ǫ
mp− k2

ǫ
Γ− k3Γ− δΓ−RΓ− γΓ

ṁ = gv − δm− k1

ǫ
mp+

k2

ǫ
Γ +RΓ + γΓ

ṗ = Rm− γp− k1

ǫ
mp+

k2

ǫ
Γ + k3Γ + δΓ +RΓ.

Define the total mRNA concentration m̂ := m + Γ and
total protein p concentration p̂ = p + Γ. Since the binding
and unbinding reactions are relatively fast, we have the
quasi-steady state approximation k1mp ≈ k2Γ, from which
we obtain that Γ ≈ k1m

k2+k1m
p̂2. If we assume that the RNAase

strongly binds the mRNA so that k1 ≫ k2 we obtain Γ ≈ p̂.
By choosing an RNAase that degrades mRNA sufficiently
fast, we can also make the approximation k3 ≈ g. We
therefore obtain the reduced order system

˙̂m = gv − δm̂− gp̂

˙̂p = Rm̂− γp̂
(14)

The simplified model (14) can be decomposed into the
form (7), with Σ1 = (A1, B1, C1), Σ2 = (A2, B2, C2), with
A1 = −δ = −1, B1 = 1, C1 = 1, A2 = −γ = −1,
B2 = R, C2 = 1. Note that systems Σ1 and Σ2 are both
strictly positive real, respectively having transfer functions
H1 = 1

s+δ
and H2 = R

s+γ
, each of which has strictly positive

real parts. Therefore, the results of Theorem 2 can be applied
to this system. Figure 2 shows a simulation of system (14),
subject to an external input v = D sin(t/1) + 20. At t =
100 the ribosome availability undergoes a step change from
R = 0.5 to R = 4. At t = 200 the input signal’s sinusoidal
amplitude D undergoes a step change from D = 10 to D =
20. As can be seen, high gain feedback is able to maintain
a small tracking error between the transcription factor input
signal v and the protein concentration p.



In the presence of a protease, the system (14) is
transformed into a nonlinear model of the form

˙̂m = gv − δm̂− gp̂

˙̂p = Rm̂− γp̂− p̂

1 + p̂

(15)

To analyze the tracking error e := v−p̂, we first transform
(15) to a coordinate system in the coordinates e = [ e ė ]

T ,
as described in Section II, to obtain the time varying system

ė = Ā(t)e+ B̄v̄

where Ā(t) =

[

0 1
−a0 − gā0(t) −a1(t)

]

, B̄ =

[

0
1

]

,

a0 = δ, ā0(t) = 1, a1(t) = γ + 1
(1+p̂(t))2 + δ and

v̄ = δ p̂(t)
1+p̂(t) + δv +

(

δ + γ + 1
(1+p̂(t))2

)

v̇ + v̈. Note that

if v, v̇, v̈ ∈ L∞ then v̄ ∈ L∞ if p̂(t) > 0, ∀t. Without loss

of generality, let γ = 1. Then, defining Q =

[

g 1
2

1
2 1

]
1
2

,

Theorem 1 can be applied to (15) if we can find c, d such
that µ2,Q ≤ −c and d|e| ≤ |e|2,Q. Therefore c should satisfy
M := −2cQ2 − Ā(t)TQ2 + Q2Ā > 0. Pick c = 1

4a1
.

We then obtain that M(2, 2) =
(

4a21 − 2a21 − 1
)

/(2a21).
Since a1 > 1 we have M(2, 2) > 0. To ensure that
M > 0 we need det(M) > 0. Evaluating this determinant,
we find that detM = gρ1(a1) − ρ0(a1, δ), with ρ1(a) =
8a3

1−8a2
1+1

4a2
1

and ρ0(a1, δ) =
a4
1−4a3

1δ+4a2
1δ

2+4a1δ−a2
1+

1
4

4a2
1

. Note

that since a1 > 1 we have ρ1(a1) > 1/4a21. Therefore, with
c = 1

4a1
, we have det(M) > 0 as long as g > ρ̄ :=

a2
1(a1−2δ)2+4a2

1δ

4a2
1

> ρ0(a1,δ)
ρ1(a1)

. To ensure condition (3), note

that |e|22,Q > (g− 1
4 )e

2. Therefore Theorem 1 can be applied

with d =
√

g − 1
4 , as long as g > max(ρ̄, 14 ). Finally, note

that as t → ∞, we obtain the upper bound estimate on the
tracking error

lim sup
t→∞

|e(t)|≤
4a1

∥

∥B̄
∥

∥

2,Q
√

g − 1
4

‖v̄‖[0,∞]=
4a1

√

g − 1
4

‖v̄‖[0,∞]

showing that the tracking error can be made arbitrarily small
by sufficiently increasing g.
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Fig. 2. Simulation of system (9) with g = 0.1, 100. At time t = 100 there
is a step change in the available ribosome concentration from R = 0.5 to
R = 4. At time t = 200 there is a change in the input amplitude from
D = 10 to D = 20.

V. CONCLUSIONS

We have shown that dynamical systems that are
contracting in the sense of [10] are, under the assumptions
of Theorem 1, input to output stable. This result was
subsequently employed to show that if the tracking error
dynamics of a system subject to an exogenous input are
contracting, then the tracking error is input to output
stable with respect to the derivatives of the input. For a
dynamical system composed of two LTI strictly positive
real systems in cascade, we have shown that the tracking
error is proportional to the inverse of the square root of
the feedback gain and proportional to a bound on the
input derivatives. Our results find application in the design
of synthetic biomolecular networks. In this setting, most
system parameters are not well characterized. Since the
SPR property is a structural one, the tracking abilities of
the cascaded SPR feedback systems we have analyzed will
therefore be robust to parameter changes. Characterizing
dynamical systems through their structural properties in
this way therefore enables the rational design of control
architectures in highly uncertain environments.

APPENDIX I
PROOF OF THEOREM 1

Theorem 1 follows immediately as a special case of the
more general incremental input to state stability result proved
here. Henceforth we drop the notation | · |p,Q, µp,Q, ‖·‖p,Q
and use | · |, µ[·], ‖·‖ for shorthand.

Theorem 3: Suppose there exists c > 0 is such that

sup
t≥0, e∈X

µ[DF̄ ] ≤ −c .

with DF̄ being the Jacobian of F̄ .Consider the difference
between any two solutions corresponding to possibly
different inputs and initial states:

ṗ = F̄ (t, p) + B̄v̄1
q̇ = F̄ (t, q) + B̄v̄2 .

Denote e(t) := p(t)− q(t). Fix any τ ≥ 0 and let

r := sup
0≤t≤τ

∣

∣B̄v̄1(t)− B̄v̄2(t)
∣

∣

(where the norm is the norm in R
n being considered). Then:

|e(τ)| ≤ exp(−cτ) |e(0)| + 1− exp(−cτ)
c

r .

This theorem is the same as Theorem A in [26]. The proof
of that theorem is provided here with some additional details.

Proof: Observe that, for any 0 ≤ t ≤ τ , we have ė(t) =
A(t)e(t) +m(t), where

A(t) =

∫ 1

0

DF̄ (t, λp(t) + (1− λ)q(t)) dλ,

and m(t) = B̄v̄1(t) − B̄v̄2(t). Consider the norm of e(t)
and its (upper) Dini derivative:

D
+ |e(t)| = lim sup

h→0+

1

h

(

|e(t+ h)|−|e(t)|
)

= lim sup
h→0+

1

h

(

|e(t)+hA(t)e(t)+hm(t)+o(h)|− |e(t)|
)

≤ lim sup
h→0+

1

h

(

|e(t) + hA(t)e(t)| − |e(t)|
)

+ |m(t)|

≤ lim sup
h→0+

1

h

(

‖I + hA(t)‖ − 1)
)

|e(t)|+ r

= µ(A(t)) |e(t)|+ r ≤ −c |e(t)|+ r .



Since the function |e(t)| is continuous, we may apply the
subdifferential version of Gronwall’s inequality to conclude

|e(t)| ≤ exp(−ct)ψ(0) +
∫ t

0

exp(−c(t− s))r ds

for all t, which gives the desired conclusion.
To prove Theorem 1 from Theorem 3, we compare a

solution of ė = F̄ (t, e) + B̄v̄ with the constant solution
q ≡ 0 corresponding to v̄2 ≡ 0 and v̄ = v̄1. Note that
r ≤

∥

∥B̄
∥

∥ ‖v̄‖[0,∞].

APPENDIX II
PROOF OF CLAIM 1

Proof: We can write the kth row of T−1 as CAk−1 =
C(Ã−gBC)k−1. The binomial expansion of (Ã−gBC)k−1

results in a sum of 2k−1 terms composed of the matrix
products M1M2 · · ·Mk−1, with each Mi either Ã or −gBC.
Each term in the sum resulting from the expansion of
C(Ã− gBC)k−1 is therefore a scalar multiple of CÃi with
i ∈ {0, · · · , k − 1}, given by

C(Ã− gBC)k−1 = CÃ
k−1 +

k−2
∑

j=1

αk−1,jCÃ
j (16)

with αi,j ∈ R. It follows that as T−1 = DΩ where Ω is the
(Ã, C) observability matrix and

D =











1 0 · · · 0 0
α1,1 1 · · · 0 0

...
...

. . .
...

...
αn−2,1 αn−2,2 · · · 1 0
αn−1,1 αn−1,2 · · · αn−1,n−1 1











Since D is lower triangular, det(D) = 1, hence det(T−1) =
det(D) det(Ω) = det(Ω), which is independent of g.

From (16) we readily obtain that {C(Ã − gBC)k−1}i =
{CÃk−1}i +

∑k−2
j=1 αk−1,j{CÃj}i, from which we have

{T−1}n,i=











{C}i
{C(Ã− gBC)}i

...
{C(Ã− gBC)n−2}i











={D}n,n{Ω}n,i

Therefore det({T−1}n,i) = det({D}n,n) det({Ω}n,i) =
det({Ω}n,i) which is independent of g.
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