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Abstract— Synthetic gene circuits require cellular re-
sources, which are often limited. This leads to competition
for resources by different genes, which alter a synthetic
genetic circuit’s behavior. However, the manner in which
competition impacts behavior depends on the identity of
the “bottleneck” resource, which might be difficult to dis-
cern from input-output data. In this paper, we aim at clas-
sifying the mathematical structures of resource competi-
tion in biochemical circuits. We find that some competi-
tion structures can be distinguished by their response to
different competitors or resource levels. Specifically, we
show that some response curves are always linear, convex,
or concave. Furthermore, high levels of certain resources
protect the behavior from low competition, while others do
not. We also show that competition phenotypes respond
differently to various interventions. Such differences can
be used to eliminate candidate competition mechanisms
when constructing models based on given data. On the
other hand, we show that different networks can display
mathematically equivalent competition phenotypes.
Keywords: Resource competition, model discrimination,
synthetic biology, system identification.

I. INTRODUCTION

A. Background

L IVING cells have the ability to perform sophisticated
operations that include maintaining homeostasis against

noise, responding appropriately to various input signals, con-
structing complex structures such as proteins, and adapting
to novel environments. Reverse engineering the biochemical
circuits responsible for implementing such operations has
revealed various control mechanisms that include regulation
of gene expression via transcription factors (TFs) and/or non-
coding RNAs [1], [2]. This has inspired the development of
engineering approaches that mimic natural circuits by inserting
new synthetic circuits into cells to modify their behavior
or create new functionalities. Applications are wide-ranging
and include immunotherapy, programmed micro-organisms for
diagnostics and therapy, biofuel production, and many others
[3], [4], [5]. Despite the great promise, numerous challenges
exist. In particular, genetic circuits utilize common resources
for transcription and translation such as RNA polymerases
(RNAPs), ribosomes, tRNAs, and others. Insertion of new
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circuits increases the load on the cell’s reservoirs. This, in
turn, can create indirect interactions [6] that impede the
proper functioning of the circuit, retard cellular growth, or
lead to premature apoptosis [7], [8]. Several approaches have
been proposed to ameliorate this problem, including dynamic
control [9], orthogonal ribosomes and RNAPs [10], [11],
[12], forward engineering of the circuit to account for resource
competition [13], and distributed computation [14], [15].

Several of the aforementioned approaches assume that it
is possible to identify the mode of competition and the
limited resources responsible for performance degradation.
However, it is not always possible to infer the correct model of
competition from the expression data of the circuit. Possible
competition effects to account for include promoters compet-
ing for RNAPs, mRNAs competing for ribosomes, transcrip-
tion factors competing for promoters, enzymes competing for
substrates, substrates competing for enzymes, etc.

In this work, we identify competition phenotypes, i.e.,
features that could allow one to distinguish the scarce resource
(or resources) responsible for performance deterioration. Are
there qualitatively different types of competition effects? Are
there equivalent effects that can be treated in a unified manner?
Answers to these questions will help guide theoretical analysis
as well as the design of targeted interventions that mitigate
undesirable effects through, for example, the use of feedback
control to regulate the level of a scarce resource, or the
optimization of appropriate circuit parameters. We will ask
how different aspects of gene expression are impacted by
two factors: (1) the level of the resource being shared –
such as an activating or repressing transcription factor (TF),
RNAPs, or ribosomes– and (2) the level of competition from
other biochemical species –such as other genes or mRNAs.
We describe interventions that can be used to distinguish the
different competition phenotypes. We also discover instances
where, conversely, competition for different resources might
result in mathematically equivalent competition prototypes.

B. Problem Setup
Notation: Chemical species are denoted by non-italic large

caps, time-dependent state variables are denoted by small caps,
and constants are denoted by large cap italics. For example, a
protein is denoted by Y, its time-dependent concentration is
denoted by y(t) while its steady-state value is denoted by Y .

1) The system: Consider a synthetic circuit with an external
input U and internal state vector x which includes the con-
centrations of promoters, mRNAs, proteins, etc. The output
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Fig. 1. Framework for studying the problem of competition model
discrimination.

is denoted by y. The circuit utilizes the free limited resource
r which is also utilized by other competing (or interfering)
circuits with inputs I1, .., In and internal state vectors z1, .., zn.
Figure 1 provides a pictorial representation of the system.

We model the entire system by a system of ordinary
differential equations structured as follows:

ẋ = f(x, r, U), (1)
żi = gi(zi, r, Ii), i = 1, .., n, (2)
ṙ= ϕ(r, x, z1, .., zn), (3)
y = h(x, r, U), (4)

for some C1 vector fields f, g1, .., gn, ϕ, and function h.
We assume that the limited resource is conserved. It par-

takes in the synthetic and competing circuits without being
consumed or annihilated. Concretely, there exists nonnegative
vectors d0, ..dn of compatible dimensions such that

r + dT0 x+
∑n
i=1 d

T
i zi = RT , (5)

where RT is the total resource, and r is the free (available)
resource. In order for (1),(2),(3) to satisfy (5), the following
relation is assumed to be satisfied: ṙ+dT0 ẋ+

∑n
i=1 d

T
i żi ≡ 0.

In this paper, we perform our analysis at steady-state. We
will assume that for each choice of the inputs U, I1, .., In and
total resource RT , there exists a steady-state (X,Z1, .., Zn, R)
that is globally asymptotically stable.

After eliminating the intermediate variables, the correspond-
ing steady-state output Y can be written as:

Y = H(RT , U, I1, .., In), (6)

for some function H .
2) Performance evaluation: The performance of a circuit

with competition is compared to its performance with no
competition. For this purpose, the Competition-induced Per-
formance Deterioration Ratio (CPDR) ρ is defined as: ρ :=
Y/Y |competition=0, where the total competition is I :=

∑n
i=1 Ii.

3) Problem Formulation: The formulation in (1)-(4) im-
plicitly assumes that r is the limited resource, while other
resources are abundant and appear as kinetic constants in the
functions f, g1, .., gn, h. Changing the identity of the limited
resource will change the model (1)-(4). Our aim is to compare
the qualitative differences in the steady-state input-output data
that follow from the scarcity of different resources.

The paper is organized as follows. In section II, we discuss
transcription/translation systems where the mRNA is protected
by the ribosomes, while we drop that assumption in section
III. We conclude with a discussion in section IV.

II. TRANSCRIPTION/TRANSLATION MODEL: RIBOSOME
PROTECTS MRNA

Consider a synthetic genetic circuit in which a promoter
is inserted into a cell. The circuit should express a desired
output protein Y. The input to the circuit is the total con-
centration of the input promoter U which is assumed to be
constant; the unbound (free) promoter is denoted by Uf .

We first assume that mRNAs are protected from decay
when bound to ribosomes, which is a valid assumption in many
situations [16]. The transcription and translation reactions can
be then written as follows:

Uf + Q
k1−−⇀↽−−
k−1

E
α1−→E + M, M

α−1−→∅, (7)

M + R
w1−−−⇀↽−−−
w−1

F
β−→F + Y, Y

β−−→∅, (8)

where Q denotes RNAP, R denotes the ribosome, M denotes
mRNA, E is the promoter-RNAP complex, and F is the
mRNA-ribosome complex.

Free competing promoters If,i, i = 1, .., n can bind to
RNAP and produce mRNAs Mi which can bind to the ri-
bosome. This can be written as:

If,i + Q
k2−−⇀↽−−
k−2

Ei
α2−→Ei + Mi, Mi

α−2−→∅, (9)

Mi + R
w2−−−⇀↽−−−
w−2

Fi
β−→Fi + Yi, Yi

β−−→∅, i = 1, .., n. (10)

The promoters are conserved. Hence, we have:

Uf + E = U, (11)
If,i + Ei = Ii, i = 1, .., n. (12)

Let Kj = k−j/kj , Aj = αj/α−j ,Wj = w−j/wj , B =
β/β−, j = 1, 2 be RNAP Dissociation Ratio (DR), tran-
scription ratio, ribosome DR, and protein expression ra-
tio, respectively. By writing the irreversible reactions

as ∅
α1E−−−⇀↽−−−
α−1

M, ∅
βF−−⇀↽−−
β−

Y, ∅
α2Ei−−−⇀↽−−−
α−2

Mi, ∅
βFi−−⇀↽−−
β−

Yi, the steady-

states of the network (7)-(8),(9)-(10) can be computed by
noting that the network is detailed-balanced, i.e. the forward
and backward rates in each reaction are equal at steady state.
Hence, the steady state values of the mRNAs M,Mi are
determined by the equilibrium values A1E,A2Ei, i = 1, .., n,
respectively, and are independent of the translation process.
We get the following steady-state expressions:

E = QU
K1+Q

, Ei = QIi
K2+Q

,M = A1E,Mi = A2E, (13)

F = A1

W1

RQU
K1+Q

, Fi = A2

W2

RQIi
K2+Q

, (14)

Y = A1B
W1

RQU
K1+Q

, Yi = A2B
W2

RQIi
K2+Q

. (15)

Note that Q,R are the levels of the free RNAP and ribosome,
respectively.

In the formalism defined in §1.B and depending on the
identity of the limited resource, Eq. (1) describes the dynamics
of (7)-(8), while Eq. (2) describes the dynamics of (9)- (10). In
order to write the output in the form (6), we will study several
scenarios in which either the ribosome is limited, or RNAP
is limited. We keep the other resource abundant to isolate the
effects of the limitations in a single resource.

Remark 1: A slightly different mathematical model of
translation (8) would have the mRNA/ribosome complex dis-
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sociating directly upon protein production, and would be as
follows: M+R

w−−⇀↽−−
w̃−

F
β−→M+R+Y, Y

β−−→∅. Nevertheless,

the basic competition phenotype remains the same as can be
seen by defining w− := w̃− + β in (8).

Remark 2: An alternative way to regulate a target circuit is
to use a small molecule such as AHL to activate the target
promoter [7]. The RNAP binding reactions can be written as

follows (compare to (7)): U∗f
µ−−⇀↽−−
µ−

Uf ,Uf + Q
k̃1−−⇀↽−−
k̃−1

E, where

U∗f is the free inactive promoter, and µ is proportional to
the exogenous input. Our model encompasses this case also
since it can be shown that the reparameterization K1 =
(k̃−1/k̃1)(1+µ−/µ) recovers the equations (13)-(15). In other
words, the effective effect of the external input in our model
is to regulate the RNAP dissociation ratio K1. Note that AHL
concentrations can be precisely regulated over four orders of
magnitude [8]. Therefore, employing promoters inducible by
AHL will not have a considerable effect on the dynamic range
of K1.

Parameter Ranges: In order to keep the numbers within
biological ranges, we use the following parameters: Ki ∈
[0.3, 10000] nM,Wi ∈ [5, 2000] µM, I ∈ [1, 1000] nM, U ∈
[1, 1000] nM, i = 1, 2 [2], [7], [8]. Furthermore, whenever
the following parameters are not treated as variables, we use
the following numbers as in [7]: QT = 500 nM, RT =
1000 nM, Ai = 10, B = 300, i = 1, 2.

A. Limited Ribosomes and Abundant RNAP (LRAP)

In this case, RNAP Q is unaffected by the circuit (7)-(8),(9)-
(10), hence its level Q will be constant, Q = QT .

Let FI =
∑n
i=1 Fi, then the conservation law (5) is

R+ F + FI = RT . (16)

Solving the resulting algebraic equations, the free resource
at steady state is found to be:

R = RT

1+γ1U+γ2
∑

i Ii
= RT

1+γ1U+γ2I
,

where γj :=(AjQT )/(Wj(Kj +QT )), j=1, 2. The output is

Y =
RB

W1
M = Bγ1

URT
1 + γ1U + γ2I

.

The output is linearly dependent on RT , and takes an
inhibiting Michaelis-Menten form with respect to the com-
petition I . It also takes a Michaelis-Menten form with respect
to U . The CPDR ρ is given as: ρ = (1+γ1U)/(1+γ1U+γ2I),
which is independent of the total resource RT .

We next study the properties of the output as it depends on
the input and the competition.

As a function of the resource RT , the output is linear as
noted above, but is concave with respect to U . As a function
of the competition, it is convex. Note d2Y/dI2 > 0 for all
I>0. Figure 2 depicts the typical behavior of the competition
phenotype associated with this mode of competition.

Remark 3: The fact that the CPDR is independent of the
total resource might lead one to think that the total resource is
irrelevant for reducing competition. However, this depends on
how we define competition reduction. If we consider strategies
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Fig. 2. The limited ribosome case (LRAP). (a) The output versus
total ribosome for various competition levels, (b) The output versus total
competition for various total ribosome levels. For both panels we have
K1=K2=1nM,W1=W2=5µM, U= 10nM.

to reinstate the level of the output Y to its competition-
free level Y |I=0, then we can increase the total resource to
compensate for the reduction in the output due to competition.
In particular, we can write the required total resource as
R∗T = 1+γ1U+γ2I

Bγ1U
Y |I=0.

B. Limited RNAPs and abundant ribosomes (LPAR)

In this case, the ribosome R will be unaffected by the
circuit (7)-(8),(9)-(10), hence its level R will be assumed to
be constant. In other words, we have R = RT . Therefore, we
write the conservation law (5) as:

Q+ E +
∑
iEi = QT . (17)

In the most general case, solving (17) for Q requires solving
a cubic equation. Therefore, in this subsection, we assume that
K1 = K2 = K to simplify the analysis. This can be justified
in cases when the gene and its competitors are located on the
same plasmid. For instance, the RNAP DRs are taken to be
K1 = K2 = 200 nM when simulating the data in [7]. In this
case, the free RNAP Q and the output Y are

Q = 1
2 (QT−I−U−K)+ 1

2

√
(K + U + I −QT )2 + 4KQT ,

Y =
2QTRTUA1B/W1

K +QT + I + U +
√

(QT −K − U − I)2 + 4KQT
.

As QT grows without bound, we have limQT→∞ Y =
A1B
W1

URT , i.e., the protein is expressed at maximum ca-
pacity. If I grows without bound, then limI→∞ Y = 0.
The competition reduction ratio is written as follows: ρ =

K+QT+U+
√

(QT−K−U)2+4KQT

K+QT+I+U+
√

(QT−K−U−I)2+4KQT

which depends on the

total resource unlike the case in §2.1.
Convexity of the output as a function of the resource: The
output is globally concave, because:

d2Y
dQ2

T
= −2KA1BRTU/W1

((QT−K−U−I)2+4KQT )3/2
< 0, (18)

for all QT ≥ 0. The typical competition phenotypes are plotted
in Figure 3-a,b.
Convexity of the output as a function of the competition :
Simulations show that the response is globally convex when
QT is small. For larger QT , the response starts concave and
then it has an inflection point. Using the same parameters
above, when QT = 1 the response is convex at zero as verified
by computing the second derivative of Y with respect to I
at zero. Figure 3- b shows the transition from convexity to
concavity with higher QT .
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(a) (b)

Fig. 3. Limited RNAP case. (a) The output versus to-
tal RNAP for various competition levels, (b) The output ver-
sus competition with various QT . For both panels we have
K1=K2=1nM,W1=W2=10µM, U=10nM.

C. Distinguishing the competition phenotypes

a) Convexity/concavity: We have been able to prove that,
at steady state, limited ribosome and limited RNAP result in
qualitatively distinct competition phenotypes. For the second,
the output takes a Michaelis-Menten form and is globally con-
vex (18) with respect to the resource (RNAP) level as shown
in Figure 3-a, but, in contrast, for the first it is perfectly linear
with respect to the resource (ribosome level) regardless if it is
abundant or limited; see Fig. 2- a. Furthermore, a high level of
RNAP provides buffering against low levels of competition in
the second case as shown in Figure 3-b, while the output drops
quickly even with low competition in the first case; see Fig. 2b.
We are able to characterize this mathematically by proving that
the output is initially concave (i.e., superlinear) with respect
to competition mediated by limited RNAP, while it is globally
convex (i.e., sublinear) with limited ribosomes. Thus, using
either criterion (titrating resource, or titrating competitors),
we can see a clear difference between these two types of
context limitations. For instance, the level of competition can
be controlled by adjusting the dosage of an inserted plasmid
[7]. Hence, our criteria can be checked visually from the plot
of the output versus the competitor dosage. From a different
point of view, theory helps us guess the source of competition
based upon experimental data.

b) Effect of the RNAP dissociation ratio: The effective RNAP
DR K1 can be modified by using an inducible promoter (see
Remark 2). Keeping the remaining parameters fixed, we may
think of the outputs Y and YI :=

∑n
i=1 Yi as functions of

K1. Let us now analyze the trade-off between the two outputs
when varying the parameter K1 while keeping the resource
levels constant. The resulting parametric curves are also known
as isocost curves in the language of economics [7]. Such
relations can be derived by solving Eq. (16) for K1 in terms
of Y , and then substituting it in the expression of YI .

In the case of LRAP (i.e., Q = QT ), it can be shown that
the relationship between the parameterized outputs is linear
and is given by the following parametric equation:

YI(K1) = BA2IQT

K2W2+A2BIQT
(RT − Y (K1)). (19)

Note that (19) is independent of the ribosome DR W1.
In comparison, the case of LPAR (i.e., R = RT ) is more

complicated. The corresponding relationship between YI(K1)
and Y (K1) is generally nonlinear and its computation requires
solving a cubic equation, as noted before. In order to probe
the effect of K1, we use the simplifying assumption Q �
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Fig. 4. Limited RNAP manifests as sensitivity to the ribosome DR
W1 when parameterizing the outputs in terms of the RNAP DR
K1. (a) Simulated (Y (K1), YI(K1)) parametric curves. The plots
are computed by solving the cubic equation (17) numerically. The pa-
rameters are: U = 500 nM, I = 500 nM,W1 = 500 µM, A1 =
A2 = 10,K2 = 10 nM,W2 = 10µM,K1 ∈ [0.1, 10000]nM.
(b) Data adapted from [7] where the curves are parameterized via the
AHL concentration which corresponds toK1 in our model (see Remark
2), and by varying the RBS strengths which are inversely proportional to
the phenomenological parameter W1 in our model.

K1,K2 which is often satisfied by practical systems [7]. Under
this approximation, it can be shown again that the relationship
between Y (K1) and YI(K1) is linear and is given by the
parametric equation:

YI(K1)= A2I(RTQTA1B−W1Y (K1))
A1W2(I+K2)

. (20)

In this case, the relationship depends on W1. Therefore, the
two modes of competition (for RNAP or ribosomes) are in
principle distinguishable by modifying W1 via variable Ribo-
some Binding Site (RBS) strengths. Note that this conclusion
stands even without the assumption made earlier.

Even though the linear approximation (20) may not hold
in all situations, dependence on W1 in the K1-parameterized
relationship between Y and YI indicates limited RNAP as seen
in Figure 4-a) which depicts a simulation of the parameterized
curves for various values of W1. In comparison, Eq. (19)
is linear and is independent of W1. Figure 4-b) shows
experimental data from [7] that depicts the same scenario. Our
theoretical and computational prediction is consistent with the
slope change noticed in the experimental data. We derived our
conclusions assuming that RNAP is limited and that ribosomes
are abundant. In practical situations, both resources might be
in limited supplies [7].

c) Effect of the Ribosome Dissociation Ratio: Let us now
consider modifying W1, instead of K1. We can again write
the outputs as Y (W1), YI(W1). In the case of LRAP, the
relationship is again linear and it can be written in the same
form as (19). It can be seen that it is independent of the
RNAP DR K1. In the case of LPAR, under the assumption
Q� K1,K2, we get: YI(W1) = A2BIK1QTRT

W2(K2U+K1I+K1K2)
, which

depends on the RNAP DR K1 but is constant. This conclusion
holds without the assumption above since the free RNAP Q
which solves (17) is independent of ribosome DR W1. Hence,
the expressions Y (W1), YI(W1) are not related.

Figure 5-a) shows that the case of limited ribosomes mani-
fests as a decreasing linear relationship when parameterized
by W1 (which can be experimentally controlled by RBS
strengths), but it is independent of K1 (which can be controlled
by utilizing an inducible promoter). On the other hand, the
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Fig. 5. Various interventions can be used to distinguish be-
tween limited RNAP versus limited Ribosome cases (a) Simulated
(Y (W1), YI(W1)) curves for various K1 levels. The parameters
are: U = 500 nM, I = 1 nM,K2 = 10 nM,W2 =
2000µM,W1 ∈ [5, 3000]µM. The curves for the limited RNAP
case are computed by solving the cubic equation (17) numerically.
(b) Simulated (Y (I), YI(I)) curves for various W1 levels for the
case of LRAP. The parameters are U = 1 nM,K1 = K2 =
1000nM,W2 = 10µM.

LRAP LPAR
Resource
Convexity globally linear globally concave

Competition
Convexity globally convex

globally convex
(low resource)

concave then convex
(high resource)

YI vs Y
parameterized by
RNAP DR (K1)

Linear.
Independent of W1

Nonlinear. Depends on
W1

YI vs Y
parameterized by

Ribosome DR (W1)

Linear.
Independent of K1

Constant. Depends on
K1

YI vs Y
parameterized by
competitor copy

number (I)

Linear.
Slope depends on

W1

Nonlinear.
Both slope & intercept

depend on W1

Table I: Comparison of the competition phenotypes discussed in §2.

same relationship is constant in the case of limited RNAP, but
the level is dependent on K1. This manifests by examining the
YI -axis intercepts, which depend on K1 in the case of LPAR,
but are independent of it in the case of LRAP.

d) Effect of the total copy number of the competitor: We
consider next modifying I while keeping U fixed. We write
the outputs as Y (I), YI(I).

In the case of LRAP, we get the linear relationship:
YI(I) = RT −

(
W1(K1+QT )
A1BQTU

+ 1
)
Y (I), where the YI -axis

intercept depends only on RT .
In the case of LPAR, the relationship is generally non-

linear, but under the assumption Q � K1,K2 we get the
following linear relationship: YI(I) = 1

W1
A2BQTRT −(

A2W1(K1+U)
A1UW2

)
Y (I), where the YI -axis intercept depends

on the ribosome DR W1. Figure 5-b) depicts the parametric
curves corresponding to LRAP case where it can be seen that
the YI -axis intercept is constant for various W1.

e) Summary: The results are summarized in Table I.

III. TRANSCRIPTION/TRANSLATION MODEL: RIBOSOME
DOES NOT PROTECT MRNA

In many situations, ribosomes do not protect mRNAs com-
pletely from decay [16]. To model this, we modify (7)-(8),(9)-
(10) by adding the following reactions which describe the
decay of mRNA while bound to the ribosome:

F
α∗

−1−→R, Fi
α∗

−2−→R, i = 1, .., n. (21)

The network is no longer detailed balanced after the inclu-
sion of decay of the bound mRNA-ribosome complexes. The
steady-values of M , Mi are now dependent on the resource

R. But we still have the promoter-RNAP complex expressed
at steady-state as:

E = QU
K1+Q

, Ei = QIi
K2+Q

. (22)

Let aj = α∗−j/α−j be the ratio of the decay rates of the
bound and unbound mRNA. The steady-state values of the
mRNAs are given as: M = A1E/(1 +Ra1/W1),Mi =
A2Ei/(1 +Ra2/W2), where Wj = (α∗−j + w−j)/wj , j =
1, 2. The steady-values of the mRNA-ribosome complexes
and the output in terms of the free resource R are given as:
F = A1RQE

W1+a1R
, Fi = A2RQEi

W2+a2R
, Y = AB

W
RQU
K1+Q

(
1

1+Ra1/W1

)
.

Observe that when α∗−1 = α∗−2 = 0, we recover the case
discussed in §2. We study different scenarios next.

A. Limited ribosomes and abundant RNAP

As before, we have abundant RNAP, hence Q = QT . The
only conservation law is (16). Therefore, we need to solve
for the free ribosome R. Let E be as given in (22), and let
EI =

∑
iEi where Ei is defined in (22). The conservation

law (16) results in a cubic equation. Therefore, we assume that
A = A1 = A2,W = W1 = W2,K = K1=K2, a = a1 = a2
in order to simplify the analysis. We get (23). The output can
be written as in (24). Note that when a1 = a2 = 0, we get
the case discussed in §2.1. Next, we show that the properties
of the system above can be deduced by studying a different
system that has been studied earlier.

B. Different systems have the same phenotype

It is perhaps surprising, that two very different biological
systems may lead to mathematically identical competition
phenotypes. To formalize this, let us write the (6) as: Y =
H(V ; Λ) where the inputs are V = [U,RT , I1, .., In]T , and
Λ are a set of parameters (kinetic rates, for example) that
appear in (1)-(4). Hence, we have a steady-state expression
H1(V1; Λ1) that gives us the amount of output, as well as a
second function H2(V2; Λ2) for a different system; equivalent
phenotypes will have the property that there is a diffeo-
morphism ψ : (V1,Λ1) 7→ (V2,Λ2) so that every function
H2(V2; Λ2) can be written as H1(ψ(V1,Λ1)).

As a concrete example, let us revisit scenarios §2.2 and
§3.1 discussed earlier with A1 = A2 = A. For the system
in §3.1, we consider the case in which the mRNA decays at
the same rate, whether it is bound to the ribosome or not,
i.e., a1 = a2 = 1. One can prove that the two systems
are equivalent, under a reparameterization given as follows:
k−/k 7→ (w−+α−)/w, QT 7→ RT , U 7→ αUQT /(α−(K +
QT )), BAURT /(W + RT ) 7→ B, I 7→ αIQT /(α−(K +
QT )), where I :=

∑
i Ii. Note that the underlying biochemical

systems are very different, and the two systems of ODEs are
distinct. In fact, they result in different transient behavior.
However, the steady-states are the same, as shown theoretically
and illustrated in Fig. 6.

C. Abundant ribosome and limited RNAP

Similar to the previous section, we let R = RT . Hence, the
only conservation law is (17). Since decay affects only the
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R = (2RTW )
/(

W +A(E + EI)− aRT +

√
(W +A(E + EI)− aRT )

2
+ 4aRTW

)
. (23)

Y = (2RTBAE)
/(

W +A(E + EI) + (2− a)RT +

√
(W +A(E + EI)− aRT )

2
+ 4aRTW

)
. (24)
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Fig. 6. Two different competition systems with different transient are
identical at steady state.

ribosome-mRNA complex, we can see immediately that this
case is very similar to the case discussed in §2.2 except for
an additional factor. Hence, similar analysis can be replicated.

IV. DISCUSSION

1) Generalization: The competition phenotypes studied in
the previous sections can be generalized to other biologi-
cal contexts by classifying them into two main categories:
externally-regulated targets, and conserved targets. Ribosome
competition studied in §2.1 can be studied under the first
category. This is since the target which consumes the resource
is the mRNA which is not conserved. Hence, the model can
be essentially written as follows:

(Circuit) ∅
αU−−⇀↽−−
α−

M, R + M
k−−⇀↽−−
k−

Y

(Competition) ∅
αIi−−⇀↽−−
α−

Mi, R + Mi
k−−⇀↽−−
k−

Yi, i = 1, .., n.

In addition to mRNAs, the above model can represent ligand-
activated enzymes M,Mi, i = 1, .., n competing for a sub-
strate R, single-guide RNAs (sgRNAs) competing for a lim-
ited amount of dCas9 in CRISPRi [17], [18], or externally-
activated TFs competing for a single promoter.

On the other hand, the case discussed in §2.2 has the RNAP
as a limited resource. Hence, the target that consumes the
resource is the promoter which is conserved. Hence, the model
can be written essentially as follows:

(Circuit) R + M
k−−⇀↽−−
k−

Y,

(Competition) R + Mi
k−−⇀↽−−
k−

Yi, i = 1, .., n.

In addition to promoter, the above model can represent con-
served enzymes M,Mi, i = 1, .., n competing for a substrate
R, or conserved TFs competing for a single promoter.

2) Limitations: Our framework has included multiple sim-
plifications to allow analytical derivations and facilitate clear
interpretations. For instance, we assumed that the competitors
behave similarly to each other. This can be justified when
the target gene and its competitors are co-located on the
same plasmid with high copy numbers, and with their own
orthogonal RNAPs and ribosomes to minimize interactions

with the rest of the genome [10], [7], [11]. Needless to say, this
does not always hold. In addition, we have assumed a fixed
number of competitors and a constant amount of allocated
resources. However, the number of active pathways and the
amount of allocated resources in a cell change dynamically
depending on stress and growth conditions [19]. Studying such
scenarios is subject to future work.
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location of orthogonal ribosomes facilitates uncoupling of co-expressed
genes,” Nature Communications, vol. 9, no. 1, pp. 1–12, 2018.

[12] J. Miller, M. A. Al-Radhawi, and E. D. Sontag, “Mediating ribosomal
competition by splitting pools,” IEEE Control Systems Letters, vol. 5,
no. 5, pp. 1555–1560, 2021.

[13] C. D. McBride and D. Del Vecchio, “Predicting composition of genetic
circuits with resource competition: demand and sensitivity,” ACS Syn-
thetic Biology, vol. 10, no. 12, pp. 3330–3342, 2021.

[14] M. A. Al-Radhawi, A. P. Tran, E. A. Ernst, T. Chen, C. A. Voigt,
and E. D. Sontag, “Distributed implementation of boolean functions by
transcriptional synthetic circuits,” ACS Synthetic Biology, vol. 9, no. 8,
pp. 2172–2187, 2020.

[15] T. Chen, M. A. Al-Radhawi, C. A. Voigt, and E. D. Sontag, “A synthetic
distributed genetic multi-bit counter,” IScience, vol. 24, no. 12, p.
103526, 2021.

[16] A. Deana and J. G. Belasco, “Lost in translation: the influence of
ribosomes on bacterial mRNA decay,” Genes & Development, vol. 19,
no. 21, pp. 2526–2533, 2005.

[17] S. Zhang and C. A. Voigt, “Engineered dCas9 with reduced toxicity
in bacteria: implications for genetic circuit design,” Nucleic Acids
Research, vol. 46, no. 20, pp. 11 115–11 125, 2018.

[18] P.-Y. Chen, Y. Qian, and D. Del Vecchio, “A model for resource compe-
tition in CRISPR-mediated gene repression,” in 2018 IEEE Conference
on Decision and Control (CDC), 2018, pp. 4333–4338.

[19] R. Balakrishnan, R. T. de Silva, T. Hwa, and J. Cremer, “Suboptimal
resource allocation in changing environments constrains response and
growth in bacteria,” Molecular systems biology, vol. 17, no. 12, p.
e10597, 2021.

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2022.3186840

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


