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A dynamical system entrains to a periodic input if its state
converges globally to an attractor with the same period. In
particular, for a constant input, the state converges to a unique
equilibrium point for any initial condition. We consider the
problem of maximizing a weighted average of the system’s
output along the periodic attractor. The gain of entrainment is
the benefit achieved by using a non-constant periodic input
relative to a constant input with the same time average. Such
a problem amounts to optimal allocation of resources in a
periodic manner. We formulate this problem as a periodic
optimal control problem, which can be analysed by means of
the Pontryagin maximum principle or solved numerically via
powerful software packages. We then apply our framework to
a class of nonlinear occupancy models that appear frequently
in biological synthesis systems and other applications. We
show that, perhaps surprisingly, constant inputs are optimal
for various architectures. This suggests that the presence of
non-constant periodic signals, which frequently appear in
biological occupancy systems, is a signature of an underlying
time-varying objective functional being optimized.
1. Introduction
Periodic oscillations are abundant in biomolecular systems, and an
extensive body of research has been devoted to study their roles in
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intracellular and extracellular interactions [1,2]. In the presence of such excitations, proper functioning of
biological systems often requires their internal states to synchronize with the periodic input signal. In the
parlance of systems theory, this is known as entrainment, which means that the response of a system
subject to a periodic input with period T will converge to a periodic trajectory of the same period T.
There has been great recent interest in the study of this phenomenon [3–7]. Examples of external
periodic influences include operation under the influence of sunlight, which requires the internal clocks
of biological organisms to entrain to the 24-hour solar day. For instance, it has been shown that the
plant Arabidopsis uses its circadian clock to anticipate times with an increased susceptibility to fungal
pathogens and regulates its immune system resources accordingly [8]. Entrainment is also essential in
many synthetic biological systems. For instance, synthetic oscillators can be used to emulate natural
hormone release rhythms in the treatment of certain diseases [9]. More generally, robust and optimal
synthetic oscillators constitute an important module in larger systems [10,11].

At the intracellular level, the cell cycle is a periodic routine that regulates DNA replication and cell
division. This requires precise regulation of many interacting proteins and also appropriate resource
allocation at different stages of the cell cycle. Deviations from the programme can lead to cell death or cancer.

An important underlying process is translation, which is a major component in the central dogma of
molecular biology, and requires sophisticated coordination among ribosomes, mRNA and tRNA
molecules, and various proteins. Two of the key underlying steps are initiation in which the ribosome
attaches to an mRNA molecule, and elongation, in which the ribosome scans along the mRNA to
produce a chain of amino acids. Regulation of initiation and elongation are an effective way to control
protein concentrations [12,13].

One biologicalmechanism for cell cycle-regulated genes is based on codonswhose corresponding tRNAs
have low abundances (known as non-optimal codons) [14,15]. In particular, periodic variations in the level of
these specific tRNAs cangenerate cell cycle-dependent oscillations in the correspondingprotein levels [14]. In
other words, the protein levels entrain to the periodic excitation provided by the tRNA levels. Similar
oscillation-inducing regulation mechanisms during DNA damage response have also been reported [16].
Other works have indicated that the speed of translation is sensitive to fluctuating tRNA availability [17],
that cells use tRNA to control protein abundance in stress conditions [18], and that tRNA dysregulation is
a contributing factor in cancer progression [19]. In addition to tRNA regulation, many other intracellular
oscillators have been identified as regulators of the cell cycle [20,21].

Here, we analytically investigate the hypothesis that periodic rates in the cellular environment are
used to maximize gene expression throughput. To that end, we first describe, as a motivation, a class
of mathematical models that are useful in modelling various processes involved in gene translation.
Our focus is to analyse these models in the presence of periodic excitations modelled as periodic
inputs that attempt to maximize a certain reward function that is proportional to the throughput of
the system. We pose these problems in the rigorous language of optimal control theory and analyse
them under a variety of assumptions.

1.1. Motivation: occupancy models
In many important biological models, state variables describe the occupancy in a certain site or a
compartment. For example, in physiology, compartmental models describe drug absorption
distribution and elimination in various body fluids or tissues [22].

1.1.1. A one-dimensional model

Many biological processes involve ‘biological machines’ that move along a one-dimensional lattice of
ordered ‘sites’. Examples include ribosomes that scan the mRNA molecule during translation, molecular
motors that carry cargoes along a filamentous network in the cytoskeleton, and phosphotransferases that
transfer the phosphoryl group from the sensor kinases to some ultimate target. To be concrete, we focus
on ribosomes and mRNA translation, but the same ideas apply to other models.

We now derive such a one-dimensional occupancy model using several alternative modelling
approaches. Let X (Z) be the species denoting bound (unbound) ribosomes. The free ribosomes bind to
mRNA. Bound ribosomes need tRNAs to translate the information in the mRNA into proteins (P).
A phenomenological one-step model written in chemical reaction network (CRN) formalism [23] gives

mRNAþ Z ! X
tRNAþ X ! ZþmRNA þ P:
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We assume that tRNA and mRNA are abundant, so that their dynamics are not affected by the
aforementioned reactions. Note that the species tRNA represents all possible variants of transfer RNA.
Let x(t) be the concentration of occupied (bound) ribosomes in the cell at time t, and let z(t) be the
concentration of free ribosomes. The occupancy of ribosomes is determined by mRNA transcript
abundance u0(t) and tRNA abundance u1(t). The CRN gives the following system of bilinear ODEs:

_xðtÞ ¼ u0ðtÞzðtÞ � u1ðtÞxðtÞ,
_zðtÞ ¼ u1ðtÞxðtÞ � u0ðtÞzðtÞ:

)
ð1:1Þ

Assuming a fixed total concentration of ribosomesM, we have x(t) + z(t)≡M. The total concentration can be
normalized to M = 1. Then the two-dimensional dynamics can be reduced to a one-dimensional ODE

_xðtÞ ¼ u0ðtÞð1� xðtÞÞ � u1ðtÞxðtÞ: ð1:2Þ
This implies that x(t) evolves on the unit interval, and it can be interpreted as a normalized occupancy of
some site at time t. More generally, x(t) can be interpreted as the probability that a certain site is
occupied by some ‘biological machine’, like a ribosome or a molecular motor, at time t. This occupancy
model has been termed a ‘bottleneck’ module in [24].

Note that the occupancy model (1.1) can also be used to model binding and unbinding of a substrate
to an enzyme.
8:210878
1.1.2. Multisite models: the ribosome flow model

The Totally Asymmetric Simple Exclusion Process (TASEP) [25] is a fundamental stochastic model from
non-equilibrium statistical physics. In TASEP, particles move forward at random times along a one-
dimensional chain of sites. A site can be either free or contain a single particle. Totally asymmetric
means that the flow is unidirectional, and simple exclusion means that a particle can only hop into a
free site. This models the fact that two particles cannot be in the same place at the same time. The
simple exclusion paradigm generates an indirect coupling between the particles and also allows
modelling the evolution of ‘traffic jams’: if a particle remains at site i for a long time, then particles
will accumulate ‘behind’ it, i.e. in site i− 1, then site i− 2 and so on. TASEP has been used extensively
to model and analyse ribosome flow [26] and many more natural and artificial processes including
molecular motors, traffic flow, evacuation dynamics and more [27].

The ribosome flow model (RFM) [28] is the dynamic mean-field approximation of TASEP. In the RFM,
the state variables x1ðtÞ, . . ., xnðtÞ describe the occupancy in n sites along the mRNA molecule. The RFM
dynamics is described by a system of n first-order ODEs

_xk ¼ lk�1xk�1ð1� xkÞ � lkxkð1� xkþ1Þ, k ¼ 1, . . . , n, ð1:3Þ
where we define x0(t)≡ 1 and xn+1(t)≡ 0. Here, xi(t) describes the occupancy at site i at time t, normalized
such that xi(t) = 0 [xi(t) = 1] means that site i is completely empty [full] at time t. In the context of
translation, λi(t) > 0 describes the transition rate from site i to site i + 1 at time t. This rate depends on
various biomechanical properties, for example, the abundance of tRNA molecules delivering the
amino acids to the ribosomes. Equation (1.3) can be explained as follows. The change in the density in site
k is the flow from site k− 1 into site k minus the flow from site k to site k + 1. The first term, λk−1 xk−1 (1−
xk), is proportional to the transition rate from site k− 1 to k, the occupancy at site k− 1, and the amount of
‘free space’ (1− xk) at site k. Note that this is a ‘soft’ version of simple exclusion: as site k fills up, the flow
into it decreases. The second term is similar. Note that λn(t)xn(t) describes the flow of ribosomes out of the
last site at time t, i.e. the protein production rate. If the whole mRNA strand is considered as one site, that
is, n = 1, then the RFM model will be identical with the occupancy model (1.2).

The state space of the RFM is the n-dimensional unit cube [0, 1]n. It was shown in [29] that the RFM
(with constant λi’s) admits a unique equilibrium xe ¼ xeðl0, . . ., lnÞ [ ð0, 1Þn and that for any a∈ [0, 1]n,
the corresponding solution of (1.3) satisfies lim t→∞ x(t; a) = xe. In other words, the transition rates
determine a unique globally asymptotically stable (GAS) equilibrium. More generally, [6] showed
that if the rates are time varying, and jointly periodic with a period T, then (1.3) admits a unique
solution gT :Rþ ! ð0, 1Þn, i.e. T-periodic, and x(t, a) converges to γT for all a∈ [0, 1]n. In other words, the
RFM entrains. Note that a constant rate is T-periodic for any T, so entrainment also holds if a single rate
is T-periodic and all the other rates are constant. In the biological context, entrainment can be interpreted
as follows: if, say, variations in tRNA abundances generate T-periodic initiation and/or elongation rates,
then the protein production rate will also converge to a periodic pattern with period T.
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Figure 1. Two examples of generalized occupancy models. The controls are u0(t), u1(t) which are scalar functions. We have x1, x2, x,
w1, w2, y [ Rþ, z [ Rn, A [ Rn�n, b, c [ Rn

þ . The linear system block is assumed to be positive and Hurwitz.
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The RFM and its variants have been used extensively to model and analyse ribosome flow
during the process of translation (see e.g. [30–34]), as well as other important cellular processes
like phosphorelay [35].

Just like TASEP, the RFM (and in particular the model (1.1)) is a phenomenological model that can be
applied to study various processes like vehicular or pedestrian traffic [24]. In this case, the occupancy is
interpreted as the ratio between the number of vehicles (or pedestrians) at a certain junction at time t and
the total number of possible vehicles.
878
1.1.3. Generalized occupancy models

Let Rn
þ : ¼ fx [ Rn j xi � 0, i ¼ 1, . . . , ng denote the non-negative orthant in Rn. For two vectors

a, b [ Rn, we write a≥ b if ai≥ bi for all i = 1,…, n. Recall that the linear single-input single-output
(SISO) linear system

_x ¼ Axþ bu

and

y ¼ cTx

is called positive if every entry of b, c, and every off-diagonal entry of A is non-negative (i.e. A is a Metzler
matrix). This implies that for any x(0)≥ 0 and any control u with u(t)≥ 0 for all t we have x(t)≥ 0 and
y(t)≥ 0 for all t≥ 0 [36]. This is useful when the state variables and the output represent physical
quantities that can never attain negative values, e.g. population sizes or concentrations of molecules.

Generalized occupancy models (GOMs) are a cascade of occupancy models and SISO positive linear
systems. These models are useful when the output of an occupancy model is the input to another
biological system that, in the vicinity of its equilibrium point, can be approximated as a positive linear
dynamical system. Similar to the multi-site RFM model introduced before, it can be shown that GOMs
entrain to periodic inputs.

For example, figure 1a depicts a time-varying bottleneck module feeding a positive linear system. In
this module, u0, u1 are entrance rates, and w1 is the exit rate. The effective inflow is proportional to the
vacancy 1− x(t), while the outflow is proportional to the occupancy x(t). This cascade models an
occupancy model driving a downstream linear system. As another example, figure 1b depicts a linear
system ‘sandwiched’ between a two-site RFM and one-site RFM. This can model a situation where the
production rate of one protein affects, via another biological process, the promoter (and thus the
initiation rate) of some other mRNA.

A GOM can also be used to model the RFM with time-varying rates under the condition

liðtÞ � l0ðtÞ for all i � 1 and all t � 0: ð1:4Þ
Then, we can expect that the initiation rate becomes the bottleneck rate and thus xi(t), i ¼ 2, . . ., n,
converge to values that are close to zero, suggesting that (1.3) can be simplified to

_x1ðtÞ ¼ l0ðtÞð1� x1ðtÞÞ � l1ðtÞx1ðtÞ
and _xiðtÞ ¼ li�1ðtÞxi�1ðtÞ � liðtÞxi, i [ f2, . . . , ng,

)
ð1:5Þ

which has the same form as the cascade in figure 1a.
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After these motivating examples, we next formulate the abstract questions to be studied in
this article.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210878
1.2. Gain of entrainment
To analyse the effect of periodic signals on the performance of an occupancy system, we focus on a class
of systems whose internal variables entrain, i.e. follow the rhythms of an external driving signal.
Entrainment can be studied in the framework of systems and control theory. The periodic excitation is
modelled as the control input u(t) of a dynamical system, and the system entrains if in response to a
T-periodic excitation it admits a globally attractive T-periodic solution γT. In other words, every
solution of the system converges to the attractor γT.

Assuming that a system entrains, the next question is: what is the quantitative potential advantage
of entrainment? In other words, is entrainment to periodic inputs more advantageous when
optimizing a certain objective function? If the answer is affirmative, then we say that the system
exhibits a positive gain of entrainment. To explain this, consider a control system that, for any T≥ 0 and
any T-periodic control uT, entrains to a unique T-periodic solution γT. Note that, in particular, this
implies that for any constant control u(t)≡ u0 the trajectory converges to a unique equilibrium γ0 for
any initial condition. Suppose also that the system admits a scalar output y(t) = h(t, x(t), u(t)) (i.e. a
function of time, state and the input), and that h is T-periodic in t, so that the output also entrains.
The output represents a quantity that we would like to maximize, e.g. traffic flow or protein
production rate.

Since the system entrains, we ignore the transients and consider the problem of maximizing the
average of the periodic output, that is, the average over a period of h(t, γT, uT). The gain of
entrainment is the benefit (if any) in the maximization for a (non-trivial) periodic control over a
constant control. A natural example is to analyse the gain in traffic flow for periodically varying traffic
signals over constant signals. However, to make this meaningful, we must add another assumption,
namely, that the total time of green lights in both alternatives is equal. Mathematically, this means that
we compare the average output for a time-periodic control uT and a constant control �u such that the
average value of uT over a period is equal to �u. If the gain of entrainment is positive, then
entrainment does not only assist in producing an internal clock that can follow an external periodic
excitation but also yields higher production rates than those obtained by equivalent constant excitations.

The possible advantages of periodic forcing of various production processes are well known. For
example, [37] states that: ‘…theoretical and experimental studies have shown that the performance
(for instance micro-algae or bio-gas production) of some optimal steady-state continuous bioreactors
can be improved by a periodic modulation of an input such as dilution rate or air flow’. Reference
[38] studies a partial differential equation (PDE) model for harvesting a biological resource and
demonstrates the advantages of periodic harvesting over a constant one.

The gain of entrainment was recently introduced in [24]. Entrainment in nonlinear systems is non-
trivial to prove. A typical proof is based on contraction theory [6,7], yet this type of proof provides no
information on the attractive periodic solution, except for its period (see [39] for some related
considerations). Nevertheless, we show here that determining the gain of entrainment can be cast as
an optimal control problem. This allows using powerful theoretical tools, like Pontryagin’s maximum
principle [40–42], as well as numerical methods in studying the gain of entrainment. We demonstrate
this by analysing the gain of entrainment in several examples of occupancy models.

For instance, consider the gain of entrainment for (1.5). It is natural to speculate that using time-
periodic rates λi(t), which are properly synchronized, yields a positive gain of entrainment with
respect to using constant rates (with the same average values). In the context of traffic flow, this is
equivalent to the conjecture that properly synchronized periodic traffic lights can improve the overall
flow. However, we show that, perhaps surprisingly, for a subclass of these systems, the gain of
entrainment is in fact zero.

We also consider a problem formalism that allows for time-varying costs of resources, like tRNAs,
along the period. These may be produced at different unit costs at different times of the cycle. This
modified formulation allows the allocation of resources differently at different times along the cycle.
Also, instead of average throughput, a weighted average of the product may be more relevant, in the
sense that we may need certain enzymes at different times of the day or at different points in the cell
cycle. This corresponds to ‘just-in-time production’ [43]. In such cases, we show, not so surprisingly,
that time-varying periodic inputs may indeed offer an advantage over constant inputs. This suggests
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that the presence of non-constant periodic signals, which frequently appear in biological occupancy
systems, implies that the system is optimizing an underlying time-varying objective functional.

Our work is related to results from the field of optimal periodic control (OPC) (e.g. [44]). As noted by
Gilbert [45], OPC was motivated by the following question: does time-dependent periodic control yield
better process performance than optimal steady-state control? In particular, the recent paper [46] defines
a notion called over-yielding that is closely related to the gain of entrainment. However, our setting is
different, as in OPC periodicity was enforced by restricting attention to controls u guaranteeing that
x(T ) = x(0). This implies in particular that the initial value x(0) (and thus also general transient
behaviours) may have a strong effect on the results. Also, in the typical OPC formulation, there is in
general no requirement that the averages of the periodic and constant controls are equal.

We study systems that entrain, and thus for a T-periodic control, the state of the system converges to a
unique T-periodic trajectory for any initial condition x(0). In other words, we consider the behaviour of
attractors.

The remainder of this article is organized as follows. The next section defines the gain of
entrainment for a general mathematical model. Section 3 shows how the analysis can be cast as
an optimal control problem. Section 4 demonstrates the theory for the two-input bottleneck
module. Section 5 proves that for several GOMs, including the ones depicted in figure 1, the gain of
entrainment is zero. Finally, conclusions and future directions are presented in §6. Appendix A
contains proofs of the results including a detailed analysis characterizing extremals via the Pontryagin
maximum principle (PMP).
0878
2. Gain of entrainment
We consider a general nonlinear control system

_x ¼ f ðx, uÞ
and y ¼ hðt, x, uÞ,

)
ð2:1Þ

with f, h locally Lipschitz functions, state xðtÞ [ Rn, control (or input) uðtÞ [ Rm, and scalar output
yðtÞ [ R. We allow h to be time varying to include the cases in which different weights can be used at
different times in the cycle. The set of admissible controls consists of measurable functions taking
values in some compact set U , Rm. Let x(t, p, u) denote the solution of (2.1) at time t≥ 0 for the
initial condition x(0) = p and the control u. We assume throughout that for any x(0) in the state space
and any admissible control, (2.1) admits a unique solution for all t≥ 0.

We say that system (2.1) entrains if in response to any admissible and T-periodic control uT(t) the
system admits a unique T-periodic solution γT(t) (that depends on uT), and for any initial condition p,
the solution x(t, p, uT) converges to γT. This implies in particular that the system ‘forgets’ its initial
condition.

To explain the mathematical formulation of the gain of entrainment, fix q [ Rm with qi > 0 for all i. We
would like to consider only inputs whose average over a period is q and compare their effect to the effect
of the constant control u(t)≡ q. However, we allow a slightly more general scenario by fixing a weighting
function α(t) > 0 such that 1

T

Ð T
0 aðtÞ dt ¼ 1. We then restrict attention to T-periodic controls satisfying the

weighted integral constraint

1
T

ðT
0
aðtÞuðtÞ dt ¼ q, ð2:2Þ

that is, the α-weighted average of u is q. This can be further generalized by allowing a general measure μ
on the interval [0, T ] and imposing

Ð
½0,T� uðtÞdm ¼ q. However, we keep the presentation simple by

adhering to (2.2).
Let

zðuÞ :¼ 1
T

ðT
0
hðt, gTðtÞ, uðtÞÞ dt, ð2:3Þ

that is, the average value of the output along the globally attractive T-periodic solution (recall that we
assume that h is T-periodic in its first variable). If the convergence to γT is relatively fast, then after a
short transient the average output over a period of length T is very close to z(u). In applications in
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fields like biotechnology and traffic control, the average value of the output, and not its specific values at
all times, is often the relevant quantity.

The constant control u(t)≡ q, which we simply denote by q, is also T-periodic (for any T≥ 0) and
satisfies (2.2). Hence, the corresponding solution converges to a fixed point e = e(q) and

zðqÞ ¼ 1
T

ðT
0
hðt, e, qÞ dt

¼ hðe, qÞ:

The gain of entrainment of (2.1) is defined as follows:

cTðqÞ :¼ sup
u

zðuÞ � zðqÞ, ð2:4Þ

where the sup is over all admissible, T-periodic controls that satisfy the constraint (2.2). Thus, we are
always comparing the effect of controls with the same average value. Note that cT(q)≥ 0 for all q. If
cT(q) > 0 for some q, then there exists a non-trivial periodic control that yields a higher average output
than that obtained for a constant control. If cT(q) = 0, then non-trivial T-periodic controls are ‘no better’
than the simple constant control equal to q.

To gain a wider perspective, consider the case of a SISO asymptotically stable linear time-invariant
(LTI) system with input [output] u(t) [y(t)] and transfer function G(s). Fix T > 0, and consider the T-
periodic control

uTðtÞ :¼ aþ b sin
2pt
T

� �
,

with a, b [ R. Note that 1
T

Ð T
0 uTðtÞ dt ¼ a. Let ω := 2π/T. It is well known that the output converges

to the T-periodic function yTðtÞ :¼ Gð0Þaþ jGðjvÞjb sinðvtþ/GðjvÞÞ, where j :¼ ffiffiffiffiffiffiffi�1
p

, so
ð1=TÞ Ð T0 yTðtÞdt ¼ Gð0Þa. On the other hand, for the constant control u(t)≡ a, the output converges to
G(0)a, which is the same value. Thus, for this input, the gain of entrainment is zero. Any T-periodic,
measurable, and bounded input can be expressed as a Fourier series in terms of sinusoidal functions,
and this implies that for LTI systems, the gain of entrainment is always zero.

However, for nonlinear system, the gain of entrainment may be positive. The next two examples
demonstrate this.

Example 2.1. Consider the scalar system:

_xðtÞ ¼ 1� xðtÞuðtÞ
and yðtÞ ¼ xðtÞ:

)
ð2:5Þ

Fix T > 0. For a function v :Rþ ! Rþ, let v :¼ ð1=TÞ Ð T0 vðsÞ ds. Fix q > 0. For the control u(t)≡ q any
solution of (2.5) converges to the equilibrium q−1. Consider a T-periodic and positive control uT(t)
satisfying �uT ¼ q, and assume there exists some α > 0 such that uT(t)≥ α for almost all t∈ [0, T ]. Then
any matrix measure of the Jacobian of (2.5) is uniformly less than or equal to −α < 0. Therefore, the
system is contractive and any solution of (2.5) converges to a unique T-periodic solution xT(t).

Let ω := 2π/T. Consider now the specific T-periodic control

uTðtÞ :¼ 1þ 1
2

� �
cosðvtÞ: ð2:6Þ

Here, q ¼ 1
T

Ð T
0 uTðtÞ dt ¼ 1. For this input, the corresponding solution of (2.5) is

xðtÞ ¼ exp �t� sinðvtÞ
2v

� �
ðxð0Þ þ fðtÞÞ,

where fðtÞ :¼ Ð t0 expðsþ ðsinðvsÞ=2vÞÞ ds. In particular,

xðTÞ ¼ expð�TÞðxð0Þ þ fðTÞÞ:

The initial condition x(0) = c for which the solution is T-periodic is

c ¼ expð�TÞðcþ fðTÞÞ,
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Figure 2. Average value of xT(t)− 1 in example 2.1 as a function of ω∈ [0.5, 5].
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so

c ¼ expð�TÞfðTÞ
1� expð�TÞ : ð2:7Þ

Thus, the attractive periodic solution is xT(t) := exp (− t− (sin (ωt)/2ω))(c + ϕ(t)). The average of the
control uT(t) is q = 1. On the other hand, for the control u0(t)≡ 1, the solution of (2.5) converges to the
steady-state 1. Figure 2 depicts the value

1
T

ðT
0
xTðtÞ dt� 1,

as a function of ω = 2π/T. It may be seen that this is always positive and is maximal as T→∞.

We conclude that for q = 1 the gain of entrainment of (2.5) is positive for any T > 0. Note that for large

values of ω, the gain of entrainment goes to zero. This is expected due to averaging [47]. Roughly
speaking, for large values of ω, the system cannot track the fast changes in the input and thus
responds to the average of the input. More rigorously, for a system affine in the control, the map from
controls on an interval [0, T ] to trajectories on [0, T ] is continuous with respect to the weak� topology
in L1 and the uniform topology on continuous functions, respectively (e.g. [48, theorem 1]), and for a
periodic input u(t), the input u(ωt) converges weakly to the average of u. An alternative proof is given
for example in the textbook [47] (Section 10.2) (changing time scale in the statement of theorem 10.4,
by x(t) = x(t/ε)).

Example 2.2. Consider the system

_x1ðtÞ ¼ �x1ðtÞ þ uðtÞ,
_x2ðtÞ ¼ �x2ðtÞ þ ax21ðtÞ

and yðtÞ ¼ x2ðtÞ,

9>>=
>>; ð2:8Þ

with a > 0.
Consider the input uT(t) := 1 + sin (ωt), with ω > 0. Here, q ¼ �uT ¼ 1. Let T := 2π/ω, and let H(s) := 1/

(1 + s). Then, x1 converges to the steady-state solution

x1TðtÞ :¼ 1þ jHðjvÞj sinðvtþ/HðjvÞÞ:

Hence,

x21TðtÞ ¼ 1þ 2jHðjvÞj sinðvtþ/HðjvÞÞ þ jHðjvÞj2 sin2ðvtþ/HðjvÞÞ

¼ 1þ jHðjvÞj2
2

þ 2jHðjvÞj sinðvtþ/HðjvÞÞ � jHðjvÞj2
2

cosð2vtþ 2/HðjvÞÞ:
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It follows that x2 converges to the steady-state solution

x2TðtÞ : ¼a 1þ jHðjvÞj2
2

þ 2jHðjvÞj2 sinðvtþ 2/HðjvÞÞ
 

� jHðjvÞj2
2

jHð2vÞj cosð2vtþ 2/HðjwÞ þ/Hð2jvÞÞ
!
,

so

�x2T ¼ 1
T

ðT
0
x2TðtÞ dt ¼ a 1þ jHðjvÞj2

2

 !
:

On the other hand, for the average input �uT ¼ 1, x1(t) converges to one, and x2(t) to a, so the average of
the output is a. The difference between the two averaged outputs is thus

a
2
jHðjvÞj2 ¼ a

2ð1þ v2Þ :

This is maximized for ω = 0, so the gain of entrainment is at least cT(1) = a/2. Observe that examples with
arbitrarily large gain of entrainment can be obtained by taking the constant a in (2.8) large enough.

In the next section, we cast the problem of determining the gain of entrainment as an optimal control
problem.
8

3. Optimal control formulation
Consider the control system (2.1) with n state variables and m inputs. We assume that the system
entrains. Pick any T > 0 and any q [ Rm. We restrict attention to T-periodic controls satisfying the
individual weighted average constraints

1
T

ðT
0
Jðt, uðtÞÞ dt ¼ q, ð3:1Þ

where J : ½0, T� � Rm
þ ! Rm

þ is an integrable vector positive function that satisfies 1
T

Ð T
0 Jðt, qÞ dt ¼ q.

The n-dimensional control system with the integral constraint on the controls (3.1) can be lifted to an
(n +m)-dimensional nonlinear control system by adding m-equations to (2.1):

_~x ¼ _x
_j

� �
¼ f ðx, uÞ

Jðt, uÞ
� �

¼ Fðt, ~x, uÞ, ð3:2Þ

where ~x :¼ ½xT jT �T . We impose the boundary conditions

xð0Þ ¼ xðTÞ, jð0Þ ¼ 0, jðTÞ ¼ Tq: ð3:3Þ
Since we consider systems that entrain, for any T-periodic control, there corresponds a unique GAS T-
periodic solution γT(t). The condition x(0) = x(T ) guarantees that the maximization is performed over
this solution. The other two conditions are equivalent to (3.1).

To make the problem well posed, we will assume that controls take values in a hypercube [ℓ, L]m,
where 0 < ℓ < L. We then formulate an optimal control problem as follows:

Problem 3.1. Fix values 0 < ℓ < q < L. Find an admissible control u that maximizes the objective
functional

JðuÞ : ¼ 1
T

ðT
0
hðt, xðtÞ, uðtÞÞdt,

subject to the ODE (3.2), the constraint (3.1), uj(t)∈ [ℓ, L], j = 1,…, m, t∈ [0, T ], and the boundary
conditions (3.3).

Note that J(u) is the average value of the output along the globally attractive T-periodic solution
(recall that we assume that h is T-periodic in its first variable).

In what follows, we always consider systems affine in the control. Then, the fact that [ℓ, L]m is
compact and convex implies, by Filippov’s theorem (e.g. [49]), that the reachable set at any time t≥ 0
is compact. Since h is locally Lipschitz, an optimal control exists.
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The optimal control formulation allows to apply powerful theoretical tools for solving optimal control
problems as well as use software packages for numerical solutions (e.g. [50,51]). In the next section, we
demonstrate how to determine the gain of entrainment using this formulation for both time-invariant
and time-varying cost functions.

Remark 3.2. The control signals can be assumed to belong to different intervals. In other words, we
can have uj(t)∈ [ℓj, Lj], j ¼ 1, . . ., m:Nevertheless, we have simplified the aforementioned formulation by
re-scaling the controls, so that they all satisfy the same bounds.

The following result is immediate:

Theorem 3.3. A control u is a solution of problem 3.1 iff it maximizes cT(u) = zT(u)− q as defined in (2.4).

In other words, the problem of choosing the best periodic input signal has been transformed into
a standard optimal control problem. Hence, to find how much improvement we get with periodic
inputs, i.e. the gain of entrainment, we must find a control u that solves problem 3.1 and then
compute J(u)− q.
c.Open
Sci.8:210878
3.1. Pontryagin’s maximum principle
Problem 3.1 can be studied in the framework of the PMP [40–42]. The Hamiltonian associated with our
problem is

Hðt, u, ~x, p, p0Þ : ¼ pTðtÞFðt, ~x, uÞ þ p0
T

hðt, x, uÞ, ð3:4Þ

where pðtÞ [ Rnþm is the co-state, and the abnormal multiplier p0≥ 0 is a constant.

Proposition 3.4 (PMP). Let u�ðtÞ [ Rm, t � 0 be an optimal control for problem 3.1, and let
~x� : ½0, T� ! Rnþm be the corresponding optimal trajectory. There exist p�0 � 0 and p� : ½0, T� ! Rnþm n f0g,
such that:

1. The optimal state ~x�ðtÞ and corresponding adjoint p�(t) satisfy:

_~x
� ¼ @H

@p
ðt, u�, ~x�, p�, p�0Þ

and _p� ¼ � @H
@~x

ðt, u�, ~x�, p�, p�0Þ:

9>>=
>>; ð3:5Þ

2. The control u�(t) satisfies

Hðt, s, ~x�ðtÞ, p�ðtÞ, p�0Þ � Hðt, u�ðtÞ, ~x�ðtÞ, p�ðtÞ, p�0Þ ð3:6Þ

for all s∈ [ℓ, L]m and almost every (a.e.) t∈ [0, T ] .
3. The adjoint satisfies the transversality condition

p�i ð0Þ ¼ p�i ðTÞ, i ¼ 1, . . . , n: ð3:7Þ

4. Hðt, u�ðtÞ, ~x�ðtÞ, p�ðtÞ, p�0Þ ¼ 0 for all t∈ [0, T ].

The proof is given in appendix A. Use of the PMP to deduce the structure of the optimal control is a
difficult problem in general. We will show in the next section how it can be used in certain cases.

A trajectory X :¼ ðuðtÞ, ~xðtÞ, pðtÞÞ is said to be feasible if it satisfies the ODEs (3.5) and the boundary
conditions (3.3) and (3.7). A feasible trajectory X is an extremal trajectory if it satisfies the PMP, i.e. if it also
satisfies proposition 3.4. Observe that any optimal trajectory must be an extremal by proposition 3.4.
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4. Occupancy models with controlled inflow and outflow
In this section, we look more closely at the n-dimensional occupancy model of the form

_x1
_x2
..
.

_xn�1
_xn

2
666664

3
777775 ¼

u0ðtÞð1� x1Þ � l1x1ð1� x2Þ
l1x1ð1� x2Þ � l2x2ð1� x3Þ

..

.

ln�2xn�2ð1� xn�1Þ � ln�1xn�1ð1� xnÞ
ln�1xn�1ð1� xnÞ � u1ðtÞxn

2
666664

3
777775: ð4:1Þ

This is an n-dimensional RFM with initiation and exit rates that are non-negative control inputs. Suppose
that both u0(t), u1(t) are periodic with period T≥ 0. It was proved in [6] that the RFM with T-periodic
rates entrains, so in particular, (4.1) admits a unique solution γT(t), with γT(0) = γT(T ), and x→ γT for
any initial condition x(0)∈ [0, 1]n.

To study the cost of entrainment in this system, fix 0 < ℓ < L. We will assume that the rates u0(t), u1(t)
are two measurable and essentially locally bounded functions taking values in the interval [ℓ, L].

To allow a ‘fair’ comparison between T-periodic controls and constant controls, fix two values
�u0, �u1 [ ð‘, LÞ and pose integral constraints on the controls

1
T

ðT
0
a0ðtÞu0ðtÞdt ¼ �u0 and

1
T

ðT
0
a1ðtÞu1ðtÞdt ¼ �u1, ð4:2Þ

for some given positive measurable functions α0(t), α1(t) satisfying

1
T

ðT
0
a0ðtÞ dt ¼ 1

T

ðT
0
a1ðtÞ dt ¼ 1:

We now use theorem 3.3 to formulate an optimal control problem that allows finding the gain of
entrainment. Introduce the two-dimensional state ξ := [xn+1 xn+2]

T and let u := [u0 u1]
T. Then, the

extended system is an (n + 2)-dimensional nonlinear control system

_x : ¼

_x1
_x2
..
.

_xn
_xnþ1
_xnþ2

2
66666664

3
77777775
¼ f ðxÞ þ gðxÞuðtÞ, ð4:3Þ

where

f ðxÞ : ¼

�l1x1ð1� x2Þ
l1x1ð1� x2Þ � l2x2ð1� x3Þ

..

.

ln�1xn�1ð1� xnÞ
0
0

2
66666664

3
77777775

and gðxÞ : ¼

1� x1 0
0 0
..
.

0 �xn
a0ðtÞ 0
0 a1ðtÞ

2
66666664

3
77777775
, ð4:4Þ

and the boundary conditions are as follows:

xiðTÞ ¼ xið0Þ, i ¼ 1, . . . , n, xnþ1ð0Þ ¼ 0, xnþ1ðTÞ ¼ T�u0, xnþ2ð0Þ ¼ 0, xnþ2ðTÞ ¼ T�u1: ð4:5Þ

The following is the optimal control problem.

Problem 4.1. Find u0, u1 : [0, T ]→ [ℓ, L] that maximize the cost functional

Jðu0, u1Þ :¼ 1
T

ðT
0
bðtÞu1ðtÞxnðtÞ dt, ð4:6Þ

subject to the ODE (4.3), integral constraints (4.2) and the boundary conditions (4.5), where b : ½0, T� ! R

is a given non-negative measurable function.

In general, this seems to be a non-trivial problem. Nevertheless, this formulation allows the use of
both theoretical and numerical optimal control tools, and we will provide exact results in special cases.
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4.1. Application of the Pontryagin maximum principle
As in the previous section, we can write the Hamiltonian (3.4). In this case,

Hðu, x, p, p0Þ :¼ pTðtÞ(f ðxðtÞÞ þ gðxðtÞÞuðtÞ)þ p0
T

bðtÞu1ðtÞxnðtÞ, ð4:7Þ

which can be written as follows:

H ¼ w0ðtÞu0ðtÞ þ w1ðtÞu1ðtÞ, ð4:8Þ
where

w0ðtÞ :¼ p1ðtÞð1� x1ðtÞÞ þ a0ðtÞpnþ1ðtÞ

and w1ðtÞ :¼ xnðtÞ p0
T

bðtÞ � pnðtÞ
� �

þ a1ðtÞpnþ2ðtÞ,

9=
; ð4:9Þ

are called the switching functions. These functions play a central role in the determination of the structure
of the extremal solutions of the optimal control problem. In particular, the analysis based on the PMP is
separated to two cases: first, the case when the switching functions are non-zero. In this case, each
subtrajectory of an extremal trajectory is called a regular arc. Second, the switching functions are
‘identically’ zero in a sense that will be precisely defined. In such case, a subtrajectory of an extremal
trajectory is called a singular arc.

If the Hamiltonian is linear in the control inputs, as in (4.7), then the regular arcs take a very simple
form. The control inputs assume either the minimum or maximum values that are allowed for them. Such
controllers are known as bang-bang controllers. This is a well-known result in optimal control. We state it
for the sake of completeness, and the proof is provided in the appendix A.

Before stating the result, we need to define regular arcs rigorously. Let X be a feasible trajectory.
Define the open set:

Er :¼ ft [ ½0, T� jw0ðtÞw1ðtÞ = 0g:
A regular arc is a restriction XjV for some open subset V, Er. The next result analyses regular arcs.

Lemma 4.2. Let X be an extremal trajectory. Then for any t∈ Er and i∈ {0, 1}, we have

u�i ðtÞ ¼
L, if wiðtÞ . 0,
‘, if wiðtÞ , 0:

	

This means that at any time t where wi(t)≠ 0, the corresponding u�i ðtÞ is a bang-bang control, i.e. it
takes an extremal value.

Therefore, unless either of the switching functions vanish on a non-zero measure set, the optimal
control is bang-bang, meaning that it has values in {ℓ, L}2 for almost all t.

The next section considers the unweighted problem 4.1 and shows that a singular arc satisfies the
PMP on [0, T ]. Furthermore, for the one-dimensional problem, any extremal trajectory cannot contain
any regular arcs. In other words, it must be fully singular.

4.2. The unweighted optimal control problem
In this section, we consider the unweighted version of problem 4.1, that is, the case where α0(t) = α1(t) =
β(t)≡ 1 for all t∈ [0, T ].

4.2.1. Constant controls satisfy the Pontryagin maximum principle

We first show that constant controls satisfy the necessary conditions for optimality. Note that this does
not guarantee that such solutions are optimal.

Theorem 4.3. Consider the unweighted problem 4.1. The constant controls u0ðtÞ ; �u0, u1ðtÞ ; �u1 satisfy
proposition 3.4 (the PMP) with the corresponding switching functions identically zero, i.e. a fully singular
trajectory is extremal.

Proof. Let z := [ p1… pn]
T, i.e. the first n entries of the adjoint state. Equation (3.5) yields

_z ¼ �JTðx, uÞz� bu1, ð4:10Þ
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where J is the Jacobian of the RFM (4.1) with respect to x, and b := [0… 0 p0/T ]T. Also,
_pnþ1ðtÞ ¼ _pnþ2ðtÞ ; 0.
It has been shown in [29] that the RFM with constant rates admits a unique GAS steady state in (0, 1)n.

Hence, every solution of (4.1) with u0ðtÞ ; �u0, u1ðtÞ ; �u1, converges to a point
�x ¼ ½�x1 �x2 . . . �xn�T [ ð0, 1Þn. It was shown in [6] that if M is any compact subset of (0, 1)n, then there
exists a matrix measure m :Rn�n ! R such that μ(J(x, u)) < 0 for all x∈M, u≥ 0. This implies in
particular that all the eigenvalues of J(x, u) have a negative real part [52], so J(x, u) is non-singular for
each x∈ (0, 1)n, u≥ 0. Hence, so is JTð�x, �uÞ. Let �z :¼ �ðJTð�x, �uÞÞ�1b�u1, and let �u :¼ ½�u0 �u1�T . We now
show that for

uðtÞ ; �u, xðtÞ ; �x, p0 ¼ T, pðtÞ ; �z ��p1ð1� �x1Þ=�u0 ��xnð1� �pnÞ=�u1

 �T ,

all the conditions in the PMP hold. First note that the boundary conditions (4.5) all hold. Equation (4.10)
holds by the definition of �p. The switching functions (4.9) satisfy w0(t)≡ w1(t)≡ 0. Equation (4.8) implies
that H ; 0 and that (3.6) trivially holds. ▪

We have shown that constant controls satisfy the necessary conditions of the PMP. In other words,
constant controls are always extremal solutions.

In the following section, we show that for n= 1, constant controls are the only controls that satisfy the PMP.

4.2.2. Extremal analysis of the one-dimensional unweighted problem

In this section, we study the following system:

_x1ðtÞ ¼ u0ðtÞð1� x1ðtÞÞ � u1ðtÞx1ðtÞ,
_x2ðtÞ ¼ u0ðtÞ

and _x3ðtÞ ¼ u1ðtÞ:

9>=
>; ð4:11Þ

The controls u0 [u1] represent time-varying initiation [exit] rates in an RFM with n = 1. Even though the
PMP provides a general approach for addressing optimal control problems, it seldom leads to a full
characterization of extremal solutions, especially in the case of multiple inputs. We will show that this
is possible for the system (4.11): a detailed analysis using the PMP shows that any extremal trajectory
corresponds to a constant x1(t). Since each control input takes values in a compact and convex set, the
optimal control problem always has a solution. Thus, there is no gain of entrainment. This shows that
the PMP is a viable approach for handling such problems and lays the ground for future
generalization to higher dimensional cases.

Theorem 4.4. Let X be an extremal trajectory for problem 4.1 with the system (4.11). Then

x�1ðtÞ ;
�u0

�u0 þ �u1
¼ 1

1þ ð�u1=�u0Þ for all t [ ½0, T�: ð4:12Þ

The proof is given in appendix A.
The PMP immediately yields the following result, which implies that periodic inputs do not confer

any advantage over constant counterparts, and hence, the presence of periodic signals in an
occupancy system cannot be a result of optimizing the unweighted throughput of the system.

Theorem 4.5. Fix 0 < ℓ < L, and let the admissible controls u0, u1 take values in [ℓ, L], with given averages
�u0, �u1 [ ð‘, LÞ, the optimal objective for problem 4.1 and system (4.11) is

J� ¼ �u0
�u0 þ �u1

: ð4:13Þ

The optimal trajectory is x�1ðtÞ ; �u0=ð�u0 þ �u1Þ, a constant, and it can be achieved by the constant inputs:

u�0ðtÞ ; �u0, u�1ðtÞ ; �u1: ð4:14Þ

Remark 4.6. The control inputs u0(t), u1(t) that achieve the optimal cost are not unique. Indeed, it is
clear that the optimal solution in (4.12) depends only on the ratio �u1=�u0. For instance,
u��0 ðtÞ ; �u0rðtÞ, u��1 ðtÞ ; �u1rðtÞ is also an optimal solution for any function ρ such that �u0rðtÞ , ½‘, L�
and �u1rðtÞ , ½‘, L� for all t∈ [0, T ].

Remark 4.7. Theorem 4.5 can be also proven via a more direct approach, motivated by an idea from
[53]. This alternative proof is given in appendix A.
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Remark 4.8. In the more specialized case of a single controller u0(t), that is, with u1 fixed, techniques
similar to the ones used in [46] can be used to generalize theorem 4.5 to scalar systems of the form
_x ¼ u0ðtÞgðxÞ � f ðxÞ for any two C1 functions f , g : ½0, 1� ! R�0 that satisfy: f (0) = 0, g(1) = 0, f, g
positive over (0, 1), and f(x)/g(x) is convex.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210878
4.2.3. The unweighted problem for the ribosome flow model with n = 2 and a single input

We now study problem 4.1 for an RFM with dimension n = 2 and a single control u0(t) as the initiation
rate, i.e.

_x1 ¼ u0ð1� x1Þ � l1x1ð1� x2Þ,
_x2 ¼ l1ð1� x2Þx1 � l2x2

and _x3 ¼ u0ðtÞ,

9>=
>; ð4:15Þ

subject to the boundary conditions (4.5). Here, our goal is to maximize the average value of the output
rate λ2x2.

More formally, we aim at solving the following problem:

Problem 4.9. Let ℓ, �u0, L be given such that 0 , ‘ , �u0 , L. Find u0 : [0, T ]→ [ℓ, L] that maximizes
the cost functional Jðu0Þ :¼ 1

T

Ð T
0 l2x2ðtÞ dt, that is, the average production rate subject to the ODE (4.15),

integral constraint 1
T

Ð T
0 u0ðtÞ ¼ �u0, and the boundary conditions x1(0) = x1(T ), x2(0) = x2(T ).

The next result shows that here as well a constant control is optimal, that is, there is no gain of
entrainment.

Theorem 4.10. Fix 0 < ℓ < L and �u0 [ ð‘, LÞ, the objective function for problem 4.9 with the system (4.15) is
maximized by the constant control u�0ðtÞ ; �u0.

Proof. The first equation in (4.15) is the first equation (4.11) for u1(t) = λ1(1− x2), so �u1 ¼ l1ð1� �x2Þ,
and the output rate is λ1(1− x2)x1. (Note that here x2 is the second state-variable in (4.15), and not the
integral of u0 as in (4.11)). By theorem 4.5, we have l1u1x1 � ðl1�u1�u0Þ=ð�u0 þ l1�u1Þ. Hence,

l1u1x1 ¼ l1ð1� x2Þx1 � l1�u1�u0
�u0 þ l1�u1

¼ l1ð1� �x2Þ�u0
�u0 þ l1ð1� �x2Þ : ð4:16Þ

Integrating (4.15), we get

0 ¼ x2ðTÞ � x2ð0Þ ¼
ðT
0
_x2ðtÞdt ¼ l1

ðT
0
ð1� x2ðtÞÞx1ðtÞ dt�

ðT
0
l2x2ðtÞ dt:

Hence, l1ð1� x2Þx1 ¼ l2�x2. Substituting in (4.16), we get

l2�x2 � l1�u0ð1� �x2Þ
l1ð1� �x2Þ þ �u0

: ð4:17Þ

The left-hand side here is the quantity that we are trying to maximize. Rearranging gives:

fð�x2Þ � 0, ð4:18Þ
where fðsÞ :¼ s2 � ð1þ �u0ð1=l1 þ ð1=l2ÞÞÞsþ ð�u0=l2Þ. Let p, q denote the roots of f(s). Then,
f (s) = (s− p)(s− q) gives

1þ �u0
1
l1

þ 1
l2

� �
¼ pþ q

and
�u0
l2

¼ pq:

9>>>=
>>>;

ð4:19Þ

Recall that the RFM (4.15) with the constant control u0ðtÞ ; �u0 admits a unique steady state �e [ ð0, 1Þ2
[29]. It is straightforward to show that fð�e2Þ ¼ 0. We may assume that p ¼ �e2, so p∈ (0, 1). Then, (4.19)
implies that q is real and q > 1. The quadratic inequality (4.18) implies that either �x2 � p , 1 or
�x2 � q . 1. Since x2(t)∈ [0, 1] for all t, the second inequality can be ignored, and we have that the
maximal (feasible) value of �x2 is �x�2 ¼ p ¼ e2. Obviously, this is attained for the constant control
u0ðtÞ ; �u0. ▪
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4.3. Gain of entrainment with time-varying weight functions
Analysing the case with time-varying weights is challenging, but it is highly relevant to applications
since resources may be allocated differently during the period. In this section, we show that, even for
the above examples, once the weighting functions become time varying, constant inputs may no
longer be optimal.

We consider the special case of (4.3) with n = 1 and a single input u0(t) as the initiation rate, i.e.

_x1ðtÞ ¼ u0ðtÞð1� x1ðtÞÞ � l1x1ðtÞ
and _x2ðtÞ ¼ u0ðtÞ:

)
ð4:20Þ

Our goal now is to maximize Jðu0Þ :¼ ðl1=TÞ
Ð T
0 bðtÞx1ðtÞ dt, subject to the boundary conditions (4.5), and

where the weight function β is differentiable and satisfies β(t) > 0 for all t∈ [0, T ]. Without loss of
generality, we assume that T = 1.

Proposition 4.11. Suppose that u�0 is an optimal control. Then, for almost all t∈ [0, 1] we have that either
u�0ðtÞ [ f‘, Lg or

u�0ðtÞ ¼ c
ffiffiffiffiffiffiffiffiffi
bðtÞ

p
� l1 þ

_bðtÞ
2bðtÞ , ð4:21Þ

for some constant c. Furthermore, if u�0 satisfies (4.21) for all t∈ [0, 1], then

c ¼ �u0 þ l1 � 12 logðbð1Þ=bð0ÞÞÐ 1
0

ffiffiffiffiffiffiffiffiffi
bðtÞp

dt
: ð4:22Þ

Remark 4.12. Note that if �u0 [ ð‘, LÞ, then this implies that the constant control u0ðtÞ ; �u0 cannot be
optimal. If (4.21) does not hold for any t (e.g. when the right-hand side of (4.21) takes values that are not
in [ℓ, L]), then the optimal control is bang-bang.

As a specific example take

‘ ¼ 0:001, L ¼ 10, �u0 ¼ 2, l1 ¼ 1,

and the weight function

bðtÞ ¼ e�r(t�ðT=2Þ)2 ,

with ρ = 100 and T = 1. In the context of the RFM, this would represent the case where it is required to
highly express a specific protein near the middle of every cycle, rather than having a uniform level of
production along the entire period.

The constant input u0(t)≡ 2 yields a steady-state trajectory x(t)≡ 2/3. The corresponding value of the
objective function is expressed as follows:

Jðu0Þ ¼ 2
3

ð1
0
bðtÞ dt ¼ 0:118164: ð4:23Þ

Our optimal control formulation can be used to solve the problem numerically using optimal control
packages like shown in [50]. The result is a three-arc bang-bang control

u�ðtÞ ¼
‘, t [ ½0, t1Þ,
L, t [ ½t1, t1 þ DÞ,
‘, t [ ½t1 þ D, 1�,

8<
:

where D :¼ ð�u0 � ‘Þ=ðL� ‘Þ ¼ 0:19992 and t1 = 0.27335. The corresponding periodic solution satisfies
x(1) = x(0) = 0.50251. This achieves a cost J(u�) = 0.141183, which is roughly 20% better than (4.23).

Figure 3 depicts the approximate optimal bang-bang control (computed using [50] and a bisection
procedure) and the resulting periodic solution x�1ðtÞ. The weight function β(t) is also shown. The
maximal value of β is achieved at t = 1/2. The optimal control switches to the maximal value L = 10
before the peak time of β. This makes sense as it guarantees that x�1ðtÞ will have large values when the
weighting of x�1ðtÞ in the cost function is large.



0.1 0.2 0.3 0.4 0.5
t

0.6 0.7 0.8 0.9 1.00

0.1
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0.4

0.5

0.6

0.7

0.8

0.9

1.0
optimal trajectory x*

1(t)

weighting function b(t)

Figure 3. The optimal trajectory for maximizing a weighted throughput is non-constant. The plot shows the weighting function β(t)
with the corresponding optimal periodic solution x�1 ðtÞ. The vertical dashed lines denote the switching points of the three-arc bang-
bang controller. Note that the high bang control is switched on when the value of the weight function becomes non-negligible.
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5. Gain of entrainment in generalized occupancy models
In this section, we consider general cascades like those in figure 1. Recall that under the conditions (1.4),
the n-dimensional RFM can be approximated by (1.5), which has the form in figure 1a. We consider here
this approximated system.
5.1. Unweighted objective functional
We first state the following result which is well known in the theory of linear time-invariant systems (see
also [24]). We include the proof for completeness.

Proposition 5.1. Consider a single-input-single-output linear system: _z ¼ Azþ bw, y = cTz, where z [ Rn,
and A is Hurwitz. Let w be a bounded measurable input which is T-periodic. Then, y converges to a steady-state
T-periodic solution yw, and ðT

0
ywðtÞ dt ¼ Hð0Þ

ðT
0
wðtÞ dt,

where H(s) : = cT(sI−A)−1b is the transfer function of the linear system.

Proof. Since w is measurable and bounded, w∈ L2 ([0, T ]). Hence, it can be written as a Fourier series
wðtÞ ¼ �wþPi ai sinðvitþ fiÞ. The output of the linear system converges to the steady-state periodic
solution

ywðtÞ ¼ Hð0Þ�wþ
X
i

jHðjviÞjai sinðvitþ fi þ/ðHðjviÞÞÞ:

Each sinusoid in the expansion has period T, so
Ð T
0 ywðtÞdt ¼ THð0Þ�w: ▪

Combining proposition 5.1 with our results on the gain of entrainment in certain bottleneck models
yields the following result.

Theorem 5.2. Consider the nonlinear system depicted in either figure 1a or figure 1b with A Metzler, and b,
c [ Rn

þ. Let u0(t), u1(t) be T-periodic non-negative control signals. For any 0 < ℓ < L and any �u0, �u1 [ ð‘, LÞ,
consider the functional

Jðu0, u1Þ :¼ 1
T

ðT
0
w2ðtÞ dt,



bottleneck module bottleneck module
x1 = u0(t) (1 – x1) – l1x1 (1 – x2)u0(t)

u1(t)

x2 = l1x1 (1 – x2) – l2x2
w1 = l2x2

z = Az + bw1
y = cTz

w1
w2y x3 = y(1 – x3) – u1(t)x3

w2 = u1(t)x3

Figure 4. A generalized occupancy model with a two-dimensional bottleneck entrance. The controls are the scalar functions u0(t), u1(t). We
have x1, x2, x3, w1, w2, y [ Rþ , z [ Rn, A [ Rn�n, b, c [ Rn

þ. The linear system block is assumed to be positive and Hurwitz.
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where w2(t) is the steady-state T-periodic output signal. Then, the constant controls

u�0ðtÞ ; �u0 and u�1ðtÞ ; �u1: ð5:1Þ
maximize J.

Proof. Consider the system depicted in figure 1a. Fix admissible T-periodic controls u0(t), u1(t).
Denote the corresponding steady-state average values of w1(t) and y(t) by �w1 and �y. Obviously,
�w2 ¼ �y. By proposition 5.1, �w2 ¼ Hð0Þ�w1, where H is the transfer function of the linear system. Since A
is Metzler and b, c [ Rn

þ, the trajectories of the linear system are positive. Thus, maximizing J is
equivalent to maximizing �w1. Theorem 4.5 implies that the constant controls u�0ðtÞ ; �u0 and u�1ðtÞ ; �u1
maximize �w1. The system in figure 1b can be treated similarly. ▪

Remark 5.3. The same result holds if the single-input modules in figure 1 are replaced by the single-
input RFM with n = 2 in (4.15) as shown in figure 4.
5.2. Weighted objective functional
We extend the results of §4.3 to the GOM in figure 1a. We show that constant rates are no longer optimal.
As before, let β be a differentiable and positive weight function defined over [0, T ].

Theorem 5.4. Consider the nonlinear system depicted in either figure 1a with A Metzler, and b, c [ Rn
þ. Let

u0(t) be a T-periodic non-negative control signal, and let u1(t) = β(t) be positive and differentiable over [0, T ]. For
any 0 < ℓ < L and any �u0 [ ð‘, LÞ, consider the functional Jðu0Þ : ¼ 1

T

Ð T
0 w2ðtÞdt, where w2(t) is the steady-state

T-periodic output signal. Suppose that u�0 is an optimal control. Then for almost all t∈ [0, 1], we have that either
u�0ðtÞ [ f‘, Lg or it satisfies (4.21) for some constant c. Furthermore, if u�0 satisfies (4.21) for all t∈ [0, 1], then c
can be computed by (4.22).

Proof. The proof follows immediately from theorem 4.11 and proposition 5.1. ▪
6. Discussion
Entrainment is an interesting and important property of dynamical systems. It allows systems to develop
an ‘internal clock’ that synchronizes to periodic excitations like the 24 h solar day. Such clocks are
important in biology, as they allow organisms to adequately respond to periodic processes like the
solar day and the cell cycle division process. They are also essential for synthetic biology, as a
common clock is an important ingredient in building synthetic biology circuits that include several
modules working in synchrony.

Here, we considered an additional qualitative property called the gain of entrainment. This measures
the advantage, if any, of using a periodic control vs. an ‘equivalent’ constant control for maximizing the
average throughput. We showed how this problem can be cast as an optimal control problem. This allows
using the sophisticated analytical and numerical tools developed for solving optimal control problems to
determine the gain of entrainment.

We have shown that, perhaps surprisingly, there is no gain of entrainment in a class of systems
relevant to biology and traffic applications. In other words, in these systems, non-constant periodic
controls are no better than constant controls. The optimality of constant controls fails to hold if we
allow time-varying objective functionals. This result is not particularly surprising and has been
recapitulated in other models [37], where it has been shown that that gain of entrainment is positive
when the system exhibits two phases such as day and night. Hence, this suggests the possibility that
the observation of non-constant periodic signals in biological systems is correlated with the
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maximization of the throughput with varying weights along each period or cycle. The other possibility is
that periodic signals are driven by processes external to the occupancy system. Distinguishing between
these two scenarios is a subject of future research.

Future work includes identifying general classes of systems where the gain of entrainment is positive
and trying to understand the structure of the optimal periodic controls. The literature on optimal fishing
[38] has revealed that optimal solutions are periodic when the fishermen are allowed to target fish in a
specific age group only. This may be interpreted as a kind of periodic constraint on the control. It may be
of interest to understand if such constraints also appear in the context of cellular systems.

Another interesting research direction is to generalize these results to models such as the nonlinear n
site RFM with (n + 1) time-periodic control inputs.
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Appendix A. Additional Proofs
A.1. Proof of proposition 3.4
Most of the statements here are the standard PMP. We only need to prove the transversality condition
(3.7).

Pick a set S # R2ðnþmÞ, and suppose that the state must satisfy the constraint xð0ÞTxðTÞT

 �T

[ S. Then,
the corresponding transversality condition [40] is given as follows:

pð0Þ
�pðTÞ
� �

?T xð0Þ
xðTÞ
� �S,

where T zS denotes the tangent space of S at z. In our case, (3.3) gives

S ¼ fz [ R2nþ2m j ½z1, . . . , zn�T ¼ ½znþmþ1, . . . , z2nþm�T ,
½znþ1, . . . , znþ2�T ¼ 0, ½z2nþmþ1, . . . , z2nþ2m�T ¼ Tqg:

Hence, TzS ¼ spanfv1, . . . , vng, where vi is the vector with one at entries i and (i + n +m), and zero
elsewhere. Therefore, it is necessary that p�i ð0Þ ¼ p�i ðTÞ, i ¼ 1, . . ., n.
A.2. Proof of lemma 4.2
We prove the result for i = 0. (The proof for i = 1 is very similar.) Suppose that w0(t) > 0 for some t∈ [0, T ].
Seeking a contradiction, suppose that u�0ðtÞ , L. Then,

Hðu�0ðtÞ, u�1ðtÞ, x�ðtÞ, p�ðtÞÞ ¼ w1ðtÞu�1ðtÞ þ w0ðtÞu�0ðtÞ
, w1ðtÞu�1ðtÞ þ w0ðtÞL
¼ HðL, u�1ðtÞ, x�ðtÞ, p�ðtÞÞ,

and this contradicts (3.6). Hence, u�0 is not optimal. The same argument can be applied when w0(t) < 0.
A.3. Proof of theorem 4.4
The proof, based on the analysis of extremals, is divided into a sequence of lemmas. For a set A , R, μ(A)
denotes its Lebesgue measure. The set of accumulation points of A is denoted by A0. For x [ R, {x} +
A := {x + a | a∈A}.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8
19

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 J

ul
y 

20
22

 

Recall that we consider (4.11) , so

H ¼ p1ðu0ð1� x1Þ � u1x1Þ þ p2u0 þ p3u1 þ p0
T
u1x1:

Lemma A.1. The adjoint variables p�i satisfy:

_p�1ðtÞ ¼ �ðu0ðtÞ þ u1ðtÞÞp�1ðtÞ � u1ðtÞ,
p�2ðtÞ ; p�2ð0Þ

and p�3ðtÞ ; p�3ð0Þ,

9=
; (A 1Þ

with the boundary condition p�1ð0Þ ¼ p�1ðTÞ.
Proof. We first show that we can take p�0 ¼ T. Assume that p�0 ¼ 0. Then (3.5) yields

_p�1 ¼ ðu�0ðtÞ þ u�1ðtÞÞp�1: Integrating over [0, T ], we get

log jp�1ðTÞj � log jp�1ð0Þj ¼
ðT
0
ðu�0ðtÞ þ u�1ðtÞÞ dt ¼ Tð�u0 þ �u1Þ:

By the transversality condition, we know that p�1ð0Þ ¼ p�1ðTÞ, which implies that �u0 þ �u1 ¼ 0. This is a
contradiction, so we conclude that p�0 . 0, and by scaling the objective function we may take p�0 ¼ T.
Now (A1) follows from calculating the partial derivatives in (3.5). ▪
:210878
A.3.1. Analysis of the switching functions

Using lemma A.1, the switching functions in our case are as follows:

w0ðtÞ ¼ p1ðtÞð1� x1ðtÞÞ þ p2ð0Þ (A 2Þ
and

w1ðtÞ ¼ x1ðtÞð1� p1ðtÞÞ þ p3ð0Þ: (A 3Þ

Given an extremal trajectory X, let

Ei
þ :¼ ft [ ½0, T� jwiðtÞ . 0g,

Ei
� :¼ ft [ ½0, T� jwiðtÞ , 0g,

Ei
0 :¼ ft [ ½0, T� jwiðtÞ ¼ 0g,

where i = 0, 1. Note that Ei
þ, E

i
�, i = 0, 1, are open relative to [0, T ], and Ei

0, i ¼ 0, 1, are closed. In
particular, all these sets are Lebesgue measurable.

A calculation gives

_w0ðtÞ ¼ u1ðtÞðp1ðtÞ � ð1� x1ðtÞÞÞ (A 4Þ
and

_w1ðtÞ ¼ u0ðtÞð1� x1ðtÞ � p1ðtÞÞ: (A 5Þ

Remark A.2. The functions w0, w1 are absolutely continuous. Hence, they are differentiable almost
everywhere and have bounded derivatives. This implies that both w0, w1 are Lipschitz continuous.
Also, since the controls are positive, (A 4) and (A 5) imply that sgn ð _w0ðtÞÞ ¼ �sgn ð _w1ðtÞÞ whenever
both w0 and w1 are differentiable.
A.3.2. Characterization of singular arcs

In this section, we are interested in the case where mðEi
0Þ . 0 for either i = 0 or i = 1. Let

Es :¼ ft [ ½0, T� jw0ðtÞw1ðtÞ ¼ 0g ¼ E0
0 < E1

0:

Let X be an extremal trajectory. We call any restriction of X to any non-zero-measure subset of Es a
singular arc.

The following lemmas characterize the behaviour on singular arcs.
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Lemma A.3. Let X be an extremal trajectory, and assume that mðEi
0Þ . 0 for some i∈ {0, 1}. Then, there

exists ci∈ (0, 1) such that

x�1ðtÞ ¼ ci for almost all t [ Ei
0:

Furthermore, _x�1ðtÞ ¼ 0 for almost all t [ Ei
0 and the two inputs satisfy

1
ci
� 1

� �
u�0ðtÞ ¼ u�1ðtÞ, for almost all t [ Ei

0: (A 6Þ

Proof. Let Ei0
0 # Ei

0 denote the set of accumulation points of Ei
0. Note that mðEi0

0Þ ¼ mðEi
0Þ, since Ei

0nEi0
0

is the set of isolated points of Ei
0, which is countable and hence has measure zero. Let

Fi :¼ ft [ ½0, T� j _w�
i ðtÞ existsg> Ei0

0. Then, mðFiÞ ¼ mðEi
0Þ since w�

i is differentiable a.e.
Fix t∈ Fi. By definition, we have w�

i ðtÞ ¼ 0. We show that _w�
i ðtÞ ¼ 0 as well. Since t is an accumulation point,

9ftkg1k¼1 , Ei
0 such that tk→ t. Since w�

i is differentiable at t, _w
�
i ðtÞ ¼ limk!1ðw�

i ðtkÞ � w�
i ðtÞÞ=ðtk � tÞ ¼ 0. We

consider the case i= 0 (the proof when i=1 is very similar). Using (A 2) and (A 4), the equations
w�
0ðtÞ ¼ _w�

0ðtÞ ¼ 0 yield p�1ðtÞð1� x�1ðtÞÞ ¼ �p�2ð0Þ, and p�1ðtÞ ¼ 1� x�1ðtÞ. Since x�1ðtÞ [ ð0, 1Þ, p�2ð0Þ , 0 and

x�1ðtÞ ¼ 1� p�1ðtÞ ¼ c0, for all t [ F0, (A 7Þ
where c0 :¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�p�2ð0Þ

p
.

Let F
0
0 be the set of accumulation points of F0. Then, mðF0

0Þ ¼ mðE0
0Þ. Fix t [ F

0
0. Hence, 9ftkg1k¼1 , Fi such

that tk→ t. Since x�1ðtkÞ ¼ c0 for all k, _x�1ðtÞ ¼ 0. Substituting this in (4.11) proves (A 6). ▪

The next result shows that if an extremal trajectory X has x�1 identically constant, then it satisfies
(4.12), and X consists entirely of singular arcs.

Lemma A.4. Let X be an extremal trajectory. If x�1ðtÞ is identically constant on [0, T], then

x�1ðtÞ ;
�u0

ð�u1 þ �u0Þ : (A 8Þ

Furthermore, w�
0ðtÞw�

1ðtÞ ; 0, i.e. Es = [0, T ].

Proof. By assumption, there exists c∈ (0, 1) such that c ; x�1ðtÞ. Substituting this in (4.3) yields
_x�1 ¼ u�0ðtÞ � ðu�1ðtÞ þ u�0ðtÞÞc ; 0, and integrating over [0, T ] proves (A 8). We also find that
u�1ðtÞ ; ð1c� 1Þu�0ðtÞ, and substituting this in (A 1) gives _p�1ðtÞ ¼ u�1ðtÞð�1� 11� cp�1ðtÞÞ. Combining
this with the boundary condition (3.7) gives p�1ðtÞ ; c� 1. Equations (A 2) and (A 3) give

f0ðtÞ ¼ ðc� 1Þð1� cÞ þ p�2ð0Þ
and f1ðtÞ ¼ cð�cÞ þ p�3ð0Þ,

)
(A 9Þ

for all t∈ [0, T ]. To prove that Er ¼ ;, we first assume that that μ(Es) = 0. Then, Er = [0, T ] (a.e.), and
equation (A 9) implies that both switching functions are constant and not zero, by the definition of Er.
Lemma 4.2 implies that every u�i is constant, i.e. either u�i ðtÞ ; ‘ or u�i ðtÞ ; L. This contradicts the fact
that �u�i ¼ 1

T

Ð T
0 u�i ðsÞds [ ð‘, LÞ. Thus, Es = [0, T ]. We conclude that μ(Es) > 0. Pick τ∈ Es. Then, ϕ0(τ) =

ϕ1(τ) = 0 and (A 9) implies that ϕ0(t) = ϕ1(t) = 0 for all t, so Es = [0, T ]. ▪
A.3.3. Inadmissibility of regular arcs

In the previous section, we decomposed an extremal trajectory into regular and singular arcs. On the
regular arcs, the control is bang-bang. On the singular arcs, the controls satisfy (A 6) and the state
must be constant almost everywhere, so _x�1ðtÞ ¼ 0 a.e. In general, an extremal trajectory can consist of
an arbitrary patching of regular and singular arcs. In this section, we consider the admissibility of
regular arcs.

To simplify presentation, we write x and p instead of x1 and p1 from here on. Furthermore, we denote
extremal trajectories by x�, p�. Figure 5 depicts the dynamics of x based on lemmas 4.2 and A.3.

Lemma A.5. Let X be an extremal trajectory. Then, x(t), pðtÞ [ ð‘=ðLþ ‘Þ, L=ðLþ ‘ÞÞ for all t∈ [0, T ].

Proof. If x(t) is identically constant then the proof follows from lemmaA.4.Hence,we assume that x(t) is
not constant. This implies that we can restrict attention to the four regular cases depicted in figure 5.

Suppose that x(0) > L/(L + ℓ). Then considering the regular cases depicted in figure 5, we see that x(T ) <
L/(L + ℓ), and this contradicts the periodicity condition x(0) = x(T ).
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Figure 5. The equation for _x and the directions of the dynamics as a function of x∈ (0, 1) for all possible arcs in an extremal
trajectory (see lemmas 4.2 and A.3). A circle on an axis describes an equilibrium point of the dynamics. The same diagram holds for
p, but with all the arrow directions reversed.
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Suppose that x(0) = L/(L + ℓ). Then considering the regular cases depicted in figure 5, we see that again
x(T ) < L/(L + ℓ), as x(t) can increase towards L/(L + ℓ) only in the fourth case depicted in figure 5, yet it can
never reach L/(L + ℓ), as this is an equilibrium (and thus an invariant set) of this dynamics.

Summarizing, we showed that x(0) > ℓ/(L + ℓ). Using a similar argument shows that xð0Þ [ ð ‘
Lþ‘ ,

L
Lþ‘Þ,

and this implies that x(t)∈ (ℓ/(L + ℓ), L/(L + ℓ)) for all t∈ [0, T ]. Similar arguments can be used to prove
the corresponding statement for p. ▪

The following lemma excludes certain transitions between arcs.

Lemma A.6. Let X be an extremal trajectory. If there exists τ∈ [0, T ] such that w0(τ)w1(τ) < 0, then
w0(t)w1(t) < 0 for all t∈ [τ, T ].

Proof. Without loss of generality (w.l.o.g.), assume that w0(τ) < 0 and w1(τ) > 0. Hence, t [ E0
� > E1

þ.
Since both sets are open, there exists a connected component T , E0

� > E1
þ such that t [ T . Let

T 0, T 1 be the connected components containing τ with respect to E0
�, E

1
þ, respectively. Then,

T ¼ T 0 > T 1. Let τi, i = 1,…, 4, be such that T 1 ¼ ðt1, t3Þ, T 0 ¼ ðt2, t4Þ. W.l.o.g., assume that τ1≤ τ2.
Assume first that τ2 > 0. Then there are three possibilities: τ3 < τ4, τ3 > τ4 and τ3 = τ4; see figure 6. By

definition, w0(τ2) = 0, w1(τ2) > 0. Lemma 4.2 implies that u0(t) = ℓ, u1(t) = L for all t [ T . By (A 4) and
(A 5), both w0 and w1 are differentiable on T , and the right-derivative Dþ

t2
w0 exists. Since w0(τ2) = 0 and

w0(t) < 0 on t [ T , we have

0 � Dþ
t2
w0

¼ u1ðtþ2 Þðpðt2Þ � ð1� xðt2ÞÞÞ
¼ Lðpðt2Þ þ xðt2Þ � 1Þ:

(A 10Þ

Recall that _xðtÞ ¼ ‘� ð‘þ LÞxðtÞ, _p ¼ ð‘þ LÞpðtÞ � L for t [ T (see figure 5), so

xðtÞ ¼ xðt2Þ � ‘

‘þ L

� �
e�ð‘þLÞðt�t2Þ þ ‘

‘þ L
, xðt2Þ � ‘

‘þ L

� �
eð‘þLÞðt�t2Þ þ ‘

‘þ L

and pðtÞ ¼ pðt2Þ � L
‘þ L

� �
eð‘þLÞðt�t2Þ þ L

‘þ L
,

9>>>=
>>>;

(A 11Þ

where the inequality (A 11) follows from the fact that xðtÞ . ‘
‘þL (see lemma A.5). Summing up these

equations gives

xðtÞ þ pðtÞ , ðxðt2Þ þ pðt2Þ � 1Þeð‘þLÞðt�t2Þ þ 1:

Thus, for any t [ T ,

_w0ðtÞ ¼ LðpðtÞ þ xðtÞ � 1Þ
, Lðxðt2Þ þ pðt2Þ � 1Þ eð‘þLÞðt�t2Þ

� 0,

where the last inequality follows from (A 10). Hence, _w0ðtÞ , 0 on T . Since sgn _w1ðtÞ ¼ �sgn _w0ðtÞ,
_w1ðtÞ . 0 for all t [ T .
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Figure 6. An illustration of the three cases studied in the proof of lemma A.6: (a) τ3 < τ4, (b) τ3 > τ4 and (c) τ3 = τ4.
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We now show that τ3 = τ4. Assume that τ3 < τ4. Then, w0(τ3) < 0 and w1(τ3) = 0 as shown in figure 6a.
Integrating _w1 over T , and since w1(τ2)≥ 0, we get that w1(τ3) > 0, which is a contradiction. Similarly,
assuming that τ3 > τ4 gives w0(τ4) = 0 (see figure 6b). Since w1(τ2) = 0 and _w0ðtÞ , 0 on T , then w0(τ4) < 0,
which is a contradiction. Thus, τ3 = τ4 (see figure 6c).

Let τe := τ3 = τ4. Then, the preceding argument shows that w0(τe) < 0 and w1(τe) > 0. If τe < T, then the
definition of τ3, τ4 implies that ϕ0(τe)ϕ1(τe) = 0. We conclude that τe = T. i.e. sup T ¼ T.

Assume now that inf T ¼ 0. Since X is periodic, we can study it on the interval [0, 2T ]. Let
~E
0
� : ¼ E0

� < ðfTg þ E0
�Þ, ~E

1
þ : ¼ E1

þ < ðfTg þ E1
þÞ. Hence, define ~T as the maximal open

neighbourhood containing τ = T in ~E
0
� > ~E

1
þ. The sets ~T 1, ~T 2 are defined similarly. Replicating the

previous arguments to the sets ~T , ~T 1, ~T 2, we see that sup ~T ¼ 2T. Hence, by periodicity,
sup T ¼ T. ▪

We can strengthen lemma A.6 to exclude mixed-sign arcs.

Lemma A.7. Let X be an extremal trajectory. Then, w0(t)w1(t)≥ 0 for all t∈ [0, T ].

Proof. Assume that there exists τ∈ [0, T ] such that w0(τ)w1(τ) < 0. Lemma A.6 implies that w0(t)w1(t) < 0
for all t∈ [τ, T ]. By periodicity, w0(0)w1(0) < 0. Applying lemma A.6 gives w0(t)w1(t) < 0 for all t∈ [0, T ].
This implies that both w0(t), w1(t) have constant and opposite signs. W.l.o.g., assume that w0(t) < 0 and
w1(t) > 0 for all t∈ [0, T ]. By lemma 4.2, u0(t)≡ ℓ and u1(t)≡ L. Hence, _xðtÞ ¼ ‘� ð‘þ LÞxðtÞ for all
t∈ [0, T ], so

xðTÞ � xð0Þ ¼ ‘

‘þ L
� xð0Þ

� �
ð1� e�ð‘þLÞTÞ:

Since x(0) > ℓ/(ℓ + L) (see lemma A.5), x(T ) < x(0), and this is a contradiction. ▪

For an extremal trajectory X, recall that Er := {t∈ [0, T ] | w0(t)w1(t)≠ 0}. Lemma A.7 implies that

Er ¼ Eþþ < E��, (A 12Þ

where

Eþþ :¼ E0
þ > E1

þ and E�� :¼ E0
� > E1

�:

In other words, the only possible bang arcs are the first two cases in figure 5. Note that 1/2 is an
equilibrium point of both these arcs. Also, on a singular arc x(t) is constant. This proves the following.

Lemma A.8. Let X be an extremal trajectory. If x(τ)≠ 1/2 for some τ∈ [0, T ], then x(t)≠ 1/2 for all
t∈ [0, T ]

The next lemma shows that an extremal trajectory must consist of a single singular arc.

Lemma A.9. Let X be an extremal trajectory. Then, w0(t)w1(t) = 0 for all t∈ [0, T ]. Furthermore, x (t)≡ x(0)
for all t∈ [0, T ].

Proof. We consider two cases.
Case 1. Suppose that there exists a τ∈ [0, T ] such that x(τ)≠ 1/2. We may assume w.l.o.g. that x(τ) >

1/2. By lemma A.8, x(t) > 1/2 for all t∈ [0, T ]. Seeking a contradiction, assume that μ(Er) > 0. Then,
(A 12) implies that _xðtÞ , 0 for all t∈ Er (see figure 5). By lemma A.3, _xðtÞ ¼ 0 for almost all t∈ Es. We
conclude that x(T ) < x(0), and this is a contradiction. Thus, μ(Er) = 0.

Case 2. Suppose that x(t)≡ 1/2. Then, lemma A.4 implies that μ(Er) = 0. ▪
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We can now prove theorem 4.4. We already know that X consists of a single singular arc. Lemma A.3
implies that there exists a c∈ (0, 1) such that x(t)≡ c for all t∈ [0, T ]. Integrating (A 6) over [0, T ] yields
ð1c� 1Þ�u0 ¼ �u1, and this completes the proof.
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.8:210878
A.4. An alternative proof of theorem 4.5
The alternative proof is inspired by the completing the square idea in [53], which was used to prove the
result for a system with a controlled inflow and a constant outflow (proposed earlier by the authors in the
preprint [54]). We show that a similar and simpler approach can be developed to tackle the more general
case when both the inflow and outflow can be controlled independently of each other. The proof is based
on two lemmas. Let T > 0. Recall that we use the notation y : ¼ 1

T

Ð T
0 yðsÞ ds.

Lemma A.10. Let x1(t) be a solution of (4.11) satisfying x1(T ) = x1(0). Then, u0xk1 ¼ ðu0 þ u1Þxkþ1
1 for any

integer k≥ 0.

Proof. Since xkþ1
1 ðTÞ � xkþ1

1 ð0Þ ¼ 0, the integral of

1
k þ 1

dxkþ1
1

dt
¼ xk1

dx1
dt

¼ xk1ðu0ð1� x1Þ � u1x1Þ

is zero, and the result follows. ▪

For k = 0, 1, lemma A.10 gives

�u0 ¼ ðu0 þ u1Þx1
and u0x1 ¼ ðu0 þ u1Þx21,

9=
; (A 13Þ

respectively.

Lemma A.11. Let x1(t) be a solution of (4.11) satisfying x1(T ) = x1(0). Then,

u1x1 � z, (A 14Þ
where z : ¼ �u0�u1=ð�u1 þ �u0Þ.

Proof. Writing u1x1 ¼ ððu0 þ u1Þ � u0Þx1, and using (A 13) gives u1x1 ¼ �u0 � u0x1 ¼ �u0 � ðu0 þ u1Þx21.
To apply a completion of squares argument, write this as u1x1 ¼ zþ ð�u0�u0=ð�u0 þ �u1ÞÞ � ðu0 þ u1Þx21. Now
(A 13) gives

u1x1 ¼ z� �u0�u0
�u0 þ �u1

� 2�u0
�u0 þ �u1

ðu0 þ u1Þx1 þ ðu0 þ u1Þx21
� �

¼ z� ðu0 þ u1Þ x1 �
�u0

�u0 þ �u1

� �2

,

and this completes the proof. ▪

Equation (A 14) implies that x1ðtÞ ; �u0
�u1þ�u0

is an optimal trajectory, thus providing an alternative proof
to theorem 4.4.
A.5. Proof of proposition 4.11
The Hamiltonian is H ¼ p1ðu0ð1� x1Þ � l1x1Þ þ p2u0 þ bðtÞl1x1, where we assume w.l.o.g. that p0 = T.
Hence, (3.5) gives

_p1ðtÞ ¼ ðu0ðtÞ þ l1Þp1ðtÞ � l1bðtÞ
and

_p2ðtÞ ; 0:

The switching function is

w0 ¼ p1ð1� x1Þ þ p2ð0Þ, (A 15Þ
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and thus

_w0 ¼ l1ðp1 � bþ bx1Þ
and €w0 ¼ l1ððu0 þ l1Þp1 � l1b� _bþ _bx1 þ bðu0ð1� x1Þ � l1x1ÞÞ:

)
(A 16Þ

By lemma 4.2, an optimal control is bang-bang on Er. Hence, we study the control on the set
E0 := {t|w0(t) = 0}, which we assume to have non-zero measure. As in the proof of lemma A.3, we can
find a set F⊆ E0 such that F = E0 a.e. and wðtÞ ¼ _wðtÞ ¼ €wðtÞ for all t∈ F. This gives

p1ðtÞ ¼ bðtÞð1� x1ðtÞÞ,
ð1� xðtÞÞ2 ¼ �p2ð0Þ=bðtÞ

and u0ðtÞ ¼ l1
1� xðtÞ � l1 þ

_bðtÞ
2bðtÞ ,

9>>>>>=
>>>>>;

(A 17Þ

and this proves (4.21). Note that this implies that p2(0) < 0. Furthermore, if E0 = [0, 1], then the equationÐ 1
0 u0ðtÞ dt ¼ �u0 yields (4.22).
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