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Abstract— Integral feedback can help achieve robust tracking
independently of external disturbances. Motivated by this
knowledge, biological engineers have proposed various de-
signs of biomolecular integral feedback controllers to regulate
biological processes. In this paper, we theoretically analyze
the operation of a particular synthetic biomolecular integral
controller, which we have recently proposed and implemented
experimentally. Using a combination of methods, ranging from
linearized analysis to sum-of-squares (SOS) Lyapunov func-
tions, we demonstrate that, when the controller is operated
in closed-loop, it is capable of providing integral corrections
to the concentration of an output species in such a manner
that the output tracks a reference signal linearly over a large
dynamic range. We investigate the output dependency on the
reaction parameters through sensitivity analysis, and quan-
tify performance using control theory metrics to characterize
response properties, thus providing clear selection guidelines
for practical applications. We then demonstrate the stable
operation of the closed-loop control system by constructing
quartic Lyapunov functions using SOS optimization techniques,
and establish global stability for a unique equilibrium. Our
analysis suggests that by incorporating effective molecular
sequestration, a biomolecular closed-loop integral controller
that is capable of robustly regulating gene expression is feasible.

I. INTRODUCTION
Genetic networks often require maintaining a stable equi-

librium in the presence of biological disturbances. Feedback
provides a mechanism to achieve this goal. It has been
shown that feedback in transcriptional networks can work
autonomously to maintain homeostasis independent of ex-
ogenous or endogenous disturbances [1]–[5]. This has led
to the development of integral controllers that use negative
feedback to correct the concentration of an output species
to provide robust tracking [6]–[10]. In this work, we ana-
lyze the operation of a synthetic biomolecular integral con-
troller designed to robustly regulate gene expression, which
we recently proposed and experimentally implemented [6],
based on sigma and anti-sigma factors. Our controller uses
molecular sequestration to calculate the error between the
set-point, i.e. reference, and the output species, an archi-
tecture introduced by Briat, Gupta, and Khammash [7]. A
sigma factor regulator is employed in a feedback pathway
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to precisely control the expression of an output species, in
such a manner that the output species can follow changes in
the reference signal autonomously in the presence of known
disturbances [6].

Specifically, we investigate the operation of the controller
through a combination of numerical and analytical tech-
niques, similar to [8], on an ordinary differential equation
(ODE) model that we recently developed [6]. The controller
presented in [6] is superior to the one in [8] because it uses
protein a molecular-based sequestration reaction, which is
more effective than RNA based sequestration reactions. We
compare the controller’s open- and closed-loop operation
in their capacity to guarantee that an output species can
accurately follow significant changes in a reference signal
linearly, even if the kinetic rates are perturbed or a distur-
bance is added. Using steady-state analysis and time-scale
separation, we derive analytical equations of the controller’s
output that provide insight into which parameters govern the
steady-state output dynamics.

Moreover, we ask about the effect of step input distur-
bances after a steady-state has been achieved, and investigate
the robustness of the controller to changes in the input. We
carry out a sensitivity analysis to explore the influence of
parameter variability on the output dynamics when the input
undergoes a step change. We then use traditional control
theory metrics to evaluate the performance of the controller
at different reaction conditions. We also study the local and
the global stability of the controller. In particular, using
sum-of-squares optimization techniques, we demonstrate that
the dynamics of our closed-loop controller is stable at an
equilibrium point, and the controller output always converges
to a steady-state for any input value. This computational
study serves as a guide in the design of a biomolecular
integral controller for robust and precise regulation of gene
expression. In a more general context, our work highlights
mathematical tools that might be useful in the analysis of
other biomolecular systems.

Our approach involves a traditional closed-loop integral
controller architecture [6], [11], as classically done for robust
tracking. In this approach, sensors and actuators are intercon-
nected to achieve a closed-loop operation where the output
and the input are compared through error computation to
achieve reference tracking while the mathematical integral
of the error signal enables rejection to certain kinds of
disturbances in the steady-state output dynamics [12]. The
biomolecular design of the closed-loop controller uses three
genes PX , PY and PZ that encode for X , Y and Z proteins
respectively. The concentration of gene PX is used to set a
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Fig. 1. Detailed reaction network of the controller. Here U, V and W are
the translationally initiated mRNAs of the X, Y and Z proteins respectively.
Details on how the Ptot

Y and Ptot
Z promoters switch from the inactive (PY ,

PX ) to active (P+
Y , P+

Z ) states are shown alongside.

reference, and the controller regulates expression of gene PZ
by influencing its promoter activity (Fig. I). Gene PY is used
as a proxy to represent gene PZ . We used transcription and
translation reactions as a signal-transduction mechanism: the
constitutive gene PX produces X, and the regulated genes PY
and PZ produce Y and Z respectively (Fig. I). When activated,
genes PY and PZ switch to their active states P+

Y and P+
Z ,

respectively, transcribing Y and Z faster than the inactive
state.

Feedback is introduced via molecular sequestration that
serves as an error computation [6], [7]. For that purpose,
X and Y protein molecules are used, which represent input
and output respectively, in such a manner that once X and
Y bind to each other, they form a waste complex that is not
involved in any other reaction in the system. As a result of
the sequestration reaction, only the excess molecules of X
that did not bind to Y yield an error signal that is available
for control reactions. Non-sequestered X is used directly as
a transcriptional activator that regulates the production of Y
and Z (Fig. I). To ensure that Y truly represents the output
Z, the same promoter should be used by the genes PY and
PZ . In the open-loop configuration, the error computation is
absent and to achieve that, gene PY is set to zero so that Y
(required for the error computation) will not be expressed.

A. Mathematical Analysis

Using mass-action kinetics, the controller can be modeled
as [6]:

U̇ = αU PX −δUU, (1)
Ẋ = βXU−κXY −δX X−ωXPY ...

+νP+
Y −ωXPZ +νP+

Z , (2)

Ṗ+
Y = ωXPY −νP+

Y , (3)
V̇ = αV PY +α

+
V P+

Y −δVV, (4)
Ẏ = βYV −κXY −δYY, (5)

Ṗ+
Z = ωXPZ−νP+

Z , (6)
Ẇ = αW PZ +α

+
W P+

Z −δWW, (7)
Ż = βZW −δZZ, (8)

where ˙ represents time derivative. Here, α , β and δ in
general are the transcription, translation and degradation rate
constants with subscripts indicting the corresponding species
respectively, while κ is the sequestration rate constant, ω

and ν are the activation association and dissociation rate
constants respectively. When the activator (X) binds at the
promoter region of genes PY and PZ , Y and Z are produced
with increased rates, denoted as α

+
V and α

+
W respectively. The

activated states of genes PY and PZ are represented as P+
Y and

P+
Z , and the conservation law Ptot

Y = PY + P+
Y and Ptot

Z = PZ
+ P+

Z holds. For robust tracking, κXY � δX X , κXY � δYY ,
α
+
V � αV , α

+
W � αW , and Ptot

Y = Ptot
Z should be true when

X > 0 and Y > 0 [6], [8].
1) Open-loop steady-state output: To understand the op-

eration of the controller, we first derive the steady-state
expression of the output in the open-loop configuration. As
gene PY is absent, we can ignore (3) (4) and (5) and all
the terms associated with gene PY . We find experimentally
and numerically that the transcriptional activation reaction
is much faster than the other reactions involved in the
reaction network. Since (6) is asymptotically stable, we used
a quasi-steady state approximation to replace the value of
P+

Z by its quasi-steady-state approximation. Moreover, as the
RNA dynamics is much faster than the protein dynamics
[6], and (1), and (7) are asymptotically stable, a similar
approximation was used to model the synthesis of X and
Z using single reactions for each. This leads to:

Ẋ = β
′
X PX −δX X , (9)

Ż = β
′
ZP+

Z −δZZ, (10)

P̄+
Z =

X̄
X̄ + ν

ω

Ptot
Z . (11)

Here, β ′X = βX αU
δU

, β ′Z =
βZα

+
W

δW
and bar (¯) denotes a steady-

state value. Using, (9), (10) and (11), it can be shown that:

Z̄ =
β ′Z
δZ

X̄
X̄ + ν

ω

Ptot
Z (12)

where X̄ =
β ′X
δX

PX . Equation (12) is the steady-state value
of Z and defined as a reference signal for the open-loop
configuration.

2) Closed-loop steady-state output: In contrast to the
open-loop configuration, in the closed-loop operation, gene
PY is at the same concentration as gene PZ . Now we use the
same quasi-steady-state approximation to replace the ODEs
of P+

Y and P+
Z by their steady-state expressions and modeling

the synthesis of X and Z using single reactions for each,
while keeping the two-step synthesis of Y to ensure that we
consider an appropriate delay in the overall system dynamics.
Moreover, assuming κXY � δX X and κXY � δYY for non-
zero values of X and Y , leads to:

Ẋ = β
′
X PX −κXY, (13)

V̇ = α
+
V XPC−δVV, (14)

Ẏ = βYV −κXY, (15)
Ż = β

′
ZXPC−δZZ, (16)
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Fig. 2. Simulation results for (a) the open and (b) closed-loop operations
where PX was first increased from 0 to 0.5 nM and then decreased to 0 nM
over time. The respective reference signals for the open and closed-loop
operations are shown in (12) and (17). Here and elsewhere the ODE model
shown in (1)-(8) was used to simulate the response of the controller with
parameters shown in [6], and δX =δY =δZ = 0.0001 s−1. In the closed-loop
case, initial Ptot

Y and Ptot
Z were 1 nM each while in the open-loop case, Ptot

Y
was zero.

where PC = ω

ν
Ptot

Y = ω

ν
Ptot

Z and assuming ν

ω
� X̄ . Using the

aforementioned equations, it can be shown that:

Z̄ =
β ′Z
δZ

β ′X
βY

δV

α
+
V

PX . (17)

Equation (17) is the steady-state value of Z and defined as a
reference signal when the controller is operated in the closed-
loop configuration.

3) Integral control operation: To determine an equation
for XFREE = X −Y (13) is subtracted from (15): Ẋ − Ẏ =

β ′X PX −βYV. From (14), V̄ =
β ′X
βY

PX and using this, it can be
shown that: XFREE = X−Y = βY

∫ t
0 V̄ −V (τ)dτ. This means

that the error signal is integrated over time to correct the
output concentration. This enables the controller to achieve
robust reference tracking.

B. Reference tracking in closed-loop

We now sought to verify that the controller can produce
an output signal as an expression from the target gene that
follows the reference signal. For that, we model the response
of the controller in the open and closed-loop configurations
to a pulse input signal where the concentration of PX is
increased from 0 to 0.5 nM and then decreased to 0 nM
over time. To determine the output response for the values of
reaction parameters shown in [6], we numerically integrated
the ODE model shown in (1)-(8) using the MATLAB ode23s
function. Initial conditions for each molecular species are
described in the figure captions.
In the absence of PX (0 nM), expression from the target gene
(PZ) is almost zero in terms of Z concentration. In the open-
loop configuration, as PX increases from 0 to 0.5 nM, the
production of X increases through the transcription of PX and
that increases the production of Z as X acts a transcriptional
activator for PZ . This results in the steady-state concentration
value of the output that follows the concentration of the
respective reference signal (Fig. 2a). In the closed-loop case,
X acts as a transcriptional activator for both genes PY and

Fig. 3. Steady-state response of the controller at different concentrations
of PX (0 - 30 nM) in (a) the open and (b) closed-loop configurations. Initial
concentrations of Ptot

Y and Ptot
Z were 1 nM each.

PZ . When the sequestration dominates over the degradation
such that κXY � δX X and κXY � δYY , some of X will be
sequestered by Y , leading to a reduced amount of Z that
follows the concentration of the respective reference signal
(Fig. 2b). An accurate tracking means the controller should
be able to follow not just a specific concentration value of the
reference signal but a large dynamic range of it linearly for
the same set of parameters and initial condition. Therefore,
we model the steady-state output response of the controller
at different concentration of PX (0, 1, 5, 10, 15, 20, 25
and 30 nM). For each PX value, we determined the steady-
state value of Z for the open and closed-loop cases while
considering the parameters shown in [6]. We found that only
the closed-loop controller’s output can track the reference
signal linearly (Fig. 3a and b). This is due to the fact in the
closed-loop configuration, Z is independent of the promoter
activity of PZ , and because of that only a limited amount
of X (defined as XFREE ) acts a transcriptional activator such
that ν

ω
� X̄ (17). In contrast, in the open-loop case, as the

sequestration reaction is absent, Z directly depends on the
promoter activity of gene PZ which results in a nonlinear
dependency of Z on X , thereby on PX (12).

C. Closed-loop control enables disturbance rejection

Integral control provides a measure of robustness by
minimizing the effect of certain kinds of disturbances on
the steady-state value of the output [12]. To demonstrate this
characteristic of the controller, first, we choose to perturb two
kinetic parameters over time. In our controller, ω determines
the activation association rate and an increase in ω increases
the affinity of the activator, which leads to an increase in
the steady-state concentration values of Z as long as there
are enough promoter sites are available for activator to bind
to genes PY and PZ . Once the output reached a steady-state
for the nominal value of ω , we increased ω by a factor of
two as a perturbation. This results in an increased steady-
state output activity in the open-loop configuration while in
the closed-loop configuration, output converges to the same
steady-state value (Fig. 4a). This is because an increase in
ω , increases Z and also Y in the closed-loop configuration,
which leads to reduce excess X through Y , and this results in
reducing the production of Z. In the open-loop case, as Y is
not present, an increase in ω , increases Z. We then perturb ν

over time, which is the activation dissociation rate constant,
and have the similar effect on Z such that the closed-loop
controller can reject the effect of this perturbation on the
output signal (Fig. 4b). In each case, the output is normalized
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Fig. 4. Closed-loop controller operation results in robustness to
disturbances. (a-c) Output in the presence of disturbances in (a) ω , (b)
ν , and (c) in the concentrations of Ptot

Y and Ptot
Z (denoted as Ptot

Y Z ) where d
= 1 nM. (d-g) Results of the sensitivity analysis: (d) normalized sensitivity
matrix for the open-loop case and (e) the closed-loop case. The initial PX
= 0.5 nM, and Ptot

Y = Ptot
Z = 1 nM. In the open-loop case, Ptot

Y was zero.

with respect to the respective reference signal ((12) and (17)
for the open and the closed-loop cases, respectively).

In the closed-loop controller, we find that the output Z is
independent of the concentration of genes PY and PZ (17).
Therefore, adding a disturbance in the concentration of these
genes should not affect the steady-state output value. To test
this, we added the same amount of disturbance to Ptot

Y and
Ptot

Z (denoted as d) once the output reached a steady-state
value and observed that in the closed-loop configuration, the
output converged to the same value (Fig. 4c).

D. Parameter sensitivity
Our next goal is to determine sensitivity of transient and

steady-state response of the controller’s output to parameters.
Specifically, we investigate the dependency of the output
on a specific set of parameters over time [8]. We perform
this analysis for the controller operated in the open and the
closed-loop configurations for a specific set of parameters
shown in [6], and the results are shown in Fig. 4d and
e respectively. Note that normalized sensitivity coefficients
matrix are dependent on the time and the results indicate
which parameters play the primary role in determining the
transient and steady-state response of the output. We found
that for the closed-loop controller, only the transient response
of the output is highly sensitive to sequestration rate (κ) and
the activation parameters (ω , ν) while the steady-state value
of the output depends on parameters that are shown in (17).

E. Quantifying dynamic controller performance

For a comprehensive understanding of the closed-loop
controller properties, we used five performance parameters
(Fig. 5a), which are typically used in control theory rather
than synthetic biology studies. These are the steady-state
error, steady-state increase, overshoot, rise time, and settling
time [13]. We then evaluated the controller performance for

Fig. 5. Evaluating the performance of the closed-loop controller
using control theory metrics. Five criteria were used to evaluate the
controller performance. These are: steady-state error (Error) which is the
absolute difference between the steady-state output and the reference signal;
steady-state increase (∆O), which is the difference between the steady-state
output after and before the step change; overshoot, which is defined as
the difference between the maximum and the steady-state concentration of
the output; rise time, which is the time needed for the output to increase
from 10% to 90% of ∆O; and finally settling time, which is the first time the
output settles and stays within ±5% of the steady-state output concentration.
For each reaction condition, 1,000 simulations were conducted where we
randomly sampled a set of parameter values from a uniform distribution.
During each simulation, a step increase in PX from 0 to 10 nM was
introduced at time 10 hours. Averaged metrics of these parameters are shown
here as a function of genes PY and PZ concentrations.

a step-change in PX from 0 nM to 10 nM. To encompass
a wide range of settings, we conducted 1,000 simulations
with random combinations of parameters randomly from a
uniform distribution within a bounded interval (upper and
lower bounds of 10× and 0.1× respectively) centered around
the nominal values for each reaction condition [6]. Average
matrices are shown in Fig. 5. In this analysis, the cases where
the output did not reach a steady-state within 5 hours were
not taken into account. We found that the absolute error
(Fig. 5b) is almost independent of the initial concentrations
of PY and PZ when PX is low but at higher values of PX ,
higher concentrations PY and PZ should be preferred to
reduce the error. We also observed a trade-off between the
overshoot (Fig. 5d) and the rise-time (Fig. 5e) as a function
of PY and PZ concentrations.

F. Determining stability of the closed-loop controller

A basic requirement for a controller is to drive the system
towards the desired steady-state from different initial condi-
tions and to exert a feedback effect to cancel the influence
of perturbations that knock the system out of its steady
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state. This is captured by the concept of asymptotic stability
of the closed-loop system. Stability analysis for nonlinear
systems is typically carried out by means of Lyapunov’s
first and second methods for local and global stability [14].
It is known that antithetic feedback can cause sustained
oscillations [7], hence stability analysis is highly pertinent.
For simplicity, we ignore the reactions associated with gene
PZ as they are not actively involved in the closed-loop
dynamics:

U̇ = αU PX −δUU (18)
Ẋ = βXU−κXY −ωXPY +νP+

Y (19)
V̇ = αV P+

Y −δVV (20)
Ẏ = βYV −κXY (21)

Ṗ+
Y = ωXPY −νP+

Y , (22)

Since the dynamic equation of U (18) is decoupled from
the rest of the state variables, the system can be viewed
as a cascade of (18) and (19)-(22). A converging-input-
converging-state argument [15] can be used to reduce the
stability problem of the model to that of (19)-(22) with the
a constant input Ū := αU PX/δU .

The model (19)-(22) admits a unique equilibrium (with
Ū 6= 0) which is:

(Xe,Ve,Ye) =

(
βXŪδV (ν/ω)

βY αV Ptot
Y −βXŪδV

,
βXŪ
βY

,
Ptot

Y αV βY −βX δVŪ
δV κ(ν/ω)

)
.

Although the equilibrium can be negative for some param-
eters, it is positive for the parameter regime of interest.

The model above can be reduced further by using a quasi-
steady state approximation for P+

Y , and using the fact that
ν/ω � Xe in the regime of interest to the following model:

Ẋ = βXŪ−κXY

V̇ = β1X−δVV (23)
Ẏ = βYV −κXY

where β1 = αV Ptot
Y ω/ν , and it has a unique positive equilib-

rium at:

(X̄ ,V̄ ,Ȳ ) =
(

δV βXŪ
βY β1

,
βXŪ
βY

,
β1βY

δV κ

)
. (24)

In the parameter regime of interest, the equilibria of (19)-
(22) and (23) are approximately equal. This justifies the wide
use of the approximate system (23) as a deterministic model
for antithetic feedback [7], [16].

1) Local stability analysis: Locally stability can be stud-
ied via Lyapunov’s first method.

Proposition 1: Consider (23) with any arbitrary positive
parameters and positive constant input value. Then the equi-
librium (24) is locally asymptotically stable, i.e the Jacobian
matrix evaluated at (24) is Hurwitz.

Proof: The Jacobian evaluated at (24) is given as
follows: −βY β1/δV 0 −κδV βXŪ/(βY β1)

β1 −δV 0
−βY β1/δ2 βY −κδV βXŪ/(βY β1)

 .

We need to verify that all eigenvalues have negative real
parts. The characteristic equation is:

s3 +
(

β1βY
δV

+δV + κβXŪδV
β1βY

)
s2 +

(
β1βY +

δ 2
V κ

β1βY

)
s+δV κβXŪ = 0

Computing the first column in the Routh-Hurwitz criterion
[17], the problem reduces to verifying that (B+ δV A

B )( B
δV

+
A

BδV
)>A, where A := δV κβXŪ ,B := β1βY . This is equivalent

to B( B
δV

+ δV ) + ( 1
δV

+
δ 2

V
B )A + A2

B2 > 0. The last inequality
holds for any A,B,δV > 0.

2) Global stability via a sum-of-square search: In this
subsection we discuss building Lyapunov functions for the
reduced system (23) and the original system (19)-(22). De-
spite its simplicity, global stability analysis of (23) is not
straightforward. In fact, a similar system [7] has been shown
to exhibit a limit cycle despite the local stability of the unique
steady state. Nevertheless, since we have the parameters in
[6], we can perform a Lyapunov function search using sum-
of-square (SOS) methods [18], [19]. The basic idea is to
replace the polynomial inequalities with their sum-of-square
relaxations. Introducing z := [X − X̄ ,V − V̄ ,Y − Ȳ ]T , let us
write (23) as ż = f (z). We are looking for a polynomial Lya-
punov function V (z) with specified monomials and unknown
coefficients that satisfies the following:{

V (z) ≥ (z2
1 + z2

2 + z2
3)

− ∂V
∂ z f (z) ≥ 0

,

where the first inequality is equivalent to V being positive
definite and vanishing only at (0,0,0). The second inequality
is equivalent to V̇ (z(t))≤ 0. We can also add z2

1 + z2
2 + z3

3 to
the second inequality to force V̇ to vanish at (0,0,0) only.

However, polynomial inequalities are hard to solve in
general. Hence, we look for an SOS relaxation that certifies
the positivity of the required polynomials. For a polynomial
p(x), this means finding a matrix Q ≥ 0 such that p(x) =
Z(z)T QZ(z) for an appropriate monomial vector Z(z). Let L
be the Cholesky matrix such that LT L = Q. Hence p(x) =
(LZ(z))T (LZ(z)) is a sum of squared polynomials which
certifies positivity. In the context of finding a Lyapunov
function, this means finding two positive definite matrices
Q1,Q2 ≥ 0 such that{

V (z)− (z2
1 + z2

2 + z2
3)) = Z(z)T Q1Z(z)

− ∂V
∂ z f (z) = Z(z)T Q2Z(z).

,

where Z(z) is a vector of monomial that is chosen according
to the form of V (z). Since the problem is affine in the
unknowns, the problem can be re-written as a semi-definite
program (SDP) and solved using available solvers. This
process has been automated via the MATLAB package
SOSTOOL [20], which we have used. In particular, a fourth-
order Lyapunov function can be constructed for any given
PX ,Ptot

Y . Fig. 5 plots the level surface of the Lyapunov
function.

It is undesirable to compute the Lyapunov function for
each copy number values PX ,Ptot

Y . In order to certify stability
for all PX ,Ptot

Y ≥ 0 we will use a Positivstellensatz-based ap-
proach [21], [18], [19]. Consider the system ż= f (z,PX ,Ptot

Y ).
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Fig. 6. The level surface for V (x) = 2 for the quartic Lyapunov function
constructed for the system (23) with Ptot

Y = PX = 0.7nM. It can also be
interpreted as a trapping set for the system. This means that any trajectory
that starts inside it cannot leave.

Our aim is to find a Lyapunov function V (z,PX ,Ptot
Y ) that

satisfies the positivity and the nonincreasingness condition
whenever PX ,Ptot

Y > 0. This can be written equivalently as
certifying the emptiness of an appropriate semi-algebraic
set. In particular, we need to find four SOS polynomials
s1(z),s2(z),s3(z),s4(z) (with specified monomials) that sat-
isfy the following:{

V (z)− s1(z)PX − s2(z)Ptot
Y − (z2

1 + z2
2 + z2

3) is SOS
−Ptot

Y
∂V
∂ z f (z,PX ,Ptot

Y )− s3(z)PX − s4(z)Ptot
Y is SOS.

,

Note that the second inequality multiplies by Ptot
Y since it

appears in the denominator in the original inequality. Solving
the associated SDPs, we have successfully constructed a
fourth-order Lyapunov function that certifies global stability
for all PX ,Ptot

Y > 0 with the parameters given in [6], which
is not shown here due to the lack of space.

II. CONCLUSIONS AND FUTURE WORK
In this work, we mathematically investigated the operation

of our biomolecular integral controller for effective and
robust gene expression regulation. We demonstrated that the
controller could not only track the reference signal over a
wide range of conditions, but it can also reject perturbations
introduced to the output, due to disturbances in kinetic
parameters when operated in the closed-loop configuration.
These characteristics illustrate the advantage of having an
effective sequestration reaction to realize closed-loop oper-
ation. Moreover, using the estimated parameters, we have
constructed Lyapunov functions that proved global stability
for any initial reaction condition. Work in progress concerns
the extension of this approach to establish global stability
for all possible parameters.

The robust and reliable operation of the closed-loop
controller suggests that other biochemical reactions might
be used to implement alternative closed-loop integral con-
trollers that can precisely regulate other biologically relevant
molecules.
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