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Abstract— Due to the usage of social distancing as a means to
control the spread of the novel coronavirus disease COVID-19,
there has been a large amount of research into the dynamics of
epidemiological models with time-varying transmission rates.
Such studies attempt to capture population responses to differ-
ing levels of social distancing, and are used for designing policies
which both inhibit disease spread but also allow for limited
economic activity. One common criterion utilized for the recent
pandemic is the peak of the infected population, a measure of
the strain placed upon the health care system; protocols which
reduce this peak are commonly said to ‘flatten the curve.” In
this work, we consider a very specialized distancing mandate,
which consists of one period of fixed length of distancing,
and address the question of optimal initiation time. We prove
rigorously that this time is characterized by an equal peaks
phenomenon: the optimal protocol will experience a rebound
in the infected peak after distancing is relaxed, which is equal
in size to the peak when distancing is commenced. In the
case of a non-perfect lockdown (i.e. disease transmission is not
completely suppressed), explicit formulas for the initiation time
cannot be computed, but implicit relations are provided which
can be pre-computed given the current state of the epidemic.
Expected extensions to more general distancing policies are also
hypothesized, which suggest designs for the optimal timing of
non-overlapping lockdowns.

I. INTRODUCTION

The ongoing global COVID-19 (coronavirus disease 2019)
pandemic, caused by SARS-CoV-2 (severe acute respi-
ratory coronavirus 2), has necessitated the use of non-
pharmaceutical interventions (NPIs) as a means to slow
transmission of the disease. Although controversial, there
is clear evidence that NPIs such as social distancing have
saved millions of lives globally [1]. Social distancing man-
dates, denoted in this manuscript as “lockdowns,” cannot
be implemented indefinitely, as it carries both a high eco-
nomic [2], [3] and psychological [4] cost. Furthermore, a
lack of compliance may make extended protocols unfeasible
to implement [5], [6]. Hence there is a need to optimize
the timing of prescribed lockdowns. The optimization of
such schedules is the focus of this work. Specifically, we
characterize the implementation time of a single non-strict
lockdown, with fixed transmission reduction, which mini-
mizes the peak of the infected population in the Susceptible-
Recovered-Removed (SIR) model. The main contribution is
Theorem 1, which we term an equal peak phenomenon.
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There have been a large number of mathematical analyses
applied to the spread of COVID-19. In this work, as we solve
a small technical problem, we do not attempt to provide
a comprehensive literature review. We do however note a
number of closely related works based on optimal social
distancing strategies. The analysis presented here is a direct
extension of [7], where the case of multiple fixed-length non-
overlapping complete (i.e. zero disease transmission) lock-
downs is completely characterized as a linear programming
problem; this manuscript should be viewed as a direct ex-
tension of this previous work. Again minimizing the infected
peak, the authors of [8] determine the optimal (again, possi-
bly complete) lockdown schedule as a feedback mechanism.
Numerical results for a variety of epidemic objectives with
respect to a single interval of distancing are provided in [9],
[10], and [11] studies the same problem both numerically and
theoretically. A constrained optimization problem is solved
in [12], where the time minimal distancing policy which
maintains an upper bounded on the infected population is
derived. There are also a number of works which minimize
the total number of infections during an epidemic during
a period of such distancing; this is studied numerically
in [9] and analytically in [13], [14], [15]. Interestingly, the
main result of [13] is that the optimal lockdown policy to
minimize the total number of infected individuals coincides
with the protocol considered in this work; see equation (4)
below. However, as observed in [9], the timing with respect
to these differing objectives (minimizing infected peak vs.
minimizing total number of infections) in general do not
agree, so that policy makers cannot generally hope to achieve
both simultaneously.

This work is organized as follows. In Section II, we
recall the SIR model and precisely formulate the social
distancing protocol to be optimized. Results are presented
in Section III, and a discussion with potential (unproven)
extensions are postulated in Section IV. Some preliminary
numerical simulations are also provided in Section IV. Proofs
of all results are provided in Section V.

II. PROBLEM FORMULATION

We consider the classic SIR epidemic model introduced by
Kermack and McKendrick in 1927 [16], which we briefly
review here. The ordinary differential equations (ODEs)
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describing the evolution of the system are given below:

dS

dt
= −β(t)SI

dI

dt
= β(t)SI − νI

dR

dt
= νI,

(1)

together with initial conditions

S(0) = S0

I(0) = I0

R(0) = 0.

(2)

Here S denotes the susceptible population, I the infected
population, and R the removed population, which combines
those individuals that have either obtained immunity or died.
Parameter ν represents the combined recovery and death rate
of the disease, and hence if mortality is relatively small, is a
measure of the rate of recovery/immunity. We assume that ν
is constant. We view β(t), which quantifies the transmission
rate between susceptible and infected individuals, as a time-
varying control, instead of a constant parameter as is typi-
cally done in epidemiology, since NPIs are generally viewed
as altering this transmission rate over time. Specifically,
during a lockdown, where contacts are reduced and/or mask
mandates are enforced, the transmission rate may be modeled
as decreasing by a factor of p, where 0 ≤ p < 1:

β
lockdown−−−−−→ pβ.

For example, in [17], estimated reductions in R0 (which for
the SIR model is equivalent to reducing β; see equation (7)
below) yield p values as large as 0.58. We note that such a
reduction corresponds to mandates limiting gatherings to 10
people or less.

We are specifically interested in the effect of a single fixed
period of social distancing (i.e. a single lockdown) on the
peak of the infected population:

Imax := max
t∈[0,∞)

I(t). (3)

Our goal is thus to understand the behavior of Imax as a
function of β(t), where β(t) takes the following form:

β(t) =


β, 0 ≤ t < ts

pβ, ts ≤ t ≤ ts + T

β, ts + T < t

(4)

As discussed above, 0 ≤ p < 1 represents the reduction
in transmission rate due to distancing mandates, which are
enacted at time ts for a length of time T . That is, a lockdown
occurs for t ∈ [ts, ts+T ]. For a visualization of the lockdown
protocol, see Figure 1. We assume that β, ν, p, and T are
fixed and known, and we are interested in optimizing the
start time ts of distancing so as to minimize the infected
peak as a function of ts:

min
ts∈[0,∞)

{Imax(ts)}. (5)

𝒕𝒔 + 𝑻𝒕𝒔

β

pβ

t

Fig. 1: Visualization of idealized lockdown (4). We assume that
transmission is reduced by an effective amount p during the
lockdown, where 0 ≤ p < 1. The lockdown is initiated at ts and
is enacted for T units of time.

It is intuitively clear that t∗ should not occur too early or
too late: begin too early and we simply delay the full effect
of the epidemic, and begin too late and the epidemic has
already passed throughout the susceptible population, and
hence social distancing has minimal impact. It is the goal
of this work to understand the optimal timing with respect
to the metric (5), with transmission rate of the form (4).
This problem is a generalization of [7], which studied the
same problem for p = 0. In general we allow p > 0 in the
following.

We lastly note the maximum appearing in (3) is indeed
a maximum (i.e. it is achieved at some time, as opposed
to a supremum), since I is continuous and I(t) → 0 as
t → ∞ for all distancing protocols β(t). For more details
and a proof, see for example [18].

We assume that the populations are normalized, so that

S0 + I0 = 1. (6)

Assumption (6) ensures that S(t) + I(t) + R(t) = 1 for all
t ≥ 0, i.e. that variables S, I , and R represent population
fractions. System (1) is also seen to be positively invariant.
Note lastly that the removed population R does not affect
the dynamics of the above system, but may serve as a useful
measure of disease progression.

A. Additional assumptions

In this section, we impose additional assumptions on the
model introduced in Section II. We note that these assump-
tions are not crucial for the following theory, but instead are
useful for limiting the number of potential cases which we
feel would otherwise obfuscate the exposition. Specifically,
they allow us to conclude with certainty the exact locations
of the potential relative maxima of the infected population
curves, while excluding particular “boundary cases”.

Our first additional assumption is that the lockdown has
the ability to immediately stop disease progression indepen-
dently of the start time. In other words, we assume that the
transmission rate is able to be reduced such that for any start
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time ts,

dI

dt
(t) ≤ 0

for all t ∈ [ts, ts + T ]. Since on this time interval

dI

dt
= ν

(
pβ

ν
S − 1

)
I,

this assumption is equivalent to

pβ

ν
S0 < 1,

as S is non-increasing on [0,∞). Defining the basic repro-
duction number R0 as

R0(β) :=
β

ν
, (7)

the previous assumption is equivalent to

p <
1

R0(β)S0
,

or again equivalently

R0(pβ)S0 < 1.

Furthermore, for an epidemic to exist (i.e. for I to increase
at any time point, which is equivalent to increasing initially,
since S is non-increasing), we must assume that İ(0) > 0.
Examining the second of (1) (together with β(t) = β and
the definition of R0(β)), this implies that

R0(β)S0 > 1.

Thus, for the remainder of the manuscript, we assume the
following:

R0(pβ)S0 < 1

R0(β)S0 > 1.
(8)

III. RESULTS

A. Infected peak formulas

The assumptions presented in Section II-A imply that
the graph of I : [0,∞) → [0, 1] may have at most two
local maxima, one of which must be global. In fact, there
are exactly two possible cases, dependent on the lockdown
initiation time ts:
1. I has a unique local maximum Imax occurring on [0, ts].
2. I has one maxima at ts (I(ts)), and another local

maximum on [ts + T,∞).
Note that Case 2 occurs precisely because of the second
assumption in (8), i.e. since I is non-increasing on [ts, ts+T ].
More precisely, Case 2 occurs for ts such that

R0(β)S(ts + T ) > 1, (9)

which in words means that I initially increases after the
lockdown is released (i.e. at time ts + T ). Since S is non-
increasing, (9) implies that

R0(β)S(ts) > 1, (10)

i.e. that I was also increasing prior to lockdown initiation.

It is not hard to see that the maximum in Case 1 is
always larger than the pair of maxima in Case 2, so that
the minimization problem is solved by ts of the form of
Case 2. In fact, we have the following proposition.

PROPOSITION 1. Assume that the lockdown initiation time
ts is such that two relative maxima of I exist. Then the
second maxima, occurring at some time t ∈ [ts + T,∞),
is given by

Ip(ts) := V0 −
1− p
p
· 1

R0(β)
log

(
S(ts)

S(ts + T )

)
, (11)

where

V0 := I0 + S0 −
1

R0(β)
(1 + log(R0(β)S0)). (12)

Furthermore, V0 is the maximum of I corresponding to the
case of a unique global maximum occurring in [0, ts] (Case
1 above). Thus, the minimization problem (5) is solved for
ts such that I admits two relative maxima (Case 2 above).

Recall that we are assuming that 0 < p < 1, which implies
S(ts + T ) < S(ts). Since I(ts) ≤ V0 and the second term
on the right-hand side of (11) is positive, we have that (5)
is solved for ts corresponding to Case 2 above, as claimed.

Before undertaking an analysis of Ip(ts), we note that
there are several equivalent representations of the second
peak Ip. By the change of variables S = S(t), we see that

log

(
S(ts + T )

S(ts)

)
=

∫ S(ts+T )

S(ts)

dS

S

=

∫ ts+T

ts

1

S(t)

dS

dt
(t) dt

=

∫ ts+T

ts

1

S(t)
(−pβS(t)I(t)) dt

= −pβ
∫ ts+T

ts

I(t) dt,

(13)

since Ṡ = −pβSI on (ts, ts + T ). Hence we can write (11)
in the following form:

Ip(ts) = V0 − (1− p)β · 1

R0(β)

∫ ts+T

ts

I(t) dt

= V0 − (1− p)ν
∫ ts+T

ts

I(t) dt

Since Ṙ(t) = νI(t), we can also write the previous integral
as ∫ ts+T

ts

I(t) dt =
1

ν

∫ ts+T

ts

Ṙ(t) dt

=
1

ν
(R(ts + T )−R(ts)).

Thus, another equivalent form for Ip(ts) is given by

Ip(ts) = V0 − (1− p)(R(ts + T )−R(ts)). (14)
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B. Analysis of relative maxima of I

Under assumptions (8), Proposition 1 implies that to
minimize the peak of the infected population with respect
to a lockdown represented by (4), we must minimize both
relative maxima I(ts) and Ip(ts) simultaneously with respect
to ts. Recall that I(ts) denotes the infected population at the
onset of the lockdown (i.e. I at time ts), and Ip(ts) is the
relative maxima of I occurring at some t ∈ [ts + T,∞), i.e.
after the lockdown has been lifted. Specifically we note that
we do not have an explicit formula for the time Ip occurs,
and the notation is meant to emphasize that Ip depends on
ts via the expression (11).

Numerical simulations for a specific set of β, p, ν, S0

and I0 are provided in Figure 2. Here we simply vary
the start time ts for the distancing protocol represented
by (4), and plot representative infection response dynamics
in Figure 2a. Note that if the distancing starts too early (e.g.
ts = 20 days), then the peak of the infected population
Imax is simply delayed until after the lockdown is lifted;
V0 ≈ 0.4037 for the set of parameters in Figure 2. Similarly,
if the lockdown is initiated too late (e.g. ts = 70 days),
then the distancing mandate has only a marginal effect on
reducing Imax. For intermediate ts, we observe two relative
maxima I(ts) and Ip(ts), as discussed in the beginning
of this section. It appears that as ts is increased, the first
peak I(ts) increases, while the second peak Ip(ts) decreases.
This is intuitive, since increasing ts allows us to initiate the
lockdown closer to V0 (increasing I(ts)), which at the same
time builds immunity in the population and hence decreases
the magnitude of the “second wave” (which is quantified by
Ip(ts)). Furthermore, it appears that the optimal choice of ts
balances these two effects precisely:

The minimizer ts of Imax is the unique start time such that
I(ts) = Ip(ts), i.e. the two relative maxima of I are equal.

This hypothesis is generally true, and is stated precisely in
the following theorem.

THEOREM 1. Consider the SIR epidemic model (1) with
time-varying transmission rate (4) representing a single
lockdown of relative efficacy p and fixed duration T . Under
assumptions (8), the optimal time ts of lockdown initiation
to minimize the peak of the infected population is such that
I has two relative maxima of equal size. In this case, the
two maxima of I are precisely I(ts) and Ip(ts).

A proof of Theorem 1 is postponed until Section V.
Theorem 1 thus says that the optimal choice of ts to “flatten
the curve” is such that the infected population will have
precisely two relative maxima of equal size: one of which
occurs at lockdown initiation (ts), and the other given by a
second wave occurring after the lockdown has been released
(after ts + T ). We call this an equal peaks phenomena,
with an unavoidable second wave of infections which will
rebound to the same maximum intensity as experienced
prior to the lockdown. We note that such a phenomenon
occurs only for optimally designed interventions (indeed, it
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Fig. 2: Response of infected population to a single lockdown as
characterized by (4). The following parameters were utilized in the
above simulation: β = 0.2, p = 0.2252, ν = 0.05, I0 = 10−4,
and S0 = 1 − I0. Note that according to (7), R0 = 4 prior to
lockdown, while R0 ≈ 0.9 during the lockdown. We observe a
global minimum of Imax at ts ≈ 39.2 days, which is corresponds
to the black curve in Figure 2a. Note that both relative maxima
appear to be equal for this minimizing ts.

is a characterization), and it is possible to choose ts large
enough to reduce the second peak, or even remove it entirely
(see the ts = 70 days curve in Figure 2a). However, such
distancing mandates will necessarily lead to a larger first
peak in infections. Similarly, the first peak can be made as
small as I0 if ts is initiated early, but in this case a large
second wave is encountered (see the ts = 20 days curve in
Figure 2a).

The result of Theorem 1 provides an implicit method
of determining the optimal lockdown initiation time given
the current state of the epidemic. The initiation time ts is
characterized by the relation

I(ts) = Ip(ts). (15)

Utilizing (14) together with the (normalized conservation
law)

R(t) = 1− S(t)− I(t),
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equation (15) can be written as

I(ts) + (1− p)
(
S(ts)− S(ts + T )

+ I(ts)− I(ts + T ))
)
= V0,

(16)

which yields an implicit relation to determine ts. Note
that the time ts cannot be computed explicitly (unlike the
formulas which appear in [7]), since when p > 0 there
are no analytic solutions to the SIR system in [ts, ts + T ].
But of course, as the epidemic evolves, the relation (16)
can be tested numerically. More precisely, policy could be
designed by utilizing current epidemic data, assuming ts = 0,
and checking whether relation (16) is currently satisfied
(with uncertainty sufficiently quantified, and assuming good
estimates for lockdown efficacy p exist). If this equation
is satisfied, the lockdown should be initiated as soon as
possible. We finally note that other relations similar to (16)
exist, which utilize the alternate forms of Ip presented in
Section III-A, as well as the conserved quantity H(S, I) to
compute I(ts) as a function of S(ts) and the initial data
(see the proof of Proposition 1 in Section V). Specifically,
a relation only involving S(ts) and S(ts + T ) is given as
follows:

1 + log(R0(β)) + log(S(ts))−R0(β)S(ts)

+
1− p
p

log

(
S(ts)

S(ts + T )

)
= 0.

IV. DISCUSSION AND EXTENSIONS

In this work we have proven a characterization of the
optimal start time with respect to (5) for a lockdown of
fixed length T and transmission reduction factor p in the
SIR model. This characterization is classified according to
an equal peaks phenomenon: the infection response will
exhibit two local maxima of equal magnitude. The result
(Theorem 1) was proven under certain assumptions (8), but
these were assumed for clarity of exposition, and the result
remains valid under weaker hypothesis. In particular, if the
lockdown is not “strong enough” (i.e. p does not satisfy the
first of (8)), then the first relative maxima of I may occur
interior to the lockdown interval [ts, ts+T ], and not at ts. But
the result of Theorem 1 remains true: the optimal initiation
time is such that both relative maxima are equal, i.e. the
response of I possesses equal peaks.

The results of this work are concerned with optimizing
the initiation time of a single non-perfect lockdown. In
reality, social distancing directives are not designed utilizing
a single interval of distancing, but more generally consist
of multiple periods of possibly different levels of mandated
distancing, which in the above model, correspond to different
transmission reduction factors p. We conjecture that the
above equal peaks phenomenon generalizes to the case of
multiple lockdowns. More precisely, for k = 1, 2, . . . , n
define disjoint intervals

Jk := [tsk , tsk + Tk],

𝒕𝒔𝟏 + 𝑻𝟏𝒕𝒔𝟏

β

𝒑𝟏β

t𝒕𝒔𝟐

𝒑𝟐β

𝒕𝒔𝟐 + 𝑻𝟐

β(t)

Fig. 3: Visualization of n = 2 lockdowns (17). We assume that
transmission is reduced by an effective amount p1 during [ts1 , ts1+
T1] and p2 during [ts2 , ts2 + T2], where 0 < p1, p2 < 1.

and β(t) be the time-varying transmission rate

β(t) =

{
pkβ, t ∈ Jk
β, t 6∈ ∪nk=1Jk.

(17)

Here β(t) represents a series of n lockdowns, each of
fixed (but generally different) length Tk and transmission
reduction factor pk. A visualization for n = 2 is provided
in Figure 3. We then can consider an optimization problem
analogous to (5), where we minimize the peak of the infected
population with respect to the start times tsk of the k =
1, 2, . . . , n lockdowns (assuming all other parameters are
fixed and known). The conjecture generalizing Theorem 1
is then that the initiation times are such that the infected
population exhibits n + 1 relative maxima, each of equal
size; that is, it possesses n + 1 equal peaks. Although we
do not prove the result here, numerical simulations seem
to suggest its validity. A numerical experiment for n = 2
is provided in Figure 4a. Here we simply iterate over all
possible intervals [ts1 , ts1 + T1] and [ts2 , ts2 + T2] that do
not overlap, as we cannot start a second lockdown before
the first one has ended; these prohibited times correspond to
the white region in Figure 4a, and is given parametrically
by ts2 ≥ 0, ts1 + T1 < ts2 < ts1 − T2 in the first quadrant.
Bluer shades in Figure 4a correspond to smaller infection
peaks, and the approximate optimal policy together with the
infection response is provided in Figure 4b. Note that the
infected population exhibits 3 = n + 1 relatives maxima
(peaks) of equal size, as hypothesized.

In future work, we will extend this analysis to more
explicit models of NPIs, such as the models incorporating
socially distanced individuals in [19].

V. PROOFS OF RESULTS

In this section, we provide a proof of our main result
Theorem 1. We also present an intermediate proposition
(Proposition 2) which allows us to compute the sensitivities
of the susceptible population (and also the infected popula-
tion) with respect to the initiation time ts; this is the main
tool used to prove Theorem 1. For brevity, many intermediate
proofs are omitted, but can be found in [20].
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Fig. 4: Numerical investigation of optimal lockdown schedule of
the form (17) with n = 2. Parameters utilized are β = 0.2, p1 =
0.5, p2 = 0.2, T1 = 30, T2 = 14, ν = 0.05, I0 = 10−4, and
S0 = 1 − I0. As in Figure 2, our goal is to minimize the peak
of the infected population, which corresponds to bluer shades in
Figure 4a. The white region is prohibited, as it would correspond
to overalapping lockdowns. The optimal initiation times ts1 ≈ 54.1
days and ts2 ≈ 37.4 days is provided in Figure 4b. Note that the
response I exhibits 3 = n + 1 relative maxima (peaks) of equal
size.

Proof of Proposition 1. See [20].

Before stating and proving the next proposition, we note
that the quantity

H(S, I) := I + S − 1

R0(β)
log(S) (18)

is conserved along solutions curves with constant β and ν.
This allows us to transform the two-dimensional system (1)
into a one-dimensional (nonlinear) ODE if β(t) is constant.
Specifically, it allows us to solve for I(t) as a function of
S(t). For example, on [0, ts] where β(t) ≡ β, we have that

H(S(t), I(t)) = H(S0, I0), (19)

or equivalently,

I(t) = −S(t) + 1

R0(β)
logS(t)

+ I0 + S0 −
1

R0(β)
logS0.

(20)

Thus, the dynamics on [0, ts] can be understood by analyzing
the one-dimensional ODE

Ṡ(t) = −βS(t)I(t)

= −βS(t)
(
− S(t) + 1

R0(β)
logS(t) + I0

+ S0 −
1

R0(β)
logS0

)
,

(21)

with the infected population given by (20). Similarly, on
[ts, ts + T ],

Ṡ(t) = −pβS(t)I(t)

= −pβS(t)
(
I0 + S0 −

1

R0(β)
logS0

− 1

R0(β)

1− p
p

logS(ts)− S(t)

+
1

pR0(β)
logS(t)

)
.

(22)

PROPOSITION 2. For any fixed t > 0, S = S(t; ts) is
differentiable with respect to the lockdown initiation time ts;
call this derivative the sensitivity of S with respect to ts at
time t. Furthermore, we have the following formulas for the
sensitivities of S at times ts and ts + T :

∂S

∂ts
(ts; ts) = −βS(ts)I(ts), (23)

∂S

∂ts
(ts + T ; ts) = −βS(ts + T )I(ts + T )

(
1

+ ν(1− p)I(ts)
∫ ts+T

ts

dt

I(t)

)
.

(24)

Proof of Proposition 2. See [20].

Proof of Theorem 1. We have already seen that I must have
two relative maxima for Imax to be minimized, and we have
also seen that these maxima are given by I(ts) and Ip(ts).
Thus, all that remains to show is that the minimizing ts
of (5) must occur when I(ts) = Ip(ts). Note that it will
be sufficient to show that I(ts) increases as a function of ts
(again, assuming (8)), and that Ip(ts) decreases as a function
of ts, and that they have a (thus necessarily unique) point
of intersection. Note that the latter is clear, assuming I0 is
small, since I(ts)→ I0 and Ip(ts)→ V0 as ts → 0. Hence
all that remains is to show the monotonicity properties of
I(ts) and Ip(ts).

Note that is intuitively clear that I(ts), the value of the
first relative maxima of I , increases as a function of ts,
since (dI/dt)−(ts) > 0 by (10), so increasing ts increases
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I(ts). More rigorously, via the conserved quantity H (see
equation (18)), we have that

I(ts) = I0 + S0 −
1

R0(β)
log(S0)

− S(ts) +
1

R0(β)
log(S(ts)).

(25)

Taking a derivative with respect to ts of the latter equality
yields

∂I

∂ts
(ts) =

(
1

R0(β)S(ts)
− 1

)
∂S

∂ts
(ts). (26)

Since R0(β)S(ts) > 1 (this is again (10), which is a
consequence of I possessing a local maximum at ts), it is
sufficient to show that S(ts) decreases as a function of ts at
t = ts. But this is clear from (23) of Proposition 2.

To prove that Ip(ts) decreases as a function of ts, note
that by (11), it is sufficient to prove that S(ts)/S(ts +
T ) is increasing as a function of ts, or equivalently that
S(ts+T )/S(ts) is decreasing as a function of ts. Since S is
differentiable with respect to ts for all fixed t, it is sufficient
to analyze the sign of the derivative of S(ts+T )/S(ts). By
elementary calculus, we have that

∂

∂ts

(
S(ts + T )

S(ts)

)
=
S(ts)

∂S
∂ts

(ts + T )− S(ts + T ) ∂S
∂ts

(ts)

(S(ts))2
.

We can now use formulas (23) and (24) in Proposition 2 to
compute the numerator:

S(ts)
∂S

∂ts
(ts + T )− S(ts + T )

∂S

∂ts
(ts)

= −βS(ts)S(ts + T )I(ts + T )
(
1

+ ν(1− p)I(ts)
∫ ts+T

ts

dt

I(t)

)
+ βS(ts + T )S(ts)I(ts)

= βS(ts)S(ts + T )I(ts)I(ts + T )
( 1

I(ts + T )

− 1

I(ts)
− ν(1− p)

∫ ts+T

ts

dt

I(t)

)
To complete the proof, we thus need to show that the
parenthetical term on the right-hand side of the above is
negative. Equivalently, we need to show that∫ ts+T

ts

(
ν(1− p)
I(t)

− d

dt

(
1

I(t)

))
dt > 0. (27)

On (ts, ts + T ), we have that (since İ = pβSI − νI)

ν(1− p)
I(t)

− d

dt

(
1

I(t)

)
=
ν(1− p)
I(t)

+
İ(t)

I(t)2

=
1

I(t)

(
ν(1− p) + pβS(t)I(t)− νI(t)

I(t)

)
=

pν

I(t)
(R0(β)S(t)− 1).

As S is non-increasing, we have that S(t) ≥ S(ts + T ) for
all t ∈ (ts, ts+T ). This together with assumption (9) imply
that

R0(β)S(t) > 1

for all t ∈ (ts, ts+T ). Hence the integrand in (27) is positive,
which is sufficient to complete the proof.
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[15] A. González, A. Anderson, A. Ferramosca, and E. Hernandez-Vargas,
“Dynamic characterization of control sir-type systems and optimal
single-interval control,” arXiv preprint arXiv:2103.11179, 2021.

3646

Authorized licensed use limited to: Northeastern University. Downloaded on October 14,2023 at 15:26:40 UTC from IEEE Xplore.  Restrictions apply. 



[16] W. O. Kermack and A. G. McKendrick, “A contribution to the math-
ematical theory of epidemics,” Proceedings of the Royal Society of
London. Series A, Containing papers of a mathematical and physical
character, vol. 115, no. 772, pp. 700–721, 1927.

[17] J. M. Brauner, S. Mindermann, M. Sharma, D. Johnston, J. Salvatier,
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