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Metronomic chemotherapy can drastically enhance immunogenic tumor cell death.

However, the mechanisms responsible are still incompletely understood. Here, we

develop a mathematical model to elucidate the underlying complex interactions between

tumor growth, immune system activation, and therapy-mediated immunogenic cell

death. Our model is conceptually simple, yet it provides a surprisingly excellent fit

to empirical data obtained from a GL261 SCID mouse glioma model treated with

cyclophosphamide on a metronomic schedule. The model includes terms representing

immune recruitment as well as the emergence of drug resistance during prolonged

metronomic treatments. Strikingly, a single fixed set of parameters, adjusted neither for

individuals nor for drug schedule, recapitulates experimental data across various drug

regimens remarkably well, including treatments administered at intervals ranging from 6

to 12 days. Additionally, the model predicts peak immune activation times, rediscovering

experimental data that had not been used in parameter fitting or in model construction.

Notably, the validated model suggests that immunostimulatory and immunosuppressive

intermediates are responsible for the observed phenomena of resistance and immune

cell recruitment, and thus for variation of responses with respect to different schedules

of drug administration.

Keywords: metronomic chemotherapy, cyclophosphamide, mathematical modeling, immune recruitment, cancer

resistance

1. INTRODUCTION

Immune system involvement in cancer progression has been well-established, leading to increased
efforts to harness the ability of the host immune system to fight off growing tumors (1). Standard of
care chemotherapy regimens typically involve drug administration on a maximum tolerated dose
(MTD) schedule (2). These regimens aim to target most cancer cells at once, but frequently lead
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to a reduction in tumor burden only in the short term (3)
and often give rise to drug resistance (4, 5). One reason for
this longer-term failure is that MTD-based treatment can cause
collateral damage to the host immune system, thus diminishing
its ability to target the tumor (3). An optimal treatment regimen
should strike a balance between drug-induced tumor cell kill
and damage to the immune system, allowing the two modes
of cancer cell elimination to complement each other. Indeed,
high frequency low dose drug administration, also known as
metronomic chemotherapy, can in some cases strike the right
balance and induce immunogenic cell death (ICD) in tumor
tissue by selecting an appropriate choice of drug, dose, and time
interval between treatments (6–16). Successful achievement of
ICD-based therapeutic outcomes during anticancer therapy is
dependent on complex interactions between the drug, the tumor,
and the host immune system, the nature of which is still being
uncovered (17).

To better understand the mechanisms whereby metronomic
chemotherapy enables an anti-tumor immune response, it
is important to understand how tumors are able to evade
immunosurveillance in the first place (1). An important
and well-studied evasion route is through the accumulation
of mutations and epigenetic modifications that help avoid
immunosurveillance (18, 19). However, our mathematical
model focuses on network effects, in contrast to such
(epi)genetic changes in tumors, demonstrating that even
the described mechanistic interactions are sufficient to explain
experimental observations.

1.1. Interaction Dynamics Between Tumors
and the Immune System
The proposed model is phenomenological, its components
representing the combined effects of a variety of
immunostimulatory as well as immunosuppressive processes.
For background, we next briefly discuss some of these
immune-related processes, which involve modifications of
the tumor microenvironment (TME). Such modifications
include increased acidity resulting from altered nutrient
metabolism (20, 21) and altered balance between cytotoxic and
regulatory immunity through the recruitment by the tumor
of immunosuppressive cells, such as regulatory T cells (Tregs)
(22–26) and myeloid-derived suppressor cells (MDSCs) (27, 28).

Some examples of TME modifications are as follows.
Macrophages with an M2 phenotype can produce high levels
of TGF-β , IL-10, and vascular endothelial growth factor
(VEGF), promoting tumor growth (29–32). In other cases,
tumor-derived factors and gangliosides can alter dendritic
cell (DC) phenotype leading to lower levels of CD80, CD86,
CD40, and high indoleamine 2,3-dioxygenase expression
that contributes to suppression of T cell immunity (33).
Immunosurveillance can also be evaded through production of
various immunosuppressive cytokines such as TGF-β that play
an important role in suppressing macrophages and monocytes
(34). Other factors such as tumor necrosis factor (TNF)-α,
IL-1, IL-6, colony stimulating factor (CSF)-1, IL-8, IL-10, and
type 1 interferons (INFs) can also contribute to cancer growth

(35–39). Additionally, pro-angiogenic factors such as VEGF can
inhibit differentiation of progenitors into DCs (40). IL-10 and
TGF-β can also inhibit DC maturation. Ganglioside antigens
can also suppress cytotoxic T-cells (CTLs) and dendritic cells
(DCs) function (41). Immunosuppressive enzymes such as
IDO, arginase, and inhibitor of nuclear factor kappa-B kinase
(IKK)2 may also contribute to tumor progression via direct
actions on tumor cell proliferation or through induction of T cell
tolerance/suppression (42–44).

1.2. Network Effects of Chemotherapy
Interventions
By targeting various components that regulate immune tolerance,
cancer chemotherapy drugs, such as mitoxantrone, idarubicin,
doxorubicin, and cyclophosphamide can induce immunogenic
cancer cell death in addition to their direct cancer cell cytotoxic
effects (10, 11, 45, 46). By using an optimized drug dose and
schedule of administration, favorable immune responses can
be achieved, including increases in macrophage recruitment
and maturation (47), proliferation of NK cells, levels of IFN-
γ (48), as well as elevated post-apoptotic release of the nuclear
chromatin binding protein HMGB1, which can stimulate antigen
presentation by DCs, helping CD8+ T cell activation (49,
50). In some cases, type-1 interferon signaling pathways are
switched on, leading to host antitumor immunity activation (51–
54). Immunosuppressive molecules, like CD31, CD46, CD47,
are downregulated on dendritic cells by ICD drug treatment
(55). Molecular chaperones such as HSP90 appear on the
tumor cell surface, promoting DC maturation (56). These
optimized drug administration conditions can also lead to
transient lymphopenia, which upregulates repair mechanisms
and can lead to a vast array of immunostimulatory outcomes,
including enhanced T-cell activation, immune recruitment, DC
differentiation, and maturation, as well as the release of large
amounts of chemokines and cytokines (57, 58). Cytotoxic
effects on immunoregulatory cells, such as MDSCs and Tregs,
contribute to restoration of anti-tumor immunity by decreasing
suppression of T-cells and NK cells (59). Other factors affecting
immunogenicity include changes in MHC-1 molecules and
tumor-specific antigens on the tumor cell surface (60), stress-
induced expression of NK cell stimulatory ligands, and decreases
in NK inhibitory ligands (61).

The ability of drugs to induce anti-tumor immune responses is
not sufficient by itself to ensure a successful therapeutic response,
as the effect on various compartments of the immune system, and
thus on overall tumor burden can vary dramatically depending
on dose, schedule, and tumor type. Scheduling and dosing of
an ICD drug is of critical importance in instigating an immune
response, which relates to the concept of “getting things just
right” (17, 62). For instance, administration of cyclophosphamide
on a 6-day repeating schedule (Q6D) at 140 mg/kg per dose,
dramatically improves the therapeutic outcome for murine
GL261 gliomas through immunomodulatory mechanisms (12,
13, 15). Other drug treatment schedules, however, do not result
in the same efficacy. This loss of efficacy correlated with reversal
of an initial anti-tumor immune response, despite ongoing ICD
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drug treatments (12). Intriguingly, cyclophosphamide treatment
of Lewis lung carcinoma (LLC) and B16F10 tumor at the
same dose and on the same Q6D schedule does not result
in tumor regression or immune cell recruitment, despite the
intrinsic sensitivity of these two tumor lines to activated
cyclophosphamide (16).

It is clear that much remains to be understood about the
underlying mechanisms of ICD action including the impact
of chemotherapy dose and schedule on the many factors
linked to the ICD response (17). Well-designed mathematical
models, which can help elucidate the complex interplay
between the various players, make these models an invaluable
complementary tool to in vivo experimental results for designing
better treatments.

1.3. Mathematical Modeling of Tumors and
the Immune System
There is a rich tradition in utilizingmathematical biology to study
cancer chemotherapy and the immune system. A large variety of
models have been proposed, notably in the work of de Pillis and
collaborators, who introduced a series ofmodels that depict many
of the interactions between chemotherapy and immunotherapy
drugs, the immune system, and tumor progression (63, 64).
Closely related to our topic, Ciccolini et al. (65) proposed
a pharmacokinetics and pharmacodynamics (PKPD) model
for metronomic chemotherapy using gemcitabine, one that
considers the effects of cytotoxicity on endothelial cells and
the emergence of drug resistance. Ledzewicz et al. proposed
a minimally parameterized mathematical model for low-dose
metronomic chemotherapy that explicitly considers tumor
vasculature (66), and in subsequent work (67) applied optimal
control theory to this system, so as to devise a treatment
schedule that can minimize tumor burden subject to appropriate
constraints. To the best of our knowledge, only one study has
looked at modeling the immune recruitment by ICD drugs (62).
In that work, however, there was no experimental validation of
the proposed model.

Numerous cancer models have been proposed to account
for the emergence of therapeutic resistance due to cancer cell
heterogeneity. See, for example, the extensive references in
Greene et al. (68). However, to our knowledge, no previous
work has systematically and theoretically modeled what we call
“systemic drug resistance,” by which we mean resistance as an
immune-mediated dynamical phenomenon.

Here, we propose a mathematical model that is fit to
experimentally observed tumor growth curves in GL261 tumor-
bearing SCID mice that were given metronomic chemotherapy
at Q6D to Q12D drug administration regimens (12). The
proposed model incorporates immune cell recruitment, as well
as pharmacokinetics of cyclophosphamide. First, we find a fixed
set of model parameters, not adjusted for individuals or for drug
schedule, that fit experimental data across these various drug
regimens very well. To further validate the model, we not only
compare the experimental fits to the measured tumor volume
data, but also ask if the “latent variables” in our model, which
represent immune activation, can reproduce a second set of

experimental data, not used in training themodel. Specifically, we
asked if peak immune activation times in our model correspond
to experimentally measured times. Finally, we investigate how
our validated model can be used as a tool to identify better
treatment schedules, to build a quantitative understanding of the
mutual interplay between drug, tumor, and immune system and
to better predict drugs that induce immune cell recruitment in a
clinical setting.

2. MATERIALS AND METHODS

2.1. Background on Cyclophosphamide
and Experimental Results
2.1.1. Summary of Experimental Data
The experimental data used in developing our mathematical
model were derived from previous work by Wu and Waxman
(12), where cultured GL261 gliomas cells were implanted in
SCID mice. Tumors were allowed to grow to 300–1,000 mm3,
at which point the mice were treated with cyclophosphamide
(CPA), given on different metronomic schedules. Greatest tumor
burden reduction was observed when repeated doses of 140
mg CPA/kg-BW (body weight) were administered every 6 days.
Comparisons were made between the every 6-day schedule
(Q6D) and three other schedules: treatment every 9 days (Q9D);
treatment alternating between every 6 days and every 9 days; and
treatment every 12 days (Q12D). Additionally, a dose of 210 mg
CPA/kg-BWwas given every 9 days, ensuring themice receive the
same total amount of drug as when 140 mg/kg doses were given
on a Q6D schedule, to evaluate the impact of schedule vs. total
dose on the final outcome. Tumor growth curves were reported
for drug-free controls, and for the following regimens: a single
CPA administration given on day 0 (1-CPA), two CPA treatments
given on days 0 and 6 (2-CPA), as well as three CPA treatments
given on days 0, 6, and 12 (3-CPA). This previous work also
reported relative gene expression levels for immune cell markers
for NK cells, dendritic cells, and macrophages for the 1-CPA, 2-
CPA, and 3-CPA treatment regimens. There were n = 4 − 12
tumors per treatment group.

Published data (12) suggest that the host immune system
takes between 6 and 12 days to start significantly impacting
the tumor growth. From this, the authors infer that any initial
slowdown in tumor growth, within 1 or 2 days of drug injection,
is likely caused by cyclophosphamide-induced tumor cell death.
A decrease in immune cell number immediately after drug
administration was observed, highlighting the drug’s cytotoxic
effect on immune cells as well as cancer cells. Notably, the
chemoattractant CXCL10, which acts on many innate immune
cells, and which is induced by IFN-λ, increased following the
first CPA injection, peaking around 6 days post administration.
Between 6 and 12 days post injection, there was also an increase
in other innate immune cells markers, such as NKp46, NKg2d,
Prf1, Gzmb for NK cells, CD207, and CD74 for dendritic cells,
and CD68 and Emr1 for macrophages (12).

Based on the impact of various treatment schedules tested
on tumor volume, it is apparent that 12–18 days after CPA
treatment is halted, the GL261 tumors cease to shrink and then
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start to regrow. Based on treatments where the same dose of
CPA is repeated at regular intervals, the authors concluded
that a 6-day break between CPA doses is ideal for maintaining
prolonged immune cell recruitment as well as tumor shrinkage.
Increasing the number of drug-free days between treatments
from 6 to 9 to 12 days increased the number of tumors that
circumvented the therapeutic effects of the drug, resulting in a
shorter interval prior to tumor regrowth (13). Further analysis of
tumor infiltrating immune cells in these models indicated there is
a strong correlation between loss of immune response and tumor
escape. Another study indicated that breaks in drug treatment
shorter than 6 days also resulted in worse performance for the
same AUC (area under the curve for the administration of the
drug) with noted absence in immune recruitment if CPA was
given to the mice daily (13). One of the first goals of our model is
to recapitulate these results.

2.2. Modeling the Immune-Tumor-Drug
Interactions
A schematic of our model, highlighting the main interactions
between tumor, drug, and the immune system, is shown
in Figure 1A.

Cyclophosphamide can be toxic to the immune system,
as confirmed by experimental data showing that, one day
after cyclophosphamide administration, there is a significant
decrease in marker gene expression for NK cells, DCs, and
macrophages in the tumor microenvironment (12). High doses
of cytotoxic drugs that damage immune cells can diminish
or even nullify their ability to target the tumor. Given this
finding, it is not surprising that traditional MTD chemotherapy
not only has substantial side effects on the patient’s health,
but also leads to immunosuppression and increases the risk
of tumor relapse due to drug resistance. This then naturally
leads to the question of how to represent (in a concise but
not oversimplified mathematical way) the immunostimulatory
and immunosuppressive effects of drug treatment when using a
metronomic regimen of an ICD drug in order to eventually find
a way to balance out these two forces.

The paradoxical effect in which a drug reduces immune cell
counts in the short term, but also enhances the immune system
in the longer term, is an instance of an “incoherent feed-forward
loop” (IFFL). A similar paradoxical effect is that of the effect of
treatment on cancer growth: on the one hand, the drug directly
attacks the tumor, but on the other hand, through “friendly fire”
also attenuates immune activity, thus degrading the anti-tumor
response. IFFLs constitute one of the core network motifs in
systems biology (69), and are found in processes as varied as gene
regulation, immune recognition, synthetic biology, biological
sensors, and bacterial motion (70–78).

Some of the most common forms of IFFLs are illustrated
by IFFL-I and IFFL-II block diagrams in Figure 2. In our
context, two forms of IFFL, promotion of an immunostimulatory
intermediate (IFFL-I) and “repressing the repressor” (IFFL-
II), are both likely scenarios, and could occur in conjunction.
Accordingly, to represent the immune system recruitment
behavior, the mathematical model must include an intermediate

that leads to immune cell recruitment in the longer term.
The possible mechanisms are numerous, as summarized
in section 1, and it is likely that the observed tumor
growth is the result of both a repressor being repressed
and some immunostimulatory element. Due to the lack of
extensive immune data measurements, we only considered the
immunostimulatory pathway in this work.

In the event of tumor escape depicted conceptually in the
bottom section of Figure 2, the experimental data in Wu and
Waxman (12) suggests that the immune system, which was
reinforced through the first few injections of cyclophosphamide,
fails to maintain a level of immune cell recruitment sufficient to
allow the host to keep the tumor at bay.

2.3. Mathematical Model
The full mathematical model is given by a coupled system
of five ordinary differential equations (ODEs). The first
equation describes the change in CPA concentration over time
(drug pharmacokinetics):

dC

dt
= u−

k1C

k2 + C
(1)

and the remaining four describe the effect of CPA on cancer and
immune cells (pharmacodynamics):

dT

dt
= kaT −

kbCT

kc + T
− kdTI (2)

dI

dt
= X − keTI − kfCI − kgYI − khI (3)

dX

dt
=

C

1+ C/ki
− kjX − kkXY (4)

dY

dt
=

I

1+ C/kl
− kmYC (5)

In the next section we describe in detail the various terms of the
model, including the role of the variables C = C(t), . . . ,Y =

Y(t), which represent time-dependent changes of drug, tumor,
and immune components, as well as provide descriptions and
interpretation of the parameters k1, . . . kn. The input variable
u = u(t) is introduced to describe drug administration.
The equation terms with missing parameters are the result
of a non-dimensionalization step that is described detail in
Supplementary Note 1. It facilitates model analysis without loss
of utility.

The PK Submodel
Equation (1) describes the change over time in concentration
of cyclophosphamide C(t) in the tumor microenvironment. It
is assumed that the drug is administered at a time-dependent
rate u(t) and is cleared at a Michaelis-Menten (saturated) rate
k1C
k2+C

. This compartment is assumed to be where the interactions

between the drug and its targets are assumed to take place.
Parameters k1 and k2 are obtained as part of the global fit to

experimental data described later.
Our simple PK model is phenomenological and is intended

to capture the delay in drug activity with respect to various cell
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FIGURE 1 | Mobilizing and sustaining a strong immune response requires striking the right balance between drug dosage and length (duration) of the drug-free break

between drug administrations. The classical view of chemotherapy treatments is that the chemotherapeutic drug suppresses the immune system and is toxic to the

tumor cells, while the tumor and immune system repress one another. In this view, the immune system’s ability to act on cancer cells is greatly reduced by repeated

cytotoxic drug administrations. The immune system can also be recruited to act on cancer cells by, for example, stimulating antigen presentation. The focal point of

this work is to improve our mechanistic understanding on how application the right metronomic chemotherapy regimen can, in specific cases, stimulate a large

increase in the immune response. Both the immunosuppressive and immunostimulatory effects of the drug are considered in our model, with the coexistence of these

two seemingly opposite effects being an important point of emphasis. (A) An outline of the effects of different chemotherapy treatments on the immune system and

tumor growth as observed in the context of an ICD drug like cyclophosphamide (17). (B) The translation of the outlined experimental observations into a detailed

schematic diagram of the interactions that formed the basis of our model. Thicker arrows represent well-known effects. Thinner arrows are hypothesized to be

present, and also arise from our numerical fits to the data. Notably, we simplified the system such that the interactions between tumor and immune cells leading to

increased immune activity are omitted in the context of this work. The details about this assumption can be found in the Methods section.

types rather than all the details of CPA activity, which is sufficient
for the purposes of our investigation. Furthermore, although the
steps of CPA activation by liver cytochrome P450 metabolism
have been well-studied, including the pharmacokinetics of CPA
in mice (79, 80), details of how the intermediates interact in real
time with the immune system and the tumor cells remain largely
unknown. In using a one-compartment model, the fast dynamics
of the drug reaching the blood stream and the decomposition

of CPA into its metabolites are assumed to have occurred (as
captured by the term u(t)) prior to the ability of the drug to
impact system dynamics, reflecting the difference in time scales
of drug PK and tumor-immune dynamics.

Tumor and Immune Dynamics
The full model describes interactions between five variables.
These represent the tumor volume, denoted by T(t), the
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FIGURE 2 | A conceptual tumor growth curve under metronomic chemotherapy treatment with repeated doses is shown and is broken down into three

representative stages. In stage I, tumor growth is primarily inhibited by the direct tumor cell cytotoxicity of the drug. There is typically a delay in the immune response

due to the immune cell cytotoxicity of the injected drug. The immune cell data in Wu and Waxman (12) indicate that an immune response is substantially reduced

immediately after drug administration, but eventually recovers and leads to a strong response 6–12 days later. Two possible incoherent feed-forward loop (IFFL) motifs

that capture these short-term and long-term dynamics of the drug-immune system interactions are shown. In stage II, the tumor volume is typically reduced as the

induced immune response becomes the principal contributor to tumor cell death. Stage II lasts until the induced immune response fades due to the emergence of

drug resistance. Stage III typically has the tumor recovering its ability to grow in an exponential fashion. Two possible scenarios are shown with the occurrence of an

immunosuppressor build up or recovery of the intermediate in an IFFL-II scenario.

immune response denoted by I(t), and two phenomenological
variables: an immunostimulatory intermediate species and
an immunosuppressive intermediate species, whose counts
are denoted by X(t) and Y(t), respectively. All these variables
except T(t) are phenomenological representations of complex
underlying phenomena, lumping together both cellular
populations and chemical signals such as cytokines, and thus do
not carry any biologically meaningful units. Such an approach

allows identifying broad functional classes of actors that impact
the observed dynamics, which can then be teased out in more
detail in future investigations. All three of these species are
directly affected by the concentration C(t) of cytotoxic drug.

We assume that tumor volume grows exponentially, at a
rate ka. In contrast to other mathematical models, we do not
introduce saturation or crowding terms for tumor growth,
because the data used in fitting is from mouse models, where a
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maximum tumor volume (or carrying capacity) is never reached
for humane reasons. In our model, tumor cells can be killed by
two different mechanisms: either by interaction with the drug
C(t) at a rate kb, or by immune cells I(t) at a rate kd. The
ratio T

kc+T
captures the fact that the cytotoxic death term is

proportional to T when the tumor is small but saturates when
T becomes much larger than kc.

Taking into account these mechanisms results in the following
equation for change in tumor size over time:

dT

dt
= kaT

︸︷︷︸

exponential growth

−
kbTC

kc + T
︸ ︷︷ ︸

cytotoxic death

−

kdTI
︸︷︷︸

death as a result of immune-tumor interactions

. (6)

For the purposes of this analysis, we do not differentiate
between various types of cytotoxic immune cells nor do we
distinguish the effects of these cells from other immune factors
such as chemokines or cytokines; instead, we track the change
over time of an aggregate immune indicator I(t). We assume
that this indicator increases through direct interaction with
immunostimulatory intermediate X(t) (which will be described
next), and can either be inactivated through interactions with
tumor cells at a rate ke, can decrease (“or die if seen as immune
cells”) due to exposure to drug C(t) at a rate kf , can become
suppressed through interaction with immune suppressor Y(t)
at a rate kg , and can decrease at a natural rate kh. The term
−keTI represents both the activation ke+TI and inactivation of
the immune response by tumor cells−ke−TI with the assumption
that −keTI = ke+TI − ke−TI. While fitting these parameters to
data, we found that defining the tumor-immune interaction term
in this particular functional form, i.e., −keTI, led to a positive ke
value. This observation was likely due to the data being collected
at a late stage in tumor growth progression.While onemay expect
the activation and inactivation phenomena to have different
functional forms, the simplification was also made due to the
experimental data suggesting that the recruitment by a ke+TI
term on the immune cells, cytokines, and chemokines is smaller
by at least an order of magnitude when compared to the immune
recruitment driven by the metronomic chemotherapy treatment.

This results in simplification of the following equation for
change in the indicator I over time from:

dI

dt
= X −

(

ke− − ke+
)

TI − kfCI − kgYI − khI , (7)

to:

dI

dt
= X

︸︷︷︸

drug-mediated immune recruitment

− keTI
︸︷︷︸

exhaustion

− kfCI
︸︷︷︸

death by drug

−

kgYI
︸︷︷︸

immunosupression

− khI
︸︷︷︸

decay

.

(8)

Next, in addition to tracking the dynamics of tumor and immune
cells, we introduce two phenomenological variables that are both

affected by the drug, and can in turn affect both tumor and
immune cells.

Firstly, we introduce an immunostimulatory intermediate
X(t), which impacts immune cell recruitment. We assume that it
can be increased by an ICD type drug, such as cyclophosphamide,
according to saturating function C

1+C/ki
, where immune cell

recruitment is linear up to a threshold kk, and becomes saturated
when C(t) > ki, representing an upper bound of drug-induced
immune recruitment. The immunostimulatory intermediateX(t)
is assumed to decay at a rate kj, and to be inactivated through
interactions with an immunosuppressive factor Y(t), which will
be defined next. The resulting equation for change over time of
immunostimulatory factor X(t) is as follows:

dX

dt
=

C

1+ C/ki
︸ ︷︷ ︸

recruitment by drug

− kjX
︸︷︷︸

decay

− kkXY
︸ ︷︷ ︸

immunosupression

. (9)

Finally, we introduce the immunosuppressive factor Y(t), which
can impact tumor-immune dynamics and which in itself is
affected by the drug C(t). Its dynamics over time are described
by the following equation:

dY

dt
=

I

1+ C/kl
− kmYC. (10)

The immunosuppressive intermediate Y(t) is assumed to be
induced by I; its effectiveness can be affected by drug C(t), which
is captured as 1

1+C/kl
. It can also be cleared through interaction

with the drug C(t) at a rate km.
The model accounts for cytotoxic effects of

cyclophosphamide, not only on cytotoxic immune cells, such
as NK and CD8+ T cells, but also on immunosuppressive cells,
such as MDSCs and Tregs (61, 81, 82). The immunosuppressive
intermediate Y is vital to the appearance of systemic drug
resistance when the treatments are continuously repeated over
long treatment periods.

A schematic summary of these interactions is shown
in Figure 1B. A structural identifiability analysis was
performed using (83) and showed that all parameters are
(locally) identifiable.

3. RESULTS

In this section, we first use the phenomenological model
described above to fit experimentally observed tumor growth
curves. We then validate the model by comparing model
predictions for the immune compartment to experimental data;
notably, the data for the immune compartment were not fit,
and thus provide an independent validation of the model, where
a single set of parameter values was sufficient to recapitulate
experimentally observed dynamics. Finally, the validated model
is used to make predictions about treatment regimens that have
not been tested experimentally.

Here, the notations 1-CPA, 2-CPA, 3-CPA are used to indicate
1, 2, or 3 doses of CPA that are given 6 days apart. The first
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dose is always given on day 0. CPA/6-days, CPA/9-days, CPA/12-
days indicate that treatments were given 6, 9, or 12 days apart,
respectively. CPA/9-days(210 mg/kg) indicates that the drug
doses of 210 mg/kg (rather than 140 mg/kg in other treatment
groups) were administered 9 days apart. Finally, the abbreviation
CPA/6-9-days indicates a break of 6 days between first and second
doses, and a break of 9 days between second and third doses.

Population Fits to the Experimental Data
The experimental growth curves for individual tumors were
obtained from Wu and Waxman (12) and fitted using the
objective function outlined in Supplementary Note 2. The
minimization of the error criterion was carried out using fmincon
with the interior-point algorithm in MATLAB (Release R2019a,
Mathworks, MA).

The initial values of the state variables were assumed to be 0
except for tumor volume. The rationale behind this assumption
is detailed in Supplementary Note 2. The initial guesses to the
optimization problem used for finding population parameter
fits were drawn from a uniform distribution on a log-scale to
sample several orders of magnitude. Numerous initial guesses
(> 105) were tested using the Northeastern Discovery computer
cluster. Due to the nonlinearity of the model, multiple sets
of parameters yielded equally good minimal objective function
evaluations. Out of 16,000 starting points for the optimization,
the 8 fits within 1% of the objective function optimal value
are summarized in Supplementary Table 1. Outliers highlighted
in Supplementary Figure 2 were excluded using the procedure
outlined in Supplementary Note 3.

In Figures 3 and 4, the simulated growth curves
generated using fitted parameters presented as in Fit A in
Supplementary Table 1 are shown side by side with the
corresponding experimental data. This Fit A was picked among
the 8 best fits due to it better capturing the qualitative behavior
for CPA/12-days, but the differences between these fits among
the other sets of treatment conditions were relatively small.
Additionally, the predicted pharmacokinetics are shown in
Supplementary Figure 3. It is important to note that each
treatment condition corresponds to an experimental dataset.
Consequently, variations between datasets can be more
prominent than within the same dataset. Also, the units were
not emphasized due to three out of the five state variables
being dimensionless. However, it is straightforward to adapt the
proposed model in the presence of such experimental data by
applying the non-dimensionalization transformations outlined
in Supplementary Note 1 and obtain the appropriate units.

Despite the use of pooled mouse data for curve fitting, there
is a high degree of agreement between experiments and model
fits, particularly for tumors that remained largely suppressed
throughout treatment. The nature of rebounding (or escaping)
tumors makes the observations very stochastic in nature, while
the models are progressively transitioning between regressing
and rebounding tumors under conditions as the initial tumor
volume gets larger (an example of this transition being the
CPA/6-9-days treatment). Allowing for small variations in the
parameters between individual experiments is likely to account
for such variability. The primary intent is to showcase that one

unique set of population parameters can capture the qualitative
and quantitative behaviors of a large set of different metronomic
chemotherapy treatments that involves induction of anti-tumor
immune responses and drug resistance.

The agreement between simulated and fitted experimental
growth curves is high for the untreated, 2-CPA, 3-CPA, and
CPA/9-days(210 mg/kg) cases, as can be seen in Figure 3.
There is a discrepancy between the model prediction and the
experimental data for the largest tumor in the 2-CPA scenario. In
the repeated treatments, the model captures well the progressive
apparition of rebounding tumors as intervals between drug
administration increase from 6 to 12 days in 4 increments.
For the CPA/12-days scenario, the model predicts that tumor
escape will occur up to ten days after when it actually occurred
experimentally; nevertheless, the model is able to capture the
qualitative effect of this treatment regimen, which fails rapidly
within the first 3 drug injections.

The 1-CPA set of data was small in size (n = 5, before
an outlier was excluded) and tumors that were implanted
apparently grew at a significantly faster rate than the rest of
the dataset. Given that each metronomic scenario was from
a different batch of mice, systemic experimental variations
in the fitted data can account for some of these observed
discrepancies and can be hard to distinguish from model
deficiencies. From Supplementary Figure 1, the three treatment
conditions of 1-CPA, CPA/9-days, and CPA/12-days are not
expected to differ until day 9, but the plots indicate that
the experimental data is inconsistent. In addition, 1-CPA
and CPA/12-days have mice undergoing the same treatment
conditions until day 12.

In Figure 5, the mean normalized tumor volumes are given
for each of the conditions modeled and shown with the
corresponding experimental data. There is a slight delay in
the 2-CPA case when it comes to the rebounding behavior
of the tumors. The CPA/12-days discrepancy in the time of
rebound can also be seen. Notably, the deficiencies in the fits
are more pronounced on the marginal cases of longer breaks
and shorter treatments. It is possible that these edge cases
require special attention to incorporate the impact of other
phenomena that are discussed in Wu and Waxman (17), and
might require additional experimental data to appropriately
capture the underlying mechanisms. Also shown in Figure 5

is the difference between the normalized average simulations
of the fitted data without outliers and the experimental data
with outliers. The trends were not affected by removing
outliers with the exception of CPA/12-days that yielded large
discrepancies between 4 and 25 days. This was due to
two small tumors that were excluded as they grew very
rapidly to be much larger than other tumors that had higher
initial volumes.

Predictions Regarding the Immune System
In Figure 6, predictions are made for 1-CPA, 2-CPA, 3-CPA
for the immune system behavior. Notably, the immune data
were never used in model fitting, but model predictions of
the immune system correspond well to that of the immune
cell data reported in Wu and Waxman (12). In this model,
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FIGURE 3 | Simulated and experimental growth curves for the scenarios of 1-CPA, 2-CPA, 3-CPA, and doses of 210 mg/kg given every 9 days (CPA/9-days/210).

When not specified, CPA doses are 140 mg/kg. Black dashed lines represent the time at which drug treatments are given. Solid lines represent fitted data; dotted

lines represent predicted growth curves extrapolated from the model.
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FIGURE 4 | Simulated and experimental growth curves for the scenarios CPA/6-days, CPA/6-9-days, CPA/9-days, and CPA/12-days. Solid lines represent fitted

data; dotted lines represent predicted growth curves extrapolated from the model.
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FIGURE 5 | Simulated tumor growth curves of all the considered treatments scenarios were normalized such that the first time point of each curve has an initial value

of 100. The mean of the normalized curves for each treatment condition was then calculated and plotted on the left panels. The right panels are the original

experimental data from Wu and Waxman (12). These data also show the difference between the normalized average fits of the fitted data without outliers (middle

panels) and the experimental data including outliers (right panels). The outliers are highlighted in Supplementary Note 3.

the immune system is assumed to be an aggregate of multiple
immune cells and related factors. The experimental immune
data, shown in Figure 6, can be separated into two categories:
the immune cell markers and the chemokine, cytokine, and
adhesion molecule markers. It is clear from the experimental
data that new injections of the drug have a short term negative
effect on immune cell populations. However, this is not often
the case for cytokines or chemokines, which can be recruited
and remain at high levels even after a second injection, as was
the case for the 2-CPA regimen. Considering both effects of

the immune cell markers and cytokines and related molecules,
the predictions of immune system behavior by the model seem
to be an aggregate of these responses. It estimates well the

immune cell peaks that occur at 12, 18, and 24 days for 1-
CPA, 2-CPA, and 3-CPA regimens, respectively. Notably, the

experimental data are quite sparse, as only 4 time-points were

analyzed for each treatment condition. Additional plots in

Supplementary Figure 4 show the predicted immune system
behavior for other treatment conditions.

Predictions for CPA/9-6-days and
CPA/7.5-days
The validated model was then used to make predictions about
the effect on tumor growth of dose administration regimens
that were not experimentally tested. One such example is shown
in Figure 7, where drug is administered at alternating breaks
of 9 days and 6 days (CPA/9-6-days). Interestingly, the model
predicts that CPA/9-6-days is considerably inferior to the CPA/6-
9-days regimen, suggesting that shorter breaks between drug
administrations early on improve outcomes, as compared to
longer breaks. CPA/7.5-days is a little better than CPA/9-6-days,
especially with smaller initial tumor volumes.

We hypothesize that shorter breaks early on allow sufficient
tumor burden reduction to enable cytotoxic immunity to have
greater impact on the smaller tumor. Notably, within this
framework, the standard approach of maximizing tumor burden
reduction would cause excessive damage to the immune system,
so chemotherapy-induced tumor burden reduction should be
sufficient to augment the effect of the immune system but not to
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FIGURE 6 | Independent model validation through comparison of model predictions to available immune cell data. The top row shows the predicted immune system

recruitment by the fitted model for the 1-CPA, 2-CPA, and 3-CPA treatment conditions. The vertical black dashed lines indicate times of drug injections at 140 mg/kg.

The initial volume for the simulated tumors yielding these curves was assumed to be 1,000 mm3 at the time of the first injection. The middle row shows the

experimental data of the gene expressions for various immune markers linked to the innate immune cells (macrophages, dendritic, and NK cells). Similarly, the bottom

row shows gene expression data for various chemokines, cytokines, and adhesion molecules (abbreviated CCA on the plots). The data is ordered such that each

column represents the same treatment condition.

act to its detriment. Based on our analysis, although the CPA/9-
6-days schedule (Figure 7) should be superior to the CPA/9-
days schedule (Figure 4), the two simulated datasets are almost
identical in behavior.

Upon closer examination of relative impact in cancer cell
death due to activity of the immune system vs due to the drug,
the model indicates that even after the anti-tumor immune
recruitment decreases, small tumors remain under control as
a result of drug cytotoxicity. However, for large tumors, even
a slight decrease in anti-tumor immunity can determine the

difference between tumor regression and tumor progression.
Looking at the immune response in Figure 7, a slight decrease
around 15–20 days after the first treatment leads to strong
rebounding behaviors in the two largest simulated tumors.

4. DISCUSSION

The administration of cyclophosphamide under MTD regimens
can be severely toxic to the immune system and undermine
its ability to help control tumor growth. Changing the dose
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FIGURE 7 | On the (top) row, predictions for the CPA/9-6-days drug regimen where the first break is 9 days followed by 6 days, then 9, then 6 and so on,

alternatively. On the (bottom) row, similar predictions are made for CPA/7.5-days.

and timing of drug administration has been shown to restore
the ability of cytotoxic immune cells to target tumor growth
in glioma mouse models (12, 13), suggesting the existence of a
“sweet spot” that can minimize damage to the immune system
and maximize anti-tumor immune effects. To formalize the
mechanisms thatmay underlie experimentally observed variation
in response with respect to drug dose and schedule, we propose
a phenomenological mathematical model that captures key
processes that may underlie interactions between drug, immune
system, and tumor. Through these efforts, we aim to identify
key mechanisms that may give rise to a strong and sustained
immune response, within the broader context of improving the
understanding of cancer treatments that target not only cancer
cells themselves but also the tumor microenvironment, and in
particular, the immune system.

The proposed phenomenological model was fit using the
method outlined in Supplementary Note 2 to generate a single
set of parameters that was able to capture well tumor growth
dynamics across nearly all experimentally tested drug treatments
(Figures 3 and 4). The model was further validated through

predicting the dynamics of the immune cells that were not used
in the fitting process.We found a strong correspondence between
immune data and predictions, despite the simplified nature of
the underlyingmodel (Figure 6). The parameter values of various
fits within 1% of the optimal value for the objective function are
plotted in Supplementary Figure 5. Notably, the tumor growth
constant ka was consistent among all the fits. This parameter
is likely to be well-determined due to the abundance of tumor
volume data and, in particular, the use of untreated tumor growth
data in the fits. The parameters related to the tumor equation
and the PK part of the model are generally within one order
of magnitude among all the fits. The remaining parameters are
mostly spanning several orders of magnitude and it is likely that
a better correspondence of phenomenological variables X, Y , and
I with the experimental data would alleviate this issue, namely
that several combinations of parameters can redundantly capture
the qualitative behaviors seen in the experimental data.

We then used the validated model to predict the impact on
tumor growth of an alternative schedule of CPA/9-6-days as
well as CPA/7.5-days that have not been tested experimentally
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(Figure 7). The model predicts that shorter breaks between
dose administrations early on lead to greater tumor burden
reduction and improved anti-tumor immunity; however, as was
shown in Wu and Waxman (12) and Chen et al. (13), the
breaks cannot be too short, which in turn may lead to excessive
immune cell depletion, not allowing cytotoxic lymphocytes time
for replenishment. Therefore, the goal of “sweet spot” therapy is
to reduce tumor burden sufficiently to allow cytotoxic immunity
to persist and control the tumor.

Despite the undeniable complexity of the immune system,
the proposed conceptual model of four differential equations
coupled with a 1-dimensional PK model allowed us to capture
tumor responses to various treatment schedules.While themodel
was used to understand and reproduce data that shows impact
of variation in dosing and scheduling on tumor growth for
a particular mouse tumor model, it also highlights the fact
that beyond simply understanding the interactions between the
different components at play, a quantitative modeling approach
may be able to help design better metronomic chemotherapy
treatments. Furthermore, the conceptual nature of the proposed
model enables us to pinpoint more specific mechanisms that are
responsible for observed variations, which may not be possible
with more detailed descriptive models.

Besides fitting well the experimental data on
cyclophosphamide, the mathematical model developed
here can be a valuable complementary tool to understand
how drugs function and how they can be combined with
other types of treatments, such as immunotherapies. It is
also possible that drugs previously discarded due to a lack of
cytotoxicity may have immunogenic properties that could act
as effective complements to other treatments, a response that
may have gone unnoticed in the context of MTD administration.
Furthermore, the proposed framework suggests that what may
appear as therapeutic resistance to a drug may in fact represent
desensitization, a phenomenon that can be mitigated through
alterations of the drug dosage and scheduling and through
better understanding of how these different components of the
tumor microenvironment interact with one another, particularly
immune cells and cytokines.

One of the exciting properties of this model is that it
demonstrates that the exhaustive details of specific immune cell
and cytokine types are not necessary to explain experimentally
observed data with regards to tumor growth; instead, we showed
that grouping actors by function into “classes of cells” is
surprisingly sufficient. Therefore, while it is tempting to try
to introduce more details into equations describing either the
immune cells or immunostimulatory and immunosuppressive
factors, it may not provide additional insights. This is because
the ultimate goal of this approach is not to quantify the
immune system extensively, but to reliably predict long term
tumor dynamics under treatment. Instead, it may be more
beneficial to explore the impact of drug-specific kinetics on
these different components. This approach is quite feasible,
since pharmacokinetic modeling that describes experimentally
measurable changes in drug concentrations over time has very
well-developed methodology that is used extensively in drug
discovery and development.

Drug-specific PK models can be coupled with the four
Equations (2–5) to help better understand the push and pull
of drug effects on all system components to get the ultimate
measurable outcome: drug impact on tumor growth. Parameters
that would need to be experimentally determined are those
associated with drug-dependent toxicity on immune cells and
cancer cells separately (within the frameworks of this model, they
are parameters kb, kf , km, ki, and kl), which can be measured
in targeted experiments and then used as starting points for
parameter optimization. The PK-PD model will then need to
be trained on experimental data, as in the approach described
here, and then used to evaluate the impact of different treatment
regimens on final tumor growth. Notably, PK models can be
created to describe the dynamics of both novel drugs and existing
ones. This may open avenues to re-purposing existing drugs by
appropriately altering the dosage and schedule of administration,
an undertaking where quantitative approaches such as the one
proposed here may prove to be indispensable.

The effectiveness of metronomic CPA schedules examined
here has been demonstrated in syngeneic mouse glioma models,
as well as in innate immune-sufficient SCID mice in work that
includes mouse, rat and human xenografts; however, we do
not know how predictive these models are of responsiveness in
gliomas or in other tumor types in human patients. Evaluation
of these metronomic CPA schedules in human tumor models,
including patient-derived xenografts, is therefore a high priority
for clinical translation.

We anticipate the proposedmathematical model will be useful
for discovery of hidden potential of current drug treatments by
building better quantitative understanding of the phenomena
at play, and for designing more effective drug regimens that
may not be intuitively apparent through exploring immunogenic
potential of ICD drugs. The proposed model can also be used to
investigate a variety of drug schedules and dosing regimens, as
well serve as a building block for investigation of combination
chemotherapy and immunotherapy treatments that will likely
pave the future of cancer therapy.
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Supplementary Information

Supplementary Note 1: Nondimensionalization of the model equations

Consider the equations of the model:

dC

dt
= u− k1C

k2 + C
(1)

dT

dt
= ka′T −

kb′CT

kc′ + T
− kd′TI (2)

dI

dt
= ke′X − kf ′TI − kg′CI − kh′IY − ki′I (3)

dX

dt
=

kj′C

1 + C/kk′
− kl′X − km′XY (4)

dY

dt
=

kn′I

1 + C/ko′
− kp′Y C (5)

(6)

Substituting I , X , and Y using the relationships:[
I = I∗Î , X = X∗X̂, Y = Y ∗Ŷ

]
and limiting the scope to the equations for these state variables to be nondimensionalized yield the
following set of equations:

dÎ

dt
=

ke′X
∗
1X̂1

I∗
− kf ′T Î − kg′CÎ − kh′ ÎY ∗Ŷ − ki′ Î (7)

dX̂

dt
=

kj′C

X∗ (1 + C/kk′)
− kl′X̂ − km′X̂Y ∗Ŷ (8)

dŶ

dt
=

kn′I∗Î

Y ∗ (1 + C/ko′)
− kp′ Ŷ C. (9)

Making the following replacements[
I∗ = ke′kj′ , Y

∗ = ke′kj′kn′ , X∗ = kj′
]

and rewriting the parameter names yield the following nondimensionalized set of equations with 4 less
parameters:

dC

dt
= u− k1C

k2 + C
(10)

dT

dt
= kaT −

kbCT

kc + T
− kdTI (11)

dI

dt
= X − keTI − kfCI − kgIY − khI (12)

dX

dt
=

C

1 + C/ki
− kjX − kkXY (13)

dY

dt
=

I

1 + C/kl
− kmY C. (14)

1



Supplementary Note 2: Fitting methodology

Error criterion

In this work, an objective function was defined for the nonlinear optimization problem that is used to fit
the model parameters:

argmin
ŷi

N∑
i=1

sat
[(

yi + a

yi + b

)(
|yi − ŷi|
yi + c

)]
(15)

with yi being the experimental value and ŷi the predicted value. sat(x) is a saturation function such that
sat(x) = 1 for values of x > 1. The values of a, b, and c are determined in such a way that low values of
yi are not weighted too strongly. In the objective function, b and c can be interchangeable, so we will
assume that b < c. In the limit that b < yi � a, c, we get that:

argmin
ŷi

N∑
i=1

sat
(
a

c

|yi − ŷi|
yi + b

)
(16)

a and c are chosen such that a
c < 1 and b is small value that plays both the role of a regularizing term

and avoids a division by 0. In the limit when yi is large, we get:

argmin
ŷi

N∑
i=1

sat
(
|yi − ŷi|

yi

)
(17)

which is a standard normalization. The magnitudes of a and c play an important role in how quickly this
limit of large yi is approached. Let’s note that if yi � b � a, c then the ratio becomes a

c
|yi−ŷi|

b . The
parameters are chosen such that bc� a, small values are filtered out, as these may be more susceptible
to measurement noise or below a threshold of detection.

The values of a, b, and c in the error criterion were chosen as 19.31, 1, and 227.6, respectively. These
values were found to provide a balance between providing enough weights to errors involving small
experimental values, while also ensuring that the desired phenomena of tumor evasion and immune
recruitment are captured appropriately by the model.

Determination of the population fits

The main underlying assumption of the population fits is that all mice are characterized by the same
parameters. In reality, there can be a myriad of ways mice can differ from one another. Notably, their
immune system might be of different strength when fighting the tumor and different tumors can grow at
different speeds. However, the immune data that was available [1] is confined to the 1-CPA, 2-CPA, and
3-CPA scenarios and only three individual mice per experiment. The tumor growth curves were thus the
only data that was used to fit the model.

In addition to having the same parameters, the initial values of all state variables were assumed to be 0,
except for the initial tumor volume. While the mice do have a still functioning immune system at the
moment they are being monitored, an escaping tumor is a sign that the immune system is compromised
or unable to contain the tumor growth. Thus, the underlying assumption is that the immune system at
the start of treatment is either of negligible effect or its effect on the tumor growth is lumped inside
the ka constant. Furthermore, the immune data from [1], also shown in Fig. 7, shows that the effect of
cyclophosphamide given on a metronomic regimen can yield an order of magnitude increase in the gene

2



expression of innate cell immune markers, and similar observations can be seen for the gene expression
of other markers for cytokines, chemokines, and adhesion molecules.

The last assumption for the population parameters is that the input u appearing in Eq. 1 consists of a step
input of 140 mg/kg in concentration, applied at the moment a dose injection. From the time-scale of the
experiments, the time-scale of the drug injection is negligible when monitoring the tumor size every few
days. The input and the state variables besides the tumor (T ) are assumed to be unitless. For the drug
regimen of CPA/9-days(210mg/kg), the step input for u was increased to 210 mg/kg in concentration for
each dose injection in order to account for the higher dose.

3



Supplementary Note 3: Handling the outliers

In this data, there are two types of outliers that were taken out of the analysis:

• Time series with average tumor volume above a given cutoff value of 2500 mm3 and that did not
belong to the untreated group.

• Time series that contradicted the behavior of neighboring curves.

The first criterion led to the exclusion of 3 outliers out of 65 time series. Large tumors followed dynamics
different from what the model could explain. However, the large tumor data is very sparse, so there did
not seem to be enough data to confidently elucidate the functional form that governs these data points.

Given the interest in finding a set of population parameters that captured the quantitative and qualitative
behaviors of the experimental data, a second criterion was used to avoid fitting the model with contradic-
tory behaviors. To quantitatively measure these deviations, the experimental values of the tumor volumes
at each time point at a given treatment condition are ranked. Defining rijk that represents the rank for the
time point i of time series experiment j at the treatment condition k. This rank can be used to form a
rank vector Rjk such that:

Rjk = {r1jk, ..., rNjk} for N time points. (18)

For each time series, a scalar Djk is calculated using the following formula:

Djk =
std (Rjk)

Mk
(19)

with std representing the calculation of a standard deviation and Mk the number of time series data at a
given treatment condition k. When two or more tumors at a given time point and treatment condition had
the same recorded tumor volume, the average rank of these tumors was assigned for rijk.

The outliers in the data are shown in Fig. 2 and were picked if they were singled out by the first criterion
and/or second criterion. The exclusion rule for the second criterion was defined as Djk > 0.21.
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Supplementary Figure 1: Discrepancies in modeling 1-CPA. On the left, are shown the experimental
data and the simulated data, with the latter data predicting much slower tumor growth than was seen in
the experimental data. On the right, the 1-CPA data is plotted using the normalized tumor growth and
compared with CPA/9-days and CPA/12-days treatments. Note that the 1-CPA treatment is equivalent to
the CPA/9-days and CPA/12-days data up to treatment day 9 and treatment day 12, respectively, barring
systemic errors in the experiments.
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Supplementary Figure 2: The experimental data in [1] are plotted with the outliers highlighted in red.
Out of the 65 time series data considering 9 different treatment conditions, 11 were excluded in the fitting
of the population parameters.
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Supplementary Figure 3: Prediction of the drug concentration (C) for all the experimental conditions in
[1]
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Supplementary Figure 4: Predicted immune system from the model fits for the treatment conditions other
than 1-CPA, 2-CPA, and 3-CPA.
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Supplementary Figure 5: Parameter values in a log10 scale for 8 different fits within 1% of optimal value
found for the objective function. Missing dots are due to overlapping parameter values, which can be
found in Supplementary Table 1.
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Supplementary Table 1: Parameter values for fits within 1% of optimal value found for the objective
function.
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