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Abstract: This extended abstract discusses the role that systems theory plays in unveiling
fundamental limitations of learning algorithms and architectures when used to control a
dynamical system, and in suggesting strategies for overcoming these limitations. As an example,
a feedforward neural network cannot stabilize a double integrator using output feedback.
Similarly, a recurrent NN with differentiable activation functions that stabilizes a non-strongly
stabilizable system must be itself open loop unstable, a fact that has profound implications
for training with noisy, finite data. A potential solution to this problem, motivated by results
on stabilization with periodic control, is the use of neural nets with periodic resets, showing
that indeed systems theoretic analysis is instrumental in developing architectures capable of
controlling certain classes of unstable systems. The abstract finishes by arguing that when the
goal is to learn control oriented models, the loss function should reflect closed loop, rather than
open loop model performance, a fact that can be accomplished by using gap-metric motivated
loss functions.
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1. INTRODUCTION AND MOTIVATION.

Despite recent advances in Machine Learning (ML), the
goal of designing control systems capable of fully exploiting
the potential of these methods remains elusive. Modern
ML methods can leverage large amounts of data to learn
powerful predictive models, but such models are not de-
signed to operate in a closed-loop environment. Recent
results on reinforcement learning offer a tantalizing view
of the potential of a rapprochement between control and
learning, but so far proofs of performance and safety
are mostly restricted to limited cases (e.g. finite horizon
LQR/LQG or iterative tasks). Thus, learning elements are
often used as black boxes within the loop, with limited in-
terpretability and less than completely understood proper-
ties. Further progress hinges on the development of a prin-
cipled understanding of the limitations of control-oriented
machine learning. This extended abstract presents some
initial results unveiling the fundamental limitations of
some popular learning algorithms and architectures when
used to control a dynamical system. For instance, it shows
that even though feed forward neural nets are universal
approximators, they are unable to stabilize some simple
systems. Along these lines we also show that a recurrent
neural net with differentiable activation functions that
stabilizes a non-strongly stabilizable system must be itself
open loop unstable, and discuss the implications of this
fact for training with noisy, finite data. On the other hand,
this difficulty can be overcome by using either time varying
architectures or architectures with periodic resets. We also
present some empirical evidence that conventional, off the
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shelf Reinforcement Learning will fail to stabilize non-
strongly stabilizable plants. The extended abstract finishes
by arguing that when the goal is to learn stabilizing
controllers, the loss function should reflect closed loop
performance, a fact that can be accomplished by using
gap-metric motivated loss functions.

1.1 Fundamental limitations of Feed Forward NN.

Even though Feed Forward NN (FFNN) are routinely used
as controllers, there are fundamental obstructions that
may prevent the existence of stabilizing FFNN controllers
with continuous activation functions (Sontag and Suss-
mann (1980)). In this portion of the extended abstract
we present some simple examples illustrating these limita-
tions.

Single Hidden Layer FNN. Recall the single hidden
layer FNN can approximate arbitrarily well any continuous
functions (Cybenko (1989). However, as shown in (Sontag
(1992)), there exists an asymptotically controllable system
that has the origin as a locally asymptotically stable
equilibrium point of the zero input dynamics and yet it
cannot be be stabilized on compact sets using a single
hidden layer FNN, even with discontinuous activation
functions. This limitation arises from the fact that the
(one sided) inverse needed to implement a stabilizing
controller cannot be generically approximated by a linear
combinations of scalar functions of linear combinations,
even when the forward mapping is continuous.

Similarly, single hidden layer FNN cannot control non-
honolomic systems due to their inability to implement
Lie Brackets. On the other hand, since continuous-time



periodic controllers can overcome topological obstruc-
tions (Khaneja and Brockett (1980)) we conjecture that
if ẋ = f(x) + g(x)u is stabilizable, there is a recurrent
NN (RNN) with (continuous) activation ReLU, state z,
and input x, and a feedback u = k(z, x) so that {(0, z)} is
asymptotically stable.

The discussion above illustrates the limitations of single
hidden layer FFNNs when used as controllers. However,
this leaves open the question of whether multi-layer FFNN
can be used as universal controllers. In the next section we
show that this is not the case.

1.2 Inadequacy of Deep FFNNs for output feedback

In this section we illustrate with a simple example the
limitations of FFNNs when used to implement output
feedback controllers. To this effect, consider the stabiliza-
tion of a double integrator using output feedback,

ẋ1 = x2
ẋ2 = f(x1) ,

(1)

where f(x1) is implemented by a FFNN. Such a con-
troller can never render the origin a globally asymptot-
ically stable equilibrium point. To see this, consider the
“energy” function V (x1, x2) = 1

2x
2
2 −

∫ x1

0
f(λ)dλ. Since

dV/dt ≡ 0, trajectories starting at any (0, x2),x2 6= 0
cannot asymptotically approach the origin (0, 0). To be
precise, suppose f(x1) is locally bounded and Lebesgue

measurable. Then F (ξ) :=
∫ ξ
0
f(λ)dλ is locally Lipschitz,

and x1(t) is absolutely continuous (a.c.), so also F (x1(t)) is
a.c., so V is a.c. Thus, the chain rule can be applied, and V
is constant along trajectories. (The a.c. property rules out
examples such as the Cantor function, where derivatives
can be identically zero yet the function is not constant.)

1.3 RNNs and non-strongly stabilizable systems

This portion of the extended abstract discusses the chal-
lenges in using RNNs to control non-strongly stabilizable
plants, that is, Linear Time Invariant (LTI) plants that
cannot be stabilized by open loop stable LTI controllers.
These plants are interesting both on their own and because
their relationship to the problem of simultaneous stabi-
lization (Doyle et al. (1992)). Recall that a SISO plant
is strongly stabilizable if it satisfies the parity interlacing
property Doyle et al. (1992): the number of real poles in
the right half plane (RHP) (counted according to their
multiplicity) in between every pair of RHP zeros (including
those at infinity) is even.
Proposition 1. If a RNN with differentiable activation
functions stabilizes a non-strongly stabilizable plant, then
the RNN must be open loop unstable.

The proof follows by considering the controller obtained
by linearizing the input/output (between time series)
mapping implemented by the NN.

A more interesting case arises if we allow for recurrent NN
that implement non-smooth mappings. To investigate this
case, consider an ideal setting where a known, open loop
unstable internally stabilizing controller is used to train
the neural net (Fig. 1). This scenario arises for instance
when seeking to optimize performance. In this situation,
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Fig. 1. Using the closed-loop signals generated by a stabi-
lizing controller to train a NN.

one can use this pre-trained NN as an initial controller and
then adjust its weights (for instance via gradient descent)
to improve performance.

Let i(t) and o(t) denote the input output signals. Since
the controller stabilizes the loop, it follows that i(t), o(t) ∈
L∞, so in principle these bounded signals could be used
to train a NN. Nevertheless, as we show next, a NN that
interpolates all input/ouput pairs generated by an open
loop unstable controller, has to be open loop unstable.
Proposition 2. Consider an unbounded mapping C : L∞ →
L∞,e. Let Ib ⊆ L∞ denote the set of essentially bounded
inputs that result in bounded outputs, i.e.

Ib .= {r ∈ L∞ : (s
.
= Cr) ∈ L∞}

Then, if an operator NN is such that NN r = Cr a.e. for
all r ∈ Ib, NN must be open loop unstable, in the sense
that there exists some ro ∈ L∞ such that NN ro 6∈ L∞
From the observation above it follows that the NN can
be trained in open-loop using the closed loop signals
generated by an open loop controller only in the ideal
case that these signals are perfectly known. This is a
consequence of the fact that, since the NN is open-loop
unstable, a suitably chosen perturbation of the input
signal will lead to unbounded outputs. The discussion
above leaves open the question of whether the NN can
be trained in closed loop. As we show next, if the NN
has differentiable activations, closed loop training is also
likely to fail, due to the sensitivity of the parameters with
respect to the observed outputs. For simplicity, we consider
a SISO tracking scenario where the NN implements an LTI
controller and the goal is to find the controller parameters
θ that minimize some function L[e(θ, u)] of the output e
corresponding to a given input u, that is:

θo = argmin
θ
L[e(θ, u)]

where

e(θ) =
u(s)

1 + P (s)C(s, θ)

To illustrate the difficulties arising when the controller
is open loop unstable, we will compute the gradient of
the loss function with respect to the parameters of the
controller. Let C = N

D denote a coprime factorization of
C, parameterized directly in term of its poles and zeros,
that is D(s) = DoΠ(s−θi) and N(s) = NoΠ(s−ψi). Since
C is open loop unstable, at least one θi > 0 and

∂L
∂θi

=
∂L
∂e

∂e

∂C

∂C

∂θi
=
∂L
∂e

−P
(1 + PC)2

∂C

∂θi
u(s)

=
∂L
∂e

P

(1 + PC)2

(
C

s− θi

)
u(s)

(2)



Fig. 2. Deep Reinforcement applied to a double integrator (top) and a non-strongly stabilizable plant (botton).

In the ideal case where ∂C
∂θi

can be exactly computed the

poles of ∂C
∂θi

are cancelled by the zeros of −P
(1+PC)2 and

the overall system is stable. On the other hand, if only
approximate values of the gradient are available (due for
instance to finite and/or discrete time approximations),
then this exact pole-zero cancellation no longer holds,
leading to an unstable mapping ∂C

∂θi
→ ∂L

∂θi
.

The developments above raise the question of whether
a non-strongly stabilizable plant can be stabilized by an
open loop stable controller. An affirmative answer to this
question was given in Savkin and Petersen (1997), showing
that this is indeed possible when using linear time varying,
infinite dimensional controllers. An alternative, simpler
controller is presented below:
Proposition 3. Consider a non-strongly stabilizable LTI
plant P and an LTI stabilizing controller with state space
realization: Ac, Bc, Cc, Dc. Then the controller

C(y) =


ẋc = Acxc +Bcy
xc(t

+) = xc(t
−), t 6= kT

xc(kT ) = 0
u = Ccxc +Dcy

(3)

is open loop stable and stabilizes P .

Intuitively, the states of the controller are reset every T
seconds to prevent them from growing too large. At the
same time, since for t ∈ (kT, (k + 1)T ) the LTI controller
is acting, T can be chosen so that at the end of each cycle
the state of the plant satisfies ‖x(kT + T )‖ < ‖x(kT )‖.
While in principle this avoids the difficulties entailed in
training an open-loop unstable controller, at the moment
is unclear how to implement and train such a controller
using available NN architectures.

1.4 Reinforcement Learning

Next, we present some experiments illustrating the dif-
ficulties of using Reinforcement Learning to control non-
strongly stabilizable plants. Consider the problem of stabi-
lizing a plant using Deep Reinforcement Learning. To this
effect, we considered a neural network architecture consist-
ing of two hidden layers with leaky ReLu activations and
a set of discrete actions U . The NN takes an observation
(i.e., yk = Cxk) and outputs a vector qk = Vθ(yk) of the
same dimension as the number of actions, where each entry
is a prediction of the value from taking the corresponding
action. The next control action uk is selected as the one
corresponding to the maximal entry in q, with probability
1 − εk, or a random action with probability εk, where
εk = max{εmin, 0.99 ∗ εk−1} The reward corresponding to
the action uk at state xk is set to be −‖xk‖22.

The neural net was trained with Q-learning as follows. Let
utaken,k denote the action taken at step k, and let qk+1 be
the vector obtained by applying the neural network to the
next observation yk+1 = Cxk+1. We then set q̂k to be the
vector obtained by replacing the entry in qk corresponding
to utaken,k with −||xk||2+γmax{qk+1}, where max applied
to a vector denotes the largest entry. Finally, we perform
a gradient descent step on θ, the weights of the NN, with
objective ‖Vθ(yk) − q̂k‖2. Note that while knowledge of
the true states was used in training (through the reward),
the policy here depends only on the observations yk. We
applied this approach on both an “easy” plant (a double
integrator with state feedback)

x(k + 1) =

[
1 0
1 1

]
x(k) +

[
1
0

]
u(k)

y(k) = x(k)

(4)



and a “hard” one (not strongly stabilizable)

x(k + 1) =

[
1.2 0
0.1 1

]
x(k) +

[
0.1
0

]
u(k)

y(k) = [1 −1]x(k)

(5)

As shown in Fig. 2 the Deep RL algorithm described above
stabilizes the “easy” case but fails to do so for the non-
strongly stabilizable one.

1.5 Open Loop vs Closed Loop Distances

In this portion of the extended abstract we argue that
when using a NN to model a plant, the loss function used
to train it should take into account the closed-loop distance
between the the unknown plant and its model, rather than
the open loop one. Consider the open-loop unstable plant
G1 = 100

2s−1 . Modelling this plant with a NN such that
the open loop distance, measured in terms of the induced
norm ‖(G1−NN)‖`i→`o is finite, will require an open loop
unstable net. On the other hand, when the loop is closed
with the simple controller K = 1, the original plant G1

and the open-loop stable plant G2 = 100
2s+1 have virtually

indistinguishable performance (Fig 3) Thus, if the goal

Fig. 3. Closed loop step responses of G1 and G2.

is to designing controllers, the stable plant G2, which is
substantially easier to model using a NN, can be used as
a proxy for G1 in the design process. This observation
suggests that, when training a NN, one should try to
minimize a closed-loop distance, rather than an open loop
one. One such metric is the gap metric (see for instance
Zhou and Doyle (1998)). Given two plants G1, G2 with
normalized coprime factorizations Gi = Ni

Di
, i = 1, 2 the

ν-gap δν is defined by

δν(G1, G2) = supw| −N2(jw)M1(jw)+

+M2(jw)N1(jw)|
Plants with small δν can be stabilized by the same H∞
optimal controller and have similar closed loop transfer
functions (see Zhou and Doyle (1998) for a formalization
of this statement). For instance, for the example above
δν(G1, G2) = 0.02, which explains the virtually indistin-
guishable closed loop responses. This suggest that one
should learn coprime factorizations, rather than plants,
and then perform a model (in)validation step, as proposed
in Steele and Vinnicombe (2001) to estimate the gap be-
tween the learned model and the true plant. This approach

has the additional advantage that it can handle unstable
plants. While learning coprime factors directly from data
is an open problem, the results below suggest that, at least
in the noiseless case, this can be accomplished by solving
two convex Nevanlinna Pick interpolation problems.
Proposition 4. Given input/output pairs {r(zi), y(zi)}ni=1
there exist stable transfer functions N(z),M(z) such that

y(zi) = N(zi)r(zi)
M(zi)

if and only if there exist u(z) such that

following conditions hold:

PN =

[
r(zi)r

∗(zj)− u(zi)u
∗(zj)

1− (ziz∗j )−1

]
i,j

� 0

PM =

[
y(zi)y

∗(zj)− u(zi)u
∗(zj)

1− (ziz∗j )−1

]
i,j

� 0

Using Schur complements, these conditions can be trans-
formed into convex LMIs in u. Once the Pick matrices PN
and PM have been found, state space realizations for N
and M can be obtained using for instance the formulas in
Parrilo et al. (1998).

1.6 Conclusions

This extended abstract illustrates the challenges entailed
in using ML to control dynamical systems. As shown
here, learning stabilizing controllers places additional con-
straints on the architectures and on the algorithms used
to train them. Thus, we argue that control-agnostic ML
is unlikely to succeed in controlling challenging systems.
Rather, the choice of representations and training has to
be guided by systems theory.
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