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Abstract

We consider a compartmental model for ribosome flow during RNA translation
called the Ribosome Flow Model (RFM). This model includes a set of positive transition
rates that control the flow from every site to the consecutive site. It has been shown that
when these rates are time-varying and jointly T -periodic every solution of the RFM
converges to a unique periodic solution with period T . In other words, the RFM
entrains to the periodic excitation. In particular, the protein production rate converges
to a unique T -periodic pattern. From a biological point of view, one may argue that the
average of the periodic production rate, and not the instantaneous rate, is the relevant
quantity. Here, we study a problem that can be roughly stated as: can periodic rates
yield a higher average production rate than constant rates? We rigorously formulate
this question and show via simulations, and rigorous analysis in one simple case, that
the answer is no.

1 Introduction

Transcription and translation are the two major steps of gene expression, that is, the trans-
formation of the information encoded in the DNA into proteins. During translation complex
molecular machines called ribosomes traverse the mRNA molecule, “read” it codon by codon,
and generate the corresponding chain of amino-acids.

New imaging techniques [1, 2, 3, 4] and empirical approaches [5, 6, 7, 8, 9, 10] for studying
gene expression provide unprecedented amounts of data on the dynamics of translation. This
increases the need for mathematical and computational models for ribosome flow that can
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integrate, explain and make predictions based on this data (see the reviews [11, 12, 13]).
Mechanistic models are particularly important in biotechnology and synthetic biology, as
they allow to predict the effect of various manipulations of the biological machinery [14, 15].

The Ribosome Flow Model (RFM) is a deterministic model for ribosome flow [16]. It
can be derived via a dynamic mean-field approximation of a fundamental model from sta-
tistical physics called the Totally Asymmetric Simple Exclusion Process (TASEP) [11, 17].
In TASEP particles hop randomly along a chain of ordered sites. Totally asymmetric means
that the flow is unidirectional, and simple exclusion means that a particle can only hop into
a free site. This models the fact that two particles cannot be in the same place at the same
time. Note that this generates an indirect coupling between the particles. In particular, if a
particle is delayed at a site for a long time then the particles behind it cannot move forward
and thus a “traffic jam” may evolve.

The RFM is a compartmental model with n sites. The state-variable xi(t), i = 1, . . . , n,
describes the density of particles at site i at time t. This is normalized so that xi(t) = 0
[xi(t) = 1] means that site i is completely empty [full] at time t.

The dynamics is described by n first-order ODEs:

ẋ1(t) = λ0(1− x1(t))− λ1x1(t)(1− x2(t)),

ẋk(t) = λk−1xk−1(t)(1− xk(t))− λkxk(t)(1− xk+1(t)), 2 ≤ k ≤ n− 1,

ẋn(t) = λn−1xn−1(t)(1− xn(t))− λnxn(t).

(1)

Here λi > 0 is a parameter that describes the translation rate from site i to site i+1, with λ0

[λn] called the entry [exit] rate. Eq. (1) can be explained as follows. The flow from site k to
site k+1 is given by λkxk(1−xk+1), i.e. it increases when site k becomes fuller and decreases
when site k+ 1 becomes fuller. This is a “soft” version of simple exclusion. The production
rate at time t is the rate of ribosomes exiting site n, that is, R(t) := λnxn(t).

Note that if some λk is small then the flow from site k to site k + 1 will be small, so
site k fills up. Consequently, the flow λk−1xk−1(1− xk) from site k− 1 to site k will become
small and then site k−1 fills up. In this way, a traffic jam may evolve behind a “bottleneck”
site. The implications of such traffic jams in various biological transportation processes is
recently attracting considerable interest (see, e.g. [18, 19]).

It has been shown in [20] that there exists a unique e = e(λ0, . . . , λn) ∈ (0, 1)n such that
any solution of the RFM emanating from the unit cube converges to e. Thus, the system is
globally asymptotically stable. In particular, the production rate converges to

R := λnen.

Ref. [21] derived a spectral representation for the steady-state density e and production
rate R. Given the RFM, define the (n+ 2)× (n+ 2) tridiagonal matrix

B :=



0 λ
−1/2
0 0 0 . . . 0 0

λ
−1/2
0 0 λ

−1/2
1 0 . . . 0 0

0 λ
−1/2
1 0 λ

−1/2
2 . . . 0 0
...

0 0 0 . . . λ
−1/2
n−1 0 λ

−1/2
n

0 0 0 . . . 0 λ
−1/2
n 0


. (2)

2

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/507988doi: bioRxiv preprint first posted online Dec. 28, 2018; 



Note that B is (componentwise) nonnegative and irreducible. Let σ > 0 [ζ ∈ Rn
>0] denote

the Perron root [Perron vector] of B. Then

R = σ−2 and ei =
ζi+2

λ
1/2
i σζi+1

, i = 1, . . . , n. (3)

Note that it follows from this that for any c > 0 we have

R(cλ0, . . . , cλn) = cR(λ0, . . . , λn)

that is, the steady-state production rate is positively homogeneous of degree one.

Example 1. Consider the RFM with all the rates equal to one. Then B is a tridiagonal
Toeplitz matrix and it is well-known (see e.g. [22]) that its eigenvalues are 2 cos( kπ

n+3
), k =

1, . . . , n+ 2, so the Perron root is σ = 2 cos( π
n+3

). The corresponding Perron vector is

ζ =
[
sin( π

n+3
) sin( 2π

n+3
) . . . sin( (n+1)π

n+3
)
]T
.

Thus, in this case (3) gives

R =
1

4
(cos(

π

n+ 3
))−2 (4)

and

ei =
ζi+2

σζi+1

=
sin( (i+2)π

n+3
)

2 cos( π
n+3

) sin( (i+1)π
n+3

)
(5)

for all i = 1, . . . , n. For example, in the one-dimensional case, i.e. ẋ1 = 1 − 2x1 the
equilibrium point is e = 1/2, so R = 1/2, whereas (4) yields

R =
1

4
(cos(

π

4
))−2 = 1/2,

and (5) gives

e1 =
sin(3π

4
)

2 cos(π
4
) sin(2π

4
)

= 1/2.

�

Biological organisms are exposed to periodic excitations like the 24h solar day and the
periodic cell-cycle division process. Proper functioning often requires entrainment to such
excitations i.e. internal processes must operate in a periodic pattern with the same period
as the excitation. An example is the sleep-wake cycle that entrains to the 24h day.

Ref. [23] studied the RFM with positive time-varying rates that are jointly T -periodic,
and proved that every state-variable converges to a periodic solution with period T . In other
words, the RFM entrains. The proof is based on the fact that the RFM is an (almost)
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contractive system [24]. However, this provides no information on the attractive periodic
solution (except for its period).

Since any set of jointly periodic rates induces a periodic solution, a natural question is:
can periodic rates yield a higher production rate than constant rates? In this paper, we
formulate this question rigorously and then address it via simulations and rigorous analysis
in one simple case. The remainder of this paper is organized as follows. The next section
defines the periodic gain of the RFM. Section 3 describes some simulation results for the gen-
eral RFM. Section 4 considers the problem of finding the maximal periodic gain as an optimal
control problem. We then turn to a particular simple case, namely, a one-dimensional RFM,
and prove a result on the periodic gain using the PMP.

2 Problem Formulation

For any T -periodic function f , with T > 0, let f̄ := 1
T

∫ T
0
f(t) dt, that is, the average of f

over a period. Pick a set of rates λi(t), i = 1, . . . , n, that are jointly T -periodic (note
that a constant rate is T -periodic for any T ). Recall that this induces a unique T -periodic
trajectory γ(t) of the RFM and thus a unique T -periodic production rate RT (t) := λn(t)γn(t).
The average production rate is thus RT . Consider an RFM with constant rates λ̄i, i =
1, . . . , n. Recall that every trajectory converges to a unique steady-state e and thus to a
production rate R := λ̄nen.

The question we are interested in is: what is the relation between RT and R? Note that
this is a “fair” comparison as we replace every time-varying rate by its average value.

We call RT/R the periodic gain of the RFM (for the given set of T -periodic rates). One
can argue that the average production rate over a period, rather than the instantaneous
value, is the biologically relevant quantity. Then a periodic gain larger than one implies that
we can “do better” using periodic rates.

To gain a wider perspective, consider the case of a SISO asymptotically stable linear
system with input [output] u(t) [y(t)] and transfer function G(s). Suppose that u(t) = a +
b sin(ωt). Note that this is T -periodic with T = 2π/ω, and that u = a. It is well-known that
the output converges to the T -periodic function yT (t) := |G(0)|a+|G(jω)|b sin(ωt+∠G(jω)),
where j :=

√
−1, so yT = |G(0)|a. On the other-hand, if we replace u(t) by u = a then

the output converges to |G(0)|a. Thus, the periodic gain for this input is one and by
superposition it is one for any periodic input.

Of course, for nonlinear systems, like the RFM, the periodic gain may be different than
one. The next example demonstrates this.

Example 2. Consider the scalar system

ẋ(t) = 1− x(t)u(t). (6)

For u(t) = 1 + (1/2) cos(t) the solution is

x(t) = exp(−t− 1

2
sin(t))(x(0) + φ(t)),

where φ(t) :=
∫ t

0
exp(s+ 1

2
sin(s)) ds. Thus,

x(2π) = exp(−2π)(x(0) + φ(2π)),
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We now determine an initial condition x(0) = c for which the solution is 2π-periodic, that
is,

c = exp(−2π)(c+ φ(2π)),

so

c =
exp(−2π)φ(2π)

1− exp(−2π)
≈ 0.79443.

Thus, the periodic solution is xT (t) := exp(−t− 1
2

sin(t))(c+φ(t)). It is not difficult to show

that this solution is attractive. A calculation yields xT = 1
2π

∫ 2π

0
xT (t) dt ≈ 1.06489.

On the other-hand, for u = 1
2π

∫ 2π

0
u(s) ds = 1, the solution of (6) converges to the

steady-state 1 and thus the periodic gain is ≈ 1.06489. �

3 Simulations

We consider the RFM where every rate is a sum of m harmonic functions with random
coefficients. More precisely, we generated a matrix of random entries P ∈ R(n+1)×(2m) and
then set

λi(t) = 1 +
m∑
k=1

(pi,2k−1 sin(kωt) + pi,2k cos(kωt)) , i = 0, . . . , n. (7)

Note that this guarantees that the λi’s are jointly T -periodic for T = 2π/ω and that λi = 1 for
all i. The entries of P are generated randomly with a uniform distribution over [−1/(2m), 1/(2m)],
so that λi(t) ≥ 0 for all i and all t.

We first simulated the RFM with n = 1. Since λi = 1 for i = 0, 1 we know from
Example 1 that R = 1/2. Fig. 1 depicts a histogram of the average steady-state flow RT

for m = 3 and 10, 000 simulations. It may be seen that this is always smaller than 1/2.
Thus, the constant rates yield the maximal production rate.

Consider now an RFM with n = 4 and constant rates set to one. By (4),

R =
1

4
(cos(π/7))−2 ≈ 0.307979. (8)

Fig. 2 depicts a histogram representation of RT calculated over 10, 000 simulations of an RFM
with periodic rates λ0(t), . . . , λ4(t). It may be seen that RT is smaller than the value in (8),
so again the constant rates are those that maximize the production rate.

Our next goal is to pose the problem of determining the RFM periodic gain as an optimal
control problem.
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Figure 1: A histogram of RT values in the one-dimensional RFM with periodic λ0(t)
and λ1(t).

Figure 2: A histogram of RT values in an RFM with n = 4 and periodic rates λi(t), i =
0, . . . , 4.

4 Optimal periodic control

We augment the equations of the RFM with an additional state-variable as follows

ż1 = λ0(1− z1)− λ1z1(1− z2),

żk = λk−1zk−1(1− zk)− λkzk(1− zk+1), 2 ≤ k ≤ n− 1,

żn = λn−1zn−1(1− zn)− λnxn,
żn+1 = λnzn,

(9)

with zn+1(0) = 0. Thus, z(t) =
∫ t

0
R(τ) dτ . Pick T > 0 and a1, . . . , an > 0, and let Sa,T

denote the set of measurable functions λi(t), i = 0, . . . , n, satisfying the following conditions
for all i = 0, . . . , n,
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1. λi(t) ≥ 0 for almost all t ≥ 0;

2. λi(t) = λi(t+ T ) for almost all t ≥ 0; and

3. λi = ai.

We can apply the spectral representation to determine the steady-state production rate R
when λi(t) ≡ ai for all i. Thus, determining the periodic gain is equivalent to solving the
following optimization problem.

Problem 1. Maximize 1
T
z(T ) over the set of admissible rates Sa,T and with the boundary

condition zi(0) = zi(T ) ∈ (0, 1) for i = 1, . . . , n.

The last condition guarantees that we are maximizing the production rate along the
(unique) periodic trajectory.

5 Optimal Control and Pontryagin Principle

5.1 Optimal Control Formulation

Consider the following single state system:

ẋ = λ0(t)(1− x(t))− λ1x(t). (10)

Let λ0(t) : R≥0 → R>0 be a measurable signal with a period T > 0, i.e, λ0(t) = λ0(t+T ) > 0,
and let λ1 > 0 be a constant.

Let ϕ(t;x(0), λ0(t)) be the solution of (10) for a given inflow rate and an initial condition
(which exists and is unique by Carathéodory conditions [25]). Since the system is contrac-
tive, then the solution of (10) entrains to the periodic input, i.e, it converges to a periodic
trajectory with a period T [23]. Let x(t) := ϕ∗(t;λ0) be the limit trajectory.

The problem in the last section can be understood as maximizing the average flow, i.e
y(t) = λ1x(t), over the set of inputs with a given average.

In order to write this as an optimal control problem, we consider optimizing the following
cost functional over the compact interval [0, T ]:

J(λ0(t)) =
1

T

∫ T

0

λ1x(t)dt. (11)

In order to enforce the periodicity condition, we impose the constraint x(0) = x(T ). The
set of admissible controls is the set of measurable signals λ0(t) over the interval [0, T ] with a
given average λ̄0 and which satisfy λ0(t) ∈ [0, L] for some upper bound L > 0. The periodic
extension of a signal can be defined as λ0(t) = λ(t−mT ), where m = b t

mT
c, t ≥ 0.

Hence, we write the extended system as:

ż =

[
ż1

ż2

]
= f(z) + g(z)λ0(t) =

[
−λ1z1(t)

0

]
+

[
1− z1(t)

1

]
λ0(t), (12)

where z1(t) := x(t), and with the following boundary conditions:

z1(0) = z1(T ), z2(0) = 0, z2(T ) = T λ̄0. (13)

For a given L > 0, the optimal control problem can be stated as follow:
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Problem 1. Find λ0(t) : [0, T ] → [0, L] that maximizes the cost functional (11) subject to
the ODE (12) and the boundary conditions (13).

Note that Problem 1 is a nonlinear optimal control problem since it has a bilinear term
containing the state and control.

The first main result is the following:

Theorem 1. The signal that solves Problem 1 with L = 2λ̄0 is:

λ0(t) ≡ λ̄0, t ∈ [0, T ], (14)

and corresponding the optimal cost is:

J(λ∗0(t)) =
λ1λ̄0

λ1 + λ̄0

. (15)

Hence, the throughput of the system can not be improved by using periodic time-varying
inflows. The proof of Theorem 1 is given below.

5.2 Pontryagin’s Maximum Principle with periodic inputs

The Pontryagin Maximum Principle (PMP) is a well-known necessary condition for the
optimality of control signals [26],[27],[28]. However, Problem 1 has a non-standard boundary
condition z1(0) = z2(T ). Nevertheless, we can use a modified transversality condition to state
the PMP. First, we need to define the Hamiltonian associated with the system as:

H(λ0, x, p, p0) = p(t)T (f(z(t))+g(z(t))u(t))+p0
λ1
T
z1(t) = (−p1λ1+p0

λ1
T

)z1+(p1(1−z1)+p2)λ0(t),
(16)

where p(t) ∈ R2 is the costate, and p0 ≥ 0 is called the abnormal multiplier.
For Problem 1, the maximum principle can be state as:

Proposition 2 (The Maximum Principle). Let λ∗0(t) : [0, T ] → [0, L] be an optimal control
for Problem 1. Let z∗ : [0, T ]→ [0, 1]× R be the corresponding optimal state trajectory. Let
p∗0 = T/λ1. Then, there exists a function p∗ : [0, T ] → R2 with p∗(t) 6= 0 for all t ∈ [0, T ],
and satisfying:

1. The solution z∗(t) and p∗(t) satisfy:

ż∗ =
∂H
∂p

, (17)

ṗ∗ = −∂H
∂x

, (18)

where H is given by (16) with the boundary conditions (13).

2. The control λ∗0(t) is optimal for all t ∈ [0, T ] while fixing z∗, p∗, i.e,

H(λ, z∗(t), p∗(t)) ≤ H(λ∗0(t), z∗(t), p∗(t)) (19)

for all t ∈ [0, T ] and λ ∈ [0, L].
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3. The costate variable satisfies the following transversality condition:

p1(0) = p1(T ). (20)

Proof. We need to prove the transversality condition and that the abnormal multiplier is
non-zero

For the transversality condition, we utilize a result from [27] that allows for arbitrary
initial sets. Let S ⊂ R4 be an initial set, and have the following constraint:

z′ :=

[
z(0)
z(T )

]
∈ S.

Then transversality condition for the PMP can be stated as:[
p(0)
−p(T )

]
⊥Tz′S,

where Tz′S is the tangent space of S at z′.
In our case, S = {z ∈ R4|z1 − z3 = 0, z2 = 0, z4 = T λ̄0}. Hence, TzS = span{[1, 0, 1, 0]T}.
Therefore, it is necessary that p∗1(0) = p∗1(T ).

Next, we show that abnormal multiplier can not vanish. For the sake of contradiction,
assume p0 = 0. Hence, (18) implies that ṗ1 = p1(λ1 + λ∗0(t))− p∗0(λ1/T ). Therefore,:

ṗ1 = (λ1 + λ0(t))p1,

which is separable. Hence, integrating we get ln(p1(T )) − ln(p1(0)) =
∫ T

0
(λ1 + λ0(t))dt.

Using the transversality condition derived above this implies that
∫ T

0
λ0(t)dt = −λ1 < 0

which contradicts the fact that λ0(t) > 0. Hence, p∗0 can not vanish. Assume now that a pair
(p∗(t), p∗0) 6= 0 exists with p∗0 6= 0 that satisfies the PMP. Then, (p∗(t)/(p∗0λ1/T ), T/λ1)
also satisfies the PMP. Hence, we can state the PMP with p∗0 = T/λ1 without loss of
generality.

6 Optimality of the constant rate

6.1 Characterization of the optimal rate

The control input λ0(t) appears linearly in the the Hamiltonian (16), and also p2(t) ≡ p2(0)
which follows from (18) since ṗ2 = 0. Hence, we can define the switching function as:

ϕ(t) := p∗(t)Tg(z∗(t)) = p∗1(t)(1− z∗1(t)) + p∗2(0). (21)

We have the following lemma:

Lemma 3. Let (λ∗0(t), z∗(t), p∗(t)) be an optimal trajectory, then if ϕ(t) 6= 0, then:

λ∗0(t) =

{
L : ϕ(t) > 0
0 : ϕ(t) < 0

, (22)

i.e, λ0(t) is a bang-bang control when the switching function does not vanish.
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Proof. Let ϕ(t) > 0, and let λ∗0(t) < L. However,

H(λ∗0(t), z∗(t), p∗(t)) = (−p∗1(t)+1)z∗1(t)+ϕ(t)λ∗0(t) < (−p∗1(t)+1)z∗1(t)+ϕ(t)L = H(λ, z∗(t), p∗(t)),

which violates condition 3 in Proposition 2. Hence, λ∗0(t) < L is not optimal. The same
argument can be applied when ϕ(t) < 0.

The switching function can also vanish. In that case the control signal is called singular.
We provide a characterization of the form of the singular control. First we need some
notation. Assume that λ∗0(t) is an optimal control and let ϕ be the associated switching
function. Let E+ = {t ∈ [0, T ]|ϕ(t) > 0}, E− = {t ∈ [0, T ]|ϕ(t) < 0}, and E0 = {t ∈
[0, T ]|ϕ(t) = 0}. Note that all three sets are measurable. We state the characterization next.

Lemma 4. Let λ∗0(t) be an optimal control, and let E+, E−, E0 be as defined above such that
µ(E0) > 0, where µ denotes the Lebesgue measure. Then:

λ∗0(t) ≡ c0 :=
T λ̄0 − Lµ(E+)

µ(E0)
, for t ∈ E0. (23)

and z∗1(t) ≡ c0
λ1+c0

, t ∈ E0.

Proof. Let E ⊂ E0 be the set of accumulation points of E0. Note µ(E) = µ(E0), since
E0 − E is the set of isolated points of E which is countable, and hence has measure zero.
Then, ϕ(t) = 0 for t ∈ E implies that dn/dtn(ϕ(t)) = 0, t ∈ E for all positive integers n.
Hence, we calculate ϕ̇(t), ϕ̈(t) below. Lie brackets are usually utilized for such calculation.
Using ϕ(t) = p1(1− z1) + p2(0), we can write:

ϕ̇(t) = ṗ1(1− z1)− p1ż1 = p1λ1 − (1− z1) (24)

ϕ̈(t) = λ1ṗ1 + ż1 = λ0(t)(1− z1 + λ1p1)− λ1(1 + z1 − λ1p1), (25)

In order to find the form of the singular trajectory on E, we find that ϕ(t) = ϕ̇(t) =
0 implies that p∗1(t)(1 − z∗1(t)) ≡ −p∗2(0), and λ1p

∗
1(t) ≡ 1 − z∗1(t). Hence, we find that

p∗1(t) ≡ 1 − z∗1(t) ≡ K, where K is a constant. Since z(t) ∈ (0, 1), then K ∈ (0, 1). Hence,
p∗2(0) = −K2/λ1 < 0.

Substituting p∗1(t), z∗1(t) in ϕ̈(t) = 0 we get that:

λ0(t) =
λ1K

1−K
, t ∈ E0

which is a constant. Using the fact that
∫ T

0
λ0(t) = T λ̄0, and noting that λ0(t) ∈ {0, c0, L}

we can write Lµ(E+) + c0µ(E0) = T λ̄0, and hence (23) follows (i.e, λ∗0(t) = c0), and z1(t) ≡
1−K = c0

λ1+c0
.

Lemma 1 and 4 above lead to the following characterization of optimal control signals:

Proposition 5. Let λ∗0(t) be a control input that solves Problem 1, then λ0(t) ∈ {0, c0, L},
for some c0 ∈ (0, L).
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Remark 1. If µ(E0) = 0 then the control signal is said to be fully bang-bang, while if
µ(E0) = T then the control signal is fully singular. Otherwise, the control signal is said to be
a patching of bang-bang arcs and singular arcs. Hence, Theorem 1 asserts that the control
is fully-singular. In that case λ∗0(t) = λ̄0 and z∗1(t) = λ0/(λ1 + λ̄0).

Remark 2. The singular control satisfies the necessary conditions such as the Legendre-
Clebsch condition [27]. However, we will not include a proof as we will be showing that it is
indeed optimal within the class of three-level signals.

6.2 Any patching of bang-bang with singular arcs is suboptimal

Proposition 5 shows that an optimal control takes up to three values only. Hence, in order
to prove Theorem 1 we need to show that the cost functional with a fully singular control
achieves better than any other signals in that class. We parametrize, the class of signals for
a given average λ̄0 as follows:

λ0(t) = λ̄0 + εα(t), (26)

where α(t) is measurable such that α(t) ∈ {−1, c, 1}, where |c| < 1 and 0 ≤ ε ≤ λ̄0. It also

satisfies
∫ T

0
α(t)dt = 0. For every choice of λ0(t) we let x(t) denote the solution of (10) that

satisfies x(0) = x(T ).

We will show that J(λ0(t)) ≤ λ1λ̄0
λ̄0+λ1

for any choice ε and α(t) above.

First, we study the case when α(t) has a finite number of switchings, which we define
next. A set E ⊂ [0, T ] is said to be elementary if it can be written as a finite union of open,
closed, or half-open intervals. Let E+, E−, E0 be defined similar to the previous subsection,
i.e, we let E+ = {t|α(t) = 1}, E− = {t|α(t) = −1}, E0 = {t|α(t) = c}. Then α(t) is said to
have a finite number of switchings if E+, E−, E0 are elementary sets.

We are ready to state the next proposition:

Proposition 6. Let λ0(t) be given as in (26) such that α(t) has a finite number of switchings.
Then,

J(λ0(t)) <
λ1λ̄0

λ̄0 + λ1

for ε > 0, µ(E0) < T .

The proof will be presented after some preliminaries.
First, we derive an identity for the scalar linear system ẋ = a − bx, where a, b > 0 are

constants. This linear system has a unique steady state at xss = a
b

which is globally stable.
We state the following lemma:

Lemma 7. Let t0, t1 > 0 be the initial and final time. Consider the initial value problem
ẋ(t) = a− bx with x(t0) = x0. Let x(t) be solution of the problem, and let x1 = x(t1). Then:∫ t1

t0

x(t)dt =
a

b
(t1 − t0)− 1

b
(x1 − x0) (27)
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Proof. Since the scalar linear system is separable, we can write:
∫ t1
t0
dt =

∫ x1
x0
dx/(a − bx).

Hence,

(t1 − t0) =
1

b
ln

∣∣∣∣a− bx0

a− bx1

∣∣∣∣ , (28)

which implies

x1 = x0e
−b(t−t0) +

a

b

(
1− e−b(t−t0)

)
(29)

Next, we show that the integral of x(t) over time can transform to integration over
occupancy: ∫ t1

t0

xdt =

∫ x1

x0

x

a− bx
dx =

a

b

(
1

b
ln

∣∣∣∣a− bx0

a− bx1

∣∣∣∣)− (x1 − x0

b

)
(30)

Using (28) we get the required formula (27).

Going back to our problem, note that the system (10) with an input (26) is a switched
linear system which switches between three linear systems. Fig. 3 illustrates this switched
system with two lines in (ẋ, x) coordinates, where:

a1 = λ̄0 + ε, a2 = λ̄0 − ε, ac = λ̄0 + cε, (31)

b1 = λ̄0 + ε+ λ1, b2 = λ̄0 − ε+ λ1, bc = λ̄0 + cε+ λ1 (32)

The upper line is when α(t) = 1, and the lower line is when α(t) = −1. Note that
there is no line for the case α(t) = c since the characterization in Lemma 4 implies that
x(t) is constant on a singular arc, and hence ẋ(t) = 0. Hence, when the control is singular,
the system ẋ = ac − bcx is at steady-state, and the trajectory stays at a single point in
(x, ẋ)-coordinates.

We need the following lemma to characterize the behaviour of the system for a given α(t)
with finite switchings:

Lemma 8. Let λ0(t) given with a finite number of switchings, and let x(t) the solution
of (10) with x(0) = x(T ). Let tc = µ(E0). Then there exists a positive integer n, and
x−0 , x

+
0 , x

−
1 , x

+
1 , ..., x

−
n , x

+
n > 0 such that:∫ T

0

x(t)dt =
n∑
i=0

(∫ x+i

x−i

xdx

a1 − b1x
+

∫ x−i

x+i

xdx

a2 − b2x
dt

)
+ tc

ac
bc

(33)

Proof. The trajectory starts from x(0) and returns to x(0) at t = T , which forms a grand
loop. (note that the time spent when α(t) = c is part of the loop). Since α(t) can have
multiple swtichings, it can have multiple loops. We observe the following: if the trajectory
transverses from x−i to x+

i on the upper line, then it must transverse back from x+
i to x−i on

the lower line. Hence any trajectory can be partitioned into a finite number of trajectories.
The ith trajectory consists of two segments: a segment on the upper line (from x−i to x+

i )
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ẋ = a2 − b2x

XXy
XXy

XXyXXy

PPq
PPq

PPq
PPq

PPPPq

?XXXXy

6 b

Figure 3: A trajectory of the switched system in the (ẋ, x)-coordinates.

matched with a segment on the lower line (from x+
i to x−i ). Note that the two segments are

not necessarily consecutive in time, and the partitioning is not necessarily unique. Using the
same transformation used in (30) and accounting for the total time spent in the singular arc,
we can write the integral as in (33).

Before completing the proof of Proposition 6, we state following lemma:

Lemma 9. The following inequality holds:

∀a, b > 0 :
(1− e−a)(1− e−b)

1− e−(a+b)
<

ab

a+ b
(34)

Proof. Let f(a, b) = 1−e−(a+b)

(1−e−a)(1−e−b)
− 1
a
− 1

b
. The inequality is proved if we show that f(a, b) > 0

for a, b > 0. Note that lim(a,b)→(0,0),a,b>0 f(a, b) = 0.
Differentiating with respect to a:

∂f

∂a
=

1

a2
+

1

2− 2 cosh(a)
.

Using the Taylor series of cosh(a) we can find that 2 cosh(a) − 2 > a2 for a > 0. Hence
∂f/∂a > 0. Similarly, ∂f/∂b > 0. Hence, f increases in all directions in the positive quarter
which proves the lemma.

We complete the proof of Proposition 6 below

Proof of Proposition 6. Let tc = µ(E0), t+ = µ(E+), t− = µ(E−). Using the fact that total

time is T , and that
∫ T

0
α(t)dt = 0. Then t+ and t− can be written as a function of tc and T

(35):

t+ + t− + tc = T

t+ − t− + ctc = 0
⇒

{
t+ = 1

2
(T − tc(1 + c))

t− = 1
2
(T − tc(1− c)) (35)
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Now consider the decomposition stipulated in Lemma 8, with {x−i , x+
i }ni=0. Let t+i be the

time spent on the upper segment from x−i to x+
i , and let t−i be the time spent on the lower

segment from x+
i to x−i .

Using (33) and (28), we can write:

J̃(λ0(t)) :=
1

T

∫ T

0

x(t).dt− λ̄0

λ̄0 + λ1

=
1

T

(∑
i

[ ∫ x+i

x−i

dx

a1 − b1x
+

∫ x−i

x+i

dx

a2 − b2x

]
+ tc

ac
bc

)
− λ̄0

λ̄0 + λ1

=
1

T

∑
i

[
t+i
a1

b1

+ t−i
a2

b2

+ (x+
i − x−i )

(−1

b1

+
1

b2

)]
+
tc

T

ac
bc
− λ̄0

λ̄0 + λ1

(36)

We proceed to rewrite x+
i − x−i using equation (29) as follows:

{x+
i = x−i e

−b1t+i +
a1

b1

(
1− e−b1t

+
i

)
=
(
x+
i e
−b2t− +

a2

b2

(
1− e−b2t−

))
e−b1t

+

+
a1

b1

(
1− e−b1t+

)
x−i = x+

i e
−b2t−i +

a2

b2

(
1− e−b2t

−
i

)
=
(
x−i e

−b1t+ +
a1

b1

(
1− e−b1t+

))
e−b2t

−
+
a2

b2

(
1− e−b2t−

)
(37)

Hence,

(x+
i − x−i ) =

(a1

b1

− a2

b2

)(1− e−b1t+i )(1− e−b2t−i )
1− e−b1t+i −b2t−i

(38)

Using Lemma (9) and (38) we get the following upper bound:

x+
i − x−i <

(a1

b1

− a2

b2

)(b1t
+
i )(b2t

−
i )

b1t
+
i + b2t

−
i

(39)

Rewriting the equation (36):

J̃(λ0(t)) =
1

T

(
t+
a1

b1

+ t−
a2

b2

+ tc
ac
bc

∑
i

[
(x+

i − x−i )(
−1

b1

+
1

b2

)
])
− λ̄0

λ̄0 + λ1
(40)

<
1

T

(
t+
a1

b1

+ t−
a2

b2

+ tc
ac
bc

+
∑
i

[(a1

b1

− a2

b2

)(b1t
+
i )(b2t

−
i )

b1t
+
i + b2t

−
i

(
−1

b1

+
1

b2

)
])
− λ̄0

λ̄0 + λ1

(41)

Let δi := t+i − t−i . Note that it can be either positive or negative. Note that
∑

i δi = −ctc.
Define ti := t+i + t−i , and hence

∑
i[ti] = t+ + t− = T − tc. Using the definitions, we get:

t+i =
ti + δi

2
, t−i =

ti − δi
2

(42)
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Hence, we can write (41) as follows:∑
i

[(a1

b1

− a2

b2

)(b1t
+
i )(b2t

−
i )

b1t
+
i + b2t

−
i

(
−1

b1

+
1

b2

)
]

=
4λ1ε

2(
(λ̄0 + λ1)2 − ε2

)∑
i

[ t+i t
−
i(

(t+i + t−i )(λ̄0 + λ1) + (t+i − t−i )ε
)]

=
λ1ε

2(
(λ̄0 + λ1)2 − ε2

)
(λ̄0 + λ1)

∑
i

[ t2i − δ2
i

ti + δiε
λ̄0+λ1

]
=

λ1ε
2(

(λ̄0 + λ1)2 − ε2
)

(λ̄0 + λ1)

∑
i

[ t2i − δ2
i

t2i −
(

ε
λ̄0+λ1

)2
δ2
i

×
(
ti −

δiε

λ̄0 + λ1

)]
≤ λ1ε

2(
(λ̄0 + λ1)2 − ε2

)
(λ̄0 + λ1)

∑
i

[
ti −

δiε

λ̄0 + λ1

]

≤
λ1ε

2(T − tc + tc cε
λ̄0+λ1

)(
(λ̄0 + λ1)2 − ε2

)
(λ̄0 + λ1)

(43)

Substituting (43) in the inequality (36) and substituting the values of all the variables,
we get that (44) simplifies to:

J̃(λ0(t)) < − c2ε2λ1t
c

T (λ̄0 + λ1)2(cε+ λ̄0 + λ1)
< 0. (44)

In order to prove Theorem 1, we need to consider an arbitrary measurable signal α(t).
For that purpose, use the following characterization of measurable sets:

Lemma 10. [29] Let E ⊂ [0, T ]. Then E is measurable if and only if for every ε > 0 there
exists an elementary set Bε ⊂ [0, T ] such that µ(E∆Bε) < ε, where ∆ is the symmetric
difference of sets.

We improve on the lemma above, by the following:

Lemma 11. Let E ⊂ [0, T ]. Then E is measurable if and only if for every ε > 0 there exists
an elementary set Bε ⊂ [0, T ] with µ(Bε) = µ(E) such that µ(E∆Bε) < ε, where ∆ is the
symmetric difference of sets.

Proof. Sufficiency is clear. For necessity, let Bε/2 be the elementary set given by Lemma 10.
We can modify the intervals contained in Bε/2 by up to ε/2 to get Bε with µ(Bε) = µ(E).

We generalize Proposition 6 as follows:

Proposition 12. Let λ0(t) be given as in (26) such that α(t) is measurable. Then,

J(λ0(t)) ≤ λ1λ̄0

λ̄0 + λ1

.
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Proof. Let E0, E+, E− be defined as before. Using Lemma 11, let E0
i , E

+
i , E

−
i be elementary

sets such that µ(E0
i ) = µ(E0) and µ(E0∆E0

i ) < 1/2i, and similarly for E+
i , E

−
i . We have

also µ(E0
i ) + µ(E+

i ) + µ(E−i ) = T .
Let αi(t) be defined as follows:

αi(t) =


1 : t ∈ E+

i

c : t ∈ E0
i

−1 : t ∈ E−i

Then αi(t) are elementary simple functions, and we have αi(t)→ α(t) for all t. For each
i, xi(t) is the solution of the corresponding differential equation which has a known form.
Hence, the proposition follows using Proposition 6 and Lebesgue’s bounded convergence
theorem [29].

Theorem 1 follows from Propositions 5 and 12.
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