
Trends
Unbiased high-throughput data-driven
analysis approaches are identifying
molecular processes associated with
immunological function and immune-
related diseases, as well as candidate
immune disease-modulating gene
elements.

Hypothesis-based mechanistic model-
ing tests whether our understanding of
how a system works provides a pos-
sible explanation for the existing immu-
nological data, and helps focus
subsequent research.

A variety of immunology-friendly com-
putational modeling tools have been
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Emergent responses of the immune system result from the integration of
molecular and cellular networks over time and across multiple organs. High-
content and high-throughput analysis technologies, concomitantly with data-
driven and mechanistic modeling, hold promise for the systematic interrogation
of these complex pathways. However, connecting genetic variation and molec-
ular mechanisms to individual phenotypes and health outcomes has proven
elusive. Gaps remain in data, and disagreements persist about the value of
mechanistic modeling for immunology. Here, we present the perspectives that
emerged from the National Institute of Allergy and Infectious Disease (NIAID)
workshop ‘Complex Systems Science,Modeling and Immunity’ and subsequent
discussions regarding the potential synergy of high-throughput data acquisi-
tion, data-driven modeling, and mechanistic modeling to define new mecha-
nisms of immunological disease and to accelerate the translation of these
insights into therapies.
developed.

Mechanistic modeling and simulations
are serving increasingly important roles
in drug development and clinical trials.
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The Complexities of Immune Dysregulation
Dysregulation of immune and inflammatory pathways is at the core of many diseases facing
citizens of the 21st century. These diseases are multifactorial, exhibit great patient-to-patient
variability, and are often intractable to both traditional therapy and reductionist insight. Immune
regulation in healthy individuals is orchestrated by highly complex, massively and dynamically-
interacting gene networks, immune signaling pathways, cellular networks, host–pathogen
interactions, and nutrition–microbiota–host interplay. Immune-mediated diseases, such as
those that stem from the response to viral or bacterial infection, as well as trauma-induced
inflammation, Crohn's disease (CD), type 1 diabetes mellitus (T1DM), or multiple sclerosis (MS),
result when these homeostatic immunoregulatory mechanisms deviate or fail.

Recent decades have brought tremendous progress in the application of ‘omics’ and associ-
ated bioinformatics methods to several immunological diseases. Genome and disease-mapping
consortia have helped elucidate how genetic variation influences disease risk, and consortia over
the past 15 years have provided progressively finer resolution of immune disease-associated
genetic variation [1,2]. Multidimensional and high-throughput technologies are facilitating a
comprehensive and systematic interrogation of complex immune pathways and the identifica-
tion of relations among their components at both the cellular andmolecular levels, in both healthy
individuals and those with infections or immune-mediated diseases. Moreover, computational
analyses in genome-wide association studies (GWAS) are identifying increasing numbers of
candidate immune disease-modulating genetic elements. For example, over 60% of the genetic
variation predicting MS onset has been elucidated; these genetic variants largely overlap with
other autoimmune diseases [3].
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A fundamental challenge for immunology is how to extend this rapidly growing, individualized
data acquisition. More specifically: what is the optimal way to leverage focused, hypothesis-
driven immune research to understand how immune system behavior in health and disease
emerges from molecular, genetic, epigenetic, cellular, and environmental modulatory elements?
The NIAID convened a workshop of computational and experimental immunologists in October
2015 to address this challenge. At the workshop and in subsequent discussions, different
viewpoints separated experimental immunologists, data-driven modelers, and mechanistic
modelers (Figure 1). Although researchers from divergent backgrounds approach fundamental
questions in immunology from different and sometimes clashing perspectives, they share a
common interest in reducing the burden of immune disease by improving the predictability of
immunological responses.

A further common view shared by experimental and computational immunology researchers is
that, despite the explosion of ‘omics’ and related techniques, such as mass cytometry (CyTOF),
in experimental immunology, a dearth of key data is a major impediment to an improved
mechanistic and predictive understanding of immunology. The ability to infer novel interactions,
principal drivers, and interconnected networks using data-driven modeling, including
approaches such as bioinformatics, machine-learning classifiers, or mathematical modeling
of signaling networks or cell dynamics, is now well accepted [4]. However, mechanistic
mathematical modeling has been incorporated less well into experimental immunology research.
Some researchers are skeptical that mechanistic models can provide predictive power, espe-
cially in the absence of key quantitative data to anchor the model fully. However, modelers point
out that even relatively simple mathematical models can improve insight from existing data, and [20_TD$DIFF]
that better integration of mechanistic modeling approaches into immunology research can
optimize the choice of what and when to measure, sharpen hypothesis testing, and help make
the resulting data sets more informative (Box 1).

The initial process of formally developing a simple and perhaps initially incorrect model that
includes only a few entities often proves invaluable in revealing hidden assumptions, formalizing
hypotheses, and identifying key missing measurements and experiments. Importantly, data
mining and mechanistic modeling are synergistic approaches that are not intended to replace
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Figure 1. Different Perspectives of
Immunology Researchers. Generally,
immunologists seek to understand the
role of immune system in health and dis-
ease, focusing on how genetic, epige-
netic, and environmental variations affect
immune function and influence individual
disease expression and response to treat-
ment. Data-driven modelers seek to map
predictive relations between multiple data
variables and disease in individuals,
reconstructing and examining how mole-
cular and [7_TD$DIFF]cellular networks change in
health and disease. Mechanistic modelers
seek to define how a defined set of mole-
cular and cellular interactions can lead to
complex outcomes in health and immu-
nological disease. This latter group utilizes
abstractions of biological mechanisms
encoded into computational models,
and seeks to [8_TD$DIFF]explain how diverse, com-
plex health and disease phenotypes
emerge from a defined set of immune
interactions, set in motion by [9_TD$DIFF]specific initial
biological conditions.
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Box 1. Small versus Big Models

Small or reduced models help select among alternative mechanistic hypotheses and provide qualitative predictions. By
contrast, highly detailed models can lead to specific, quantitative predictions of behavior over time. Model complexity can
be a double-edged sword. An increase in the number of model parameters increases both model resolution and [10_TD$DIFF] the
precise representation of detailed mechanisms while also increasing the risk of overfitting the experimental data.

Small Models–Qualitative Insights

As an example, the host innate immune response to bacterial sepsis was simulated using a reduced model [79]. In this
study, a mechanistic model comprising three ordinary differential equations accounted for a bacterial pathogen population,
an early proinflammatory mediator derived from the initial activation of macrophages and/or neutrophils, and the later
production of damage-associated molecular pattern molecules (also a surrogate for the damage sustained by the host in
the course of infection and inflammation). Each equation represented the rate of change of each of these components
(pathogen, composite early immune response, composite damage response) relative to the levels of the other components
and simulation of the model provided the predicted level of each component over time. This highly abstracted model
reproduced both a healthy outcome and diverse negative outcomes that are observed in patients with sepsis, depending
on initial conditions and parameter values. Simulation supported the hypothesis that the clinical condition of sepsis can arise
from several distinct physiological states, each of which requires a different treatment approach.

Large Models–Quantitative Insights

Large, detailed models can integrate data, procedural knowledge, and theory into information-processing representa-
tions of innate and adaptive immune responses to simulate complex immunological systems. An example is an
inflammatory bowel disease (IBD) model [27]. The modeling platform used incorporated mathematical modeling and
machine-learning methods to allow clinical trial data integration, including subjects’ CD activity index (CDAI), endoscopic
measures of mucosal healing, data from electronic medical records, preclinical data from animal models, and cellular and
molecular signatures. Simulating such models can guide clinical plans, predict results of clinical trials, and suggest new
therapeutics. Through this modeling and experimental validation, a novel Lanthionine Synthetase C-like 2 (LANCL2)-
based oral therapeutic for CD was identified and is being developed [80]. Model simulations will be used to help guide the
design of Phase 2 and 3 clinical studies [71].
experimentation, but rather to each serve a complementary role in an iterative cycle of data
exploration, hypothesis exploration, and experiment. In this regard, one motivator for the NIAID
conference was the concern that academic immunology research is lagging industry and other
medical research fields in incorporating modeling approaches. In adapting to the high rate of
failure and the more than US$2.6 billion total research and development (R&D) costs involved in
the approval of a new drug or biologic [5], industry has turned increasingly to computational
modeling at all levels, from modeling drug–receptor interactions to pharmacokinetic and phar-
macodynamic modeling, to in silico clinical trials [6,7]. The Critical Path initiative of the US Food
and Drug Administration (FDA) has further stimulated the incorporation of mathematical model-
ing in drug discovery [8]. Recent NIH requests for applications in many areas, such as cancer
research, specifically call for the integration of modeling approachesi [12_TD$DIFF]. These trends are applica-
ble to immunology.

We suggest that immunology research needs to evolve more rapidly from a paradigm of
experiment, data analysis, and interpretation, to a more integrative approach that incorporates
formal computational modeling and prediction. The fruitful application of this type of comple-
mentary, iterative approach to the question of how the T cell response is scaled to the level of the
antigenic signal has recently been reviewed [9]. Here, we explain the complementary role and
limitations of both data-driven and mechanistic modeling, and review successes of computa-
tional immunology in both basic and translational settings. Finally, we lay out a roadmap for
bridging the immunologist–modeler divide to accelerate insight into emergent mechanisms of
immune system function and the translation of data into individualized treatment for infectious
and immune-mediated diseases.

Modeling Approaches and Applications in Immunology
One likely reason for the narrow adoption of mathematical modeling by the immunology
community, similar to the broader biomedical research community, is the sheer diversity of
Trends in Immunology, Month Year, Vol. xx, No. yy 3
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methods and approaches broadly encompassed within this discipline, as well as the lack of
formal computational, mathematical, and statistical training of most immunologists. Below, we
review briefly major types of computational modeling and their application to immunology.

Various data-driven modeling or data-mining approaches are an essential element of large-scale
systems immunology research. These methods share a grounding in rich experimental data
sets, providing quantitative measurements of molecular concentrations, biochemical reactions,
or cellular and tissue-level parameters. These data are then combined with topologies and
injected into computational approaches that seek to determine the multivariate relations among
objects in the networks, and how the system as a whole responds to perturbation [10]. This type
of modeling iterates between prediction, experimental testing via perturbation, and refinement of
the model based on the new data [4].

Unsupervised analysis approaches, such as hierarchical clustering, principal component analy-
sis, and more classical statistical analyses, are considered data-driven modeling, as are various
network inference algorithms that can provide information about the correlation and, in some
instances, causal structure among variables [11,12]. These approaches have been used in
modeling and simulation of the mono- (e.g., folding) or bimolecular interactions [e.g., MHC-T cell
receptor (TCR)-Ag complexes], of signal transduction cascades, of CyTOF data representing T
cell phenotypes, of genetic regulatory networks, or of cellular behavior (e.g., [13]). Some studies
use regression techniques that build models predictive within the conditions of the data upon
which they were trained [14], as well as predictive classifiers [15]. These methods can provide
insight into the molecular circuits underlying immunological phenomena, such as switching
between immune cell subsets [16]. As an adjunct to this type of endeavor, resources such as a
user-friendly, web-accessible, 38 000 public experiment-based resource to predict immune-
system and disease relevant gene–gene relations supports big data mining and hypothesis
development by immunology researchers without computational training [17]. A potential
limitation of data-driven modeling is that, at least in some cases, predictions are based on
correlations, making generalizable mechanisms difficult to infer from the resulting model.

Mechanistic modeling (sometimes called ‘hypothesis-based modeling’ [18]) is based on specific
mechanistic hypotheses, and uses mathematical equations and computer simulations to
describe abstractions of complex biological systems that are, in essence, hypotheses about
the core functions or processes that govern the system [4,19–21]. Data-driven and mechanstic
modeling have commonalities and can complement each other. However, whereas data-driven
modeling is based on obtaining data and inferring relations among entities and/or differences
among groups, mechanistic modeling typically starts with an initial picture of how things work
that, after abstraction into mathematics, can then be played forward in time and compared
against experimental or clinical results. Mechanistic modeling has provided non-intuitive mech-
anistic insight into many areas of immunology, ranging from molecular systems, such as how
analog signals from TCR engagement become digital further downstream and the basis for
nonlinearities in the system [22–25], to clinical responses in disease, as described below. A
major rationale for pursuingmodeling in immunology (and systems biologymore generally) is that
complex networks with cooperativity and feedback (which broadly describes biological systems
at every scale) exhibit complex, nonlinear relations (a characteristic that can be inferred from, but
not tested explicitly with, data-driven modeling [13,26]). Simply put, it is difficult to predict how a
given perturbation at the molecular level will affect system behavior at higher scales over time or
at homeostasis without the aid of a mechanistic model that can be ‘played forward in time’ under
a variety of conditions that would be impractical to test only using experimentation.

Perhaps the most fundamental difficulty when pursuing mechanistic modeling concerns the
appropriate level of [21_TD$DIFF]abstraction and/or complexity for the model (e.g., do we study at the
4 Trends in Immunology, Month Year, Vol. xx, No. yy
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Box 2. Immunology-Friendly Computational Modeling Software

There is a variety of user-friendly platforms that faciliate immunological modeling without detailed understanding of the
mathematical considerations ‘under the hood’. These include:
� Complex Pathway Simulator (COPASI): enables researchers to construct biochemical and immunological ODE

models that help them understand how a system works. Model parameters can be adjusted as necessary to
reproduce experimental resultsii.

� ENteric Immunity Simulator (ENISI) MultiScale Modeling (MSM): a platform designed for modeling complex mucosal
immune responses. ENISI MSM can simulate in silico experiments from signaling pathways to tissue level events, and
in silico clinical trials. It integrates agent-based modeling (ABM), ordinary differential equations (ODE), and machine-
learning methodsiii.

� Simmune: provides intuitive visual interface-guided modeling of molecular interactions to provide cellular, spatial, and
time-dependent simulations of immune processesiv.

� Monte Carlo Cell (MCell): a program that uses spatially realistic 3D cellular models and specialized Monte Carlo
algorithms to simulate the movements and reactions of molecules within and between cells, supported by extensive
training tutorialsv.

� RuleBender: this tool helps the collaborative development of diagram-based models, usable by immunologists who
are not necessarily experts in mathematical modeling, while providing the deeper insights into the simulation process
that are needed for tasks such as model and simulation debugging, and overall understanding of molecular systemsvi.

� Virtual Cell (VCell): is a comprehensive platform for modeling cell biological systems that is built on a central databse
and disseminated as a web applicationvii.
molecular or cellular level, at the second-, minute-, or days-long timescale, how few or many
components and relations should be included?) relative to the underlying biological system and
the scientific questions being posed (Box 1). Defining the optimum balance of modeling
simplicity versus complexity for the problem at hand benefits from interdisciplinary interactions
between modeling experts and experimentalists. The development of user-friendly software
tools (Box 2) facilitates both formal modeling by experimentalists and this interaction between
experimental immunologists and modelers. Some platforms, such as ENISI MSM, integrate
mechanistic modeling at the intracellular scale and data-driven modeling at tissue level and
population levels [27] (Box 2).

In the following sections, we briefly highlight some of the major common approaches to
mechanistic modeling, and the diverse areas of immunology to which they have been applied.

Systems of Ordinary Differential Equations
Systems of ordinary differential equations (ODEs) remain one of the most flexible, widespread
approaches for mechanistic modeling in immunology. Each distinct ‘species’ of interest in anODE
model, whether it be an organism, cell type, virus, bacterium, or biomolecule, is represented by a
continuous time variable. These variables often interact with each other in a recursive manner that
precludes ‘solving’ the system of equations in the manner familiar from traditional mathematics
courses; rather, these systems of equations are simulated using a numerical integration algorithm,
yielding predicted trajectories for each variable (i.e., a graph of their predicted levels over time).
ODE models almost always describe system dynamics (i.e., behavior over time). Individual terms
in the equations express how rates of change of each species depend on population sizes,
interactions among species, and external factors. Even when time-course data are not available,
ODE models can be useful for analyzing the steady-state behavior of a system.

Classical applications of simple ODE models simulated interacting virus and lymphocyte pop-
ulations in HIV infection [28,29]. These relatively simple models involving few species revealed an
unexpectedly dynamic interplay between the virus and immune system during latent infection.
Quantitative estimates of staggeringly large daily rates of HIV-1 production helped identify the
need for combinatorial antiretroviral therapy regimens and spurred their development and
implementation. These studies also paved the way for detailed mathematical studies of lym-
phocyte dynamics in infection and homeostasis, in conjunction with experiments. A few recent
Trends in Immunology, Month Year, Vol. xx, No. yy 5
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examples of immunological insights contributed by this type of ODEmodeling are the differences
in maintenance of peripheral naïve T cells between mice and humans [30], the phenotype-
specific dynamics of antigen-stimulated CD8+ T cells in SIV [31], and the balance between
immunopathology and protection in T cell-based vaccines [32].

At the subcellular scale, ODE models have been successfully applied to elucidate dynamic
control mechanisms governing signaling and gene regulation in the immune system. An example
of iterative experiments and model development leading to new insights is found in the NF-kB
signaling system [33]. In another example, a detailed model involving approximately 50 biomo-
lecular species and hundreds of reactions was used to study control of dendritic cell (DC)
maturation [34]. The model enabled zeroing-in on cell-specific regulation of the RelB protein in
mouse embryonic fibroblasts (MEF) and DCs. Differences in two biochemical rate constants
were identified as being able to account for qualitatively different, cell type-specific responses
in silico. These predictions were confirmed by altering these rates through genetic engineering of
MEFs, producing DC-like control.Emerging advanced applications of ODE modeling include
landscape and flux theory [35], which may hold the potential to define and quantify homeostatic
versus pathological immune system states, as well as the barriers to transition between states.

Agent-Based Models
Whereas an ODE model typically predicts average population sizes or concentrations over time,
an agent-based model (ABM) explicitly represents each individual model entity (often cells with
distinct attributes) in a computer simulation. The ‘rules of engagement’ are defined in advance,
and events occur probabilistically. ABMs are typically spatial (meaning, for example, that cells
must be in proximity to interact), and are useful for exploring how local interactions influence
larger-scale behavior [20]. In immunology, ABMs were introduced to study lymphocyte antigen-
specific recognition and activation [36]. Representations of receptor–ligand interactions that
represent unoccupied and/or occupied sites as zeros-ones bit strings has enabled ABMs to go
someway towardsmodeling the combinatorial diversity of immune repertoires. ABMs have been
applied to the study of: granuloma formation in Mycobacterium tuberculosis [37,38]; germinal
center formation [39]; thymic selection [40]; multiscale modeling of mucosal immune responses
to irritable bowel disease (IBD) and gastroenteric infection using ENISI, which recapitulate the
relation between mucosal immune responses and inflammatory lesions in the gastrointestinal
(GI) tract [41,42]; and spatial dynamics of infection [43]. Folcik et al. also generated a multiscale
ABM that recapitulates the interactions between the cells of the innate and adaptive immune
system, ultimately resulting in immune memory for an antigen following infection [44].

Logical Models
Logical models allow researchers to model network dynamics in the absence of detailed
information about parameters governing interactions (the general paucity of this information
is a perennial challenge for many types of mathematical modeling). In a logical model, network
species are categorized according to a small number of discrete states (e.g., ‘active’ or ‘inactive’)
and interactions such as ‘X activates Y’ govern updates to the system state at each time step. As
such, only qualitative information about interactions, rather than quantitative rate parameters, is
required in the building of themodel [45]. Examples of applications of logical models include TCR
signaling [46,47] and T cell specification [48,49].

Models Can Either [23_TD$DIFF]Be Deterministic or Stochastic
A deterministic model, such as an ordinary differential equation described above, will always give
the same result each time it is simulated with the same parameters. However, when studying
responses at the single cell level, the small number of molecules involved may lead to large
differences in behavior that are truly random. In stochastic models, the behavior of a system is
affected by random uncertainty. ‘Stochastic modeling’ is an umbrella term: several different
6 Trends in Immunology, Month Year, Vol. xx, No. yy
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mathematical frameworks and simulation methods are available for stochastic modeling, includ-
ing stochastic differential equations, diffusion-type equations, stochastic biochemical network
models, reaction-diffusion models, and probabilistic Boolean networks, among others. Agent-
based models are also typically stochastic. By accounting for individual molecules and bio-
chemical reactions, stochastic models have revealed how lymphocytes respond sensitively to
small amounts of antigen. For example, a synergistic modeling and experimental study showed
that feedback regulation in a particular TCR signalling module gives rise to a digital (‘on’ or ‘off’)
activation response at the single-cell level [25]. Other examples of stochastic modeling applied to
immunology include: studies of stochastic cytokine expression [46,50]; dynamics of lymphocyte
differentiation and expansion [51]; cellular response to infection [51–54]; lymphocyte repertoire
development [55]; and affinity maturation [56,57].

All models, at some level, aim to describe and predict complex systems. Mechanistic models,
particularly ODE-based deterministic models, lend themselves to further practical applications,
such as the dynamic control of a given complex system [58]. This application is at the heart of a
field known as Control Theory, which has been applied in the context of immunology for nearly
four decades [59,60]. The immune system can be viewed as comprising interlocked and finely
tuned homeostatic and regulatory mechanisms, which must achieve an appropriate, propor-
tional, and dynamic defense against infection and autoimmunity. Mathematical control theory is
central to the design of engineered systems, and core concepts, such as feedback control, are
clearly at work in the immune system [61]. Increased application of control theory to immunology
will shed light on how natural immune responses work and how therapies can be designed to
tailor immune responses in specific disease contexts. A complementary role of control theory is
in the rigorous formulation and solution of optimal immunotherapy drug infusion regimens [62],
as well as in identifying patient-specific therapeutic strategies for the acute inflammatory
response to severe infection [63].

Clinical Trial Simulations in Immune-Mediated and Inflammatory Diseases
In silico clinical trials, in which mechanistic models are carried out over a broad range of
parameter values and initial conditions, using advancedmachine-learningmethods or stochastic
simulation methods, such as ABMs, have been applied for over a decade in the setting of acute
inflammation and immunity [64–69,63,70]. We highlight two examples of in silico clinical trials in
the settings of CD and trauma-induced inflammation.

ABM and ODE models, in combination with supervised machine-learning methods, have been
used to create virtual patients with CD [27,42]. In a recent study [71][24_TD$DIFF], 10 000 virtual patients with
CD were created using information from clinical trials where both individual response to
treatment and aggregated data were combined with expert knowledge with the goal of
comparing current and investigational treatments. Virtual treatment strategies were designed
based on changes in immunological parameters that drive response to treatment. Such virtual
patients provide a diversified population to generate novel non-intuive hypotheses regarding
treatment response to novel therapeutics (Box 1). Another example of virtual patients based on
mechanistic modeling involves inflammation and critical illness caused by traumatic injury. A
recent study described a multicompartment ODE model that represents a virtual trauma patient
[68]. This mathematical model was used to create both individual-specific variants as well as a
cohort of 10 000 virtual trauma patients [68]. The model was able to predict trauma-induced
mortality as well as a non-intuitive role for interleukin-6, which was validated with single
nucleotide polymorphisms (SNP) data [68].

These examples indicate that the outcome and process of clinical trials in complex immune and
inflammatory diseases are becoming computationally tractable. In silico clinical trials can also
have pitfalls [72]. They carry the risk of deprioritizing therapies that might have been valuable, or
Trends in Immunology, Month Year, Vol. xx, No. yy 7
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of being unsuccessful because the pathophysiological knowledge that underlies the model
remains incomplete (and, hence, the model is overfitting to the sparse data that are typically
available). For instance, in the case of T1DM, the identity of effector or inhibitory molecules and
cells, the impact of beta-cell regeneration, and the role of viruses or other environmental triggers
that conspire to provoke autoimmune diabetes are poorly understood, let alone their quantitative
or dynamic parameters (and there are likely to be several patient subtypes and instigating
causes). While a plausible quantitative model of T1DM [73] could readily be programed to
simulate immunomodulatory trials of T1DM in thousands of patients, its results would only be as
good as the assumptions underlying the model.

Integrating Modeling and Experimentation for 21st-Century Immunology
The successes of immunology-focused modeling suggest that computational, mechanistic
modeling should be at the heart of interdisciplinary research to optimize the translational impact
of the immunology research portfolio, from highly focused, hypothesis-driven research, to large-
scale team science, to bedside applications. Our core contention is that rather than a relatively
linear process of hypothesis!experiment!data, a better approach to the complexity of
immunology might be data!model!experiment!validation!refined model, leading to both
novel hypotheses, data and/or theory integration, streamlined experimentation, and prediction
of translation to humans and therapeutic impact of fundamental biological mechanisms. Both
data-driven and mechanistic modeling would serve the immunology community in this revised
workflow. Data-driven modeling would allow for inference of novel interrelations, feedback
architectures, and principal characteristics; this type of modeling is already a mainstay of large,
collaborative consortia focused on ‘omics’ studies. Mechanistic modeling could be a major
‘equalizer’ for many labs in an environment of limited grant funding because it would help target
key experiments in a resource-constrained environment. Alternatively, mechanistic modeling
could help delineate key data sets and help with design and interpretation in large, systems-
oriented studies.

Amajor role for modeling that needs to be better utilized by the immunology research community
is as a customized data analysis tool for the extraction of new, and perhaps non-intuitive,
mechanistic hypotheses from experimental data. Fitting an experimental data set that provides
dynamics (i.e., measurements obtained over time) using a simple model often highlights features
in the data that fit poorly to the predictions of the model. This leads to thoughtful exploration of
the cause of the discrepancy between data and simulation: are there experimental errors?
measurement noise? a mechanism not included in the model? This process can lead to model
revision to test whether a novel mechanism is a plausible explanation for the discrepancy, and to
further experiments to test the hypothesis. Thus, modeling allows us to better take advantage of
otherwise discarded information in the experimental data that reflect important novel mecha-
nisms, which in turn can have amajor influence on subsequent experimental work or therapeutic
development. This type of modeling, illustrated by the classical HIV work by Perelson and
colleagues described above [28,29], is most useful when it is anchored not only in the data, but
also in the biology and immunology that underlies the assumptions of the model. Mechanistic
modeling is in many ways an art, and it is important to start the process by crafting equations that
are based on plausible immunological mechanisms. Indeed, one may think of mechanistic
modeling as ‘the art of the possible’: if one includes well-vetted mechanisms and/or agreed-
upon hypotheses, does the system as a whole behave as everyone thinks it should (i.e., is the
behavior ‘possible’ or ‘impossible’)? If so, then the model suggests (but does not prove) that the
underlying hypotheses are correct to some level of precision. If not, then either the underlying
hypotheses are incorrect, or there is something incorrect or missing in the model. Either way,
knowledge is gained in a rational fashion. To practice this, there is a need for closer collab-
orations between modelers and experimentalists, as well as for better training of modelers in
immunology and of experimental immunologists in modeling, as described further below.
8 Trends in Immunology, Month Year, Vol. xx, No. yy
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Outstanding Questions
How should the various approaches to
modeling be standardized to improve
model sharing and integration?

Can model formatting and annotation
be standardized without restricting the
applicability of these approaches to
divergent goals and questions?

How can model simulation platforms be
refined to facilitate their use by immu-
nology researchers not trained in
modeling, without compromising scien-
tific rigor?

How can data-driven analysis
approaches and hypothesis-based
mechanistic modeling be best
integrated?
More success in predictive analysis will benefit from additional data and the release of more
experimental and clinical trials data to the public. The NIAID-supported Immunology Database
and Analysis Portal (ImmPort) system [74] is a repository for these types of data. More than 200
data sets are now available at ImmPort (with the number rapidly growing), and many of these
reflect the raw data released upon the completion of an interventional clinical study. Such raw
data can be reanalyzed to defend the reproducibility of statistical testing from the original
publication, and the aggregation of multiple studies through meta-analysis can be used to
increase power to detect subtle signals. They could also be useful for new scientific discoveries,
such as finding patient subsets that best respond to an intervention [75], or predicting why drugs
might be succeeding or failing in clinical trials.

The NIAID meeting participants noted that interdisciplinary collaborations are key to realizing the
iterative cycle of modeling!data!modeling. Many obstacles can derail interdisciplinary col-
laboration; thus, it is important to consider communication and cultural roadblocks between
immunology experimentalists and computational modelers, and how to overcome them.

Recommendations on Establishing Integrative Collaborations
The first obstacle to overcome is the identification of appropriate and suitable collaborators. The
panel's recommendations focus on collaborations in which the biological questions determine
the computational and mathematical tools utilized. From the immunologist's point of view, it is
crucial first to identify the key immunological questions of interest and the biological scales
encompassed by the questions. Finding the ‘right’ fit within the multivariate space of exper-
imentalists, modelers, and biological questions will undoubtedly require multiple conversations,
and the entire search process may take several iterative cycles.

When beginning the conversation, both experimentalists and modelers should be prepared for a
‘culture shock’ of sorts, as each attempts to describe the aspects of their field relevant to the
question to be studied. Even seemingly innocuous vocabulary can become a stumbling block,
perhaps best exemplified by terms such as ‘model’: one party may be thinking of a mouse
model, while the other is thinking in terms of mathematical equations or a set of rules. In a similar
vein, the limitations of each collaborator's field should be freely discussed, to avoid over-
estimating what either experiments or modeling can achieve.

Both experimentalists and modelers need to keep in mind that their collaborative process is
necessarily a feed-forward, feed-back endeavor that originates with, and repeatedly returns to,
addressing important immunological questions and leveraging critical experimental data sets as
well as novel computational technologies. These data can then be fed into the development of
mathematical models that represent the known biological processes and interactions of various
biological entities or into the implementation of computational methods. These computational
tools can then feed-back into the biological side by raising novel hypotheses and suggesting
additional data to collect or to generate testable hypotheses to guide further experimental work.
Additional experimental findings can then feed-forward again to refine further and calibrate
mechanistic models.

Concluding Remarks
At its core, the integration of modeling in mechanistic, preclinical, translation, and clinical
immunology is centered on rigor and a foundational ‘back-to-basics’ approach. The lack of
rigor and reproducibility of experimental studies is an area of widespread concern in both
preclinical and clinical research [76,77]. When quantitatively predictive modeling is built on data,
the integration of modeling into the research pipeline provides an additional quality-control
mechanism that improves the rigor and reproducibility of immune studies. Furthermore, mech-
anistic modeling might be crucial when attempting to circumvent the difficulty in extrapolating
Trends in Immunology, Month Year, Vol. xx, No. yy 9
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from reductionist mechanisms to system-level outcomes in individuals and populations with
immune-mediated diseases [78].

The remarkable advances in computational modeling described above have occurred in an
environment of relatively stable NIH funding opportunities for systems biology and ‘omics’
research, although most of the rapid progress has related to the adoption of bioinformatics
techniques by the immunology research community. While 21% (38 of 178) NIH ‘omics’ and
‘systems biology’ Funding Opportunity Announcements (FOA) identified at the time of writing
this article are standing requests that are open over multiple years, the rare mechanistic immune
modeling FOAs have been overwhelmingly one-time opportunities. If the broader immunology
research enterprise is to reap the synergies of modeling, key changes are required to achieve a
cohesive, growing, and efficient interdisciplinary effort. Mechanisms to encourage [25_TD$DIFF] progress on
outstanding sections, such as the further development of software platforms and interchange
standards that improve model reuse and hypothesis testing, especially by researchers with
limited mathematical and/or computational training, will assist the beneficial integration of
modeling into immunology research [26_TD$DIFF] (see Outstanding Questions). Improved understanding
of the value and limitations of modeling by the experimental immunology research community
is key; experiential learning could be encouraged by student and fellowship training, workshops,
and visiting scientist programs. Finally, stable large-scale (P01, U19, U24, BAA) and smaller
(R01, R21, SBIR/STTR) funding mechanisms are needed to encourage the integration of
simulation and experimental immunology, ultimately leading to the improved therapeutic devel-
opment and clinical outcomes. Changing the culture, language, tools, and research enterprise to
improve the synergy of data mining, mechanistic modeling, and data-generating immunology
research techniques should accelerate the translation into improved diagnosis and treatment of
infectious, inflammatory and immune-mediated diseases.
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