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What cannot be seen correctly
in 2D visualizations of single-cell ‘omics data?
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A common strategy for exploring single-cell ‘omics data is visualizing 2D nonlinear projections that aim to
preserve high-dimensional data properties such as neighborhoods. Alternatively, mathematical theory and
other computational tools can directly describe data geometry, while also showing that neighborhoods
and other properties cannot be well-preserved in any 2D projection.
l

l

,

-

-

-

,

t

s

s

t

-

s

-

s

s

f

,

-

y

s

-

s

Introduction
With the arrival and establishment of sin-

gle-cell ‘omics techniques over the past

decade,1,2 in which a sizable number of

cells (103–106) can each be measured

for a sizable number of features (102–

105), biological studies increasingly face

the challenges of big data. In dealing

with high-dimensional data, explorative

tools are indispensable for initial data

analysis, visualization being perhaps the

most obvious form. In the familiar case

of low-dimensional (often 2D) data, exam-

ining scatterplots or curves immediately

narrows down the relevant concepts for

further study based on the shape/geome-

try of data, e.g., whether a studied phe-

nomenon is more categorical or contin-

uous or whether it is underlain by a

linear, sinusoidal, or sigmoidal function.

However, in higher dimensions, direct

visualization of N-D data shape is infea-

sible, prompting various strategies for

indirectly visualizing the data.

In the field of single-cell ‘omics anal-

ysis, a prominent strategy for visualization

is to compute low-dimensional represen-

tations of N-D data points in the hopes

that the representation produced by

such procedures will preserve at least

certain aspects of the N-D data’s geome-

try (we use ‘‘representation’’ herein to

mean the image of a one-to-one function

from the set of N-D data points to a

low-dimensional, often 2D, Euclidean

space). Commonly employed computa-

tional methods include principal compo-

nent analysis (PCA), multi-dimensional

scaling (MDS), Isomap, t-stochastic

neighborhood embedding (tSNE), uniform

manifold approximation and projection
(UMAP), and variations thereof, each

based on slightly different philosophies

of what geometries are key to preserve

(e.g., inter-point distances, global topol-

ogy of points, or density of data points).

While there are many efforts toward

refining low-dimensional representations

of N-D data geometry, alongside critica

evaluations of whether these representa-

tions are meaningful,3 in this work, we

highlight aspects of N-D data geometry

that are fundamentally impossible to

represent in low dimensions and hence

must be ‘‘visualized’’ in other ways,

without mapping data points into a

2D plane.

The impossibility of properly represent-

ing high-dimensional geometry in lower

dimensions is a well-known phenomenon

in the familiar example of representing the

Earth’s surface (i.e., 3D points lying on a

2D surface) as a cartographic map (i.e.,

2D visualization on the Euclidean plane),

which necessarily leads to local and

global distortions no matter the map

convention. For example, the shortest

paths on the Earth’s surface often

become nonlinear curves on a map

(such as the red path between two cyan

locations in Figure 1A) instead of the usua

straight lines suggested by the carto-

graphic visualization. Even relative dis-

tance relationships between points

cannot be realized on the map, e.g., it is

possible for four points to be equidistant

on the Earth’s surface (shown in

Figure 1B with either 3D Euclidean dis-

tances in red or the shortest paths along

the surface in blue), whereas no map

can have more than three points be equi-

distant, leading at least one point to be
Cell Systems 14, September 20,
arbitrarily placed farther or closer to the

others compared to reality. Furthermore

no map can preserve even the neighbor

hood relations of all points: there will al

ways be points immediately adjacent in

reality that appear in disjoint regions of a

map, such as those highlighted in red in

Figure 1C. Thus, there exists no 2D visual

ization of the Earth’s surface that can

faithfully represent quantitative, relative

or even qualitative notions of local and

global relationships. In general, the exten

of problems with 2D data visualization

grows worse as the original dimension

grow higher, and just as 2D cartographic

maps need to be understood in contex

after analyzing the Earth’s surface geom

etry in 3D space, 2D data visualization

need to be understood after first analyzing

single-cell ‘omics data geometry in high

dimensional space.

The intuitive problems about local and

global relationships of points in Figure

1A–1C are relevant to single-cell ‘omic

data analysis since the organization o

single-cell expression is often interpreted

as indications of cell states and types

developmental landscapes, or disease

progression. To avoid both being misled

by 2D visualizations as well as neglecting

biologically insightful geometric data fea

tures, various concepts from geometr

and topology can be used to understand

the high-dimensional geometry of the

data directly. However, such a solution

will not take the simple form of a single

standalone computational package: to

generalize all the intuitive visual notion

in 2D that are immediately obvious to

the eye at a glance, the field of mathe

matics had to develop entire subfield
2023 ª 2023 Published by Elsevier Inc. 723



Figure 1. Quantitative paths and relative distances of data points are misrepresented in 2D
(A) Example of the shortest path between two locations on Earth, appearing as a curve on a Mercator projection map. See https://github.com/shuwang543/
what_cannot_be_seen_in_2D for methods of determining when geodesics are inevitably curved in 2D representations.
(B) Four equidistant points in a tetrahedron (red), which are simultaneously equidistant on the sphere (blue). In the plane, four points can be arranged in a square to
minimize their deviation from equidistance.
(C) Examples (in red) of adjacent regions of the Earth that are discontinuous on a map. Image of Mercator projection, obtained fromWikimedia Commons, based
on NASA’s Earth Observatory Blue Marble.
(D) Two geodesics (green) of the 10-PC PBMC data (black) projected onto the tSNE map. The endpoints of the geodesics are indicated in blue, with intermediate
nodes shown as circles. The usual straight-line geodesics on the Euclidean plane of the tSNE map are shown in magenta.

(legend continued on next page)
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of geometry and topology just to under-

stand particular notions rigorously in

higher dimensions. For example, the

three problems exhibited in Figures 1A–

1C are respectively motivated by general

results from the separate subfields of dif-

ferential geometry, discrete geometry,

and algebraic topology. These subfields

not only pinpoint general conditions un-

der which local relations are inevitably

distorted in low-dimensional representa-

tions of high-dimensional objects but

also provide a rigorous descriptive lan-

guage for geometrical features existing

exclusively in higher dimensions, for

which some data-oriented computational

tools have recently become available,

such as from the disciplines of manifold

learning and topological data analysis

(TDA). Thus, rigorous analysis of high-

dimensional data geometry requires

carefully defining the specific visual

notion that is of biological interest and

applying the corresponding mathe-

matical definition and computational

tools that generalize that visual notion.

To describe the complete ‘‘shape’’ of

a high-dimensional dataset, one would

then inevitably need multiple tools and

packages based on different subfields

of geometry and topology.

As a practical example, we analyze

herein an existing public single-cell RNA

sequencing dataset of �5,000 peripheral

blood mononuclear cells (PBMCs) from a

single patient, available at the 10x Geno-

mics website (https://www.10xgenomics.

com/resources/datasets/pbmcs-3p_acda_

sepmate-3-1-standard). The dataset

comes with UMAP and tSNE visualiza-

tions, predefined k-means clusters and

differential gene expression (DGE) anal-

ysis, and a dimensionality reduction of

the data to the first 10 principal compo-

nents (PCs) that we take as ground truth.

Applying data analysis tools based on dif-

ferential geometry, discrete geometry,
(E) Several randomly chosen geodesics of the 10-PC
was shorter than 5 nodes, the pair of points were rej
(F) (Top) Cell types of each single-cell cluster. Cluster
(Pl, platelets; ErP, erythroid precursor; Mo, monocyt
(G) Selected differentially expressed genes (p < 10�1

(H) Given three points x1, x2, and x3 on the 1D Euclide
(I) Proportion of possible permutations for pla
what_cannot_be_seen_in_2D for methods of countin
(J) k-means clustering results for k = 5, 6, and 7 of P
centroids shown below when calculated in tSNE spa
(K) Spearman correlations and p values for pairwise d
geodesic distance. To compute geodesic distances
representative, and geodesics were computed subs
and algebraic topology onto the PBMC

dataset, we detect and describe features

of the single patient PBMC expression

that are exclusively high dimensional.

Consequently, every possible 2D visuali-

zation of even this simple dataset on a

Euclidean plane necessarily distorts loca

and global relations at quantitative, rela-

tive, and qualitative levels analogous to

maps of the Earth’s surface. In general,

we anticipate that distinct insights into

the organization of single-cell data may

exist exclusively in the high-dimensiona

geometry of data and are theoretically

invisible or misrepresented during the

common practice of finding 2D represen-

tations of single-cell data points.

Particular issues
Quantitative distances and paths

are distorted: Differential geometry

and curvature

The concept of data manifolds already

appears frequently in discussions of sin-

gle-cell ‘omics data to roughly denote

the idea that the N features in high-

dimensional data are not independent

and therefore can be specified with fewer

than N parameters, e.g., the x, y, and z

coordinates of points on a sphere can

be specified using two angles (here we

use ‘‘manifold’’ to denote both manifolds

and manifolds-with-boundary). Nonlinear

dependencies often (although not al-

ways) produce intrinsically curved geom-

etries that are quantified by differentia

geometry concepts such as metrics or

curvature, the same objects describing

the curved space-times of general relativ-

ity. Many tools that model data mani-

folds, such as Isomap or UMAP, also es-

timate differential geometric objects like

the metric as an algorithmic step. How-

ever, most features occurring in intrin-

sically curved manifolds cannot be

captured in a 2D plane, which is intrinsi-

cally flat. The spherical surface of the
neighborhood graph (same as D) shown in color. Pair
ected for visualization purposes.
s given by k-means clustering for k = 5. (Bottom) Cano
es; NKT, natural killer/T cells; B, B cells).
0) of each cluster that identify cell types.
an space, a fourth point can be placed into one of fou
cing a k’th point in a Euclidean space of di
g permutations.
BMC data shown as coloring in tSNE space, with s
ce or 10-PC space. Spearman correlation r of the pa
istances in either the tSNE or UMAP space, relative to
between cluster centroids, the nearest data point to
equently between these representative data points.
Earth is a standard example of an intrinsi

cally curved manifold in which distances

angles, areas, etc. cannot be preserved

in any representation on a flat plane. Fo

nonlinear data manifolds in general, we

expect the shortest paths (geodesics) to

manifest in 2D visualizations as curves

akin to those on the Earth in Figure 1A

leading to distorted perceptions of which

points are closer or farther apart from one

another at both the local and globa

scale. Thus, if one is interested in path

or trajectories in expression space, e.g.

to investigate cell-fate differentiation o

disease progression, it is vital to compute

paths in high-dimensional space a

opposed to tracing them by eye on a

2D visualization.

The PBMC dataset, thought of a

points sampled from a manifold, face

this exact issue when mapped onto a 2D

plane, e.g., by tSNE as in Figure 1D. Geo

desics on a manifold can be estimated

from sampled data by first defining a

neighborhood graph on the data point

(e.g., by connecting points with an edge

if they are within the first k neighbors o

one or the other and assigning distance

as an edge weight) and then computing

the shortest path between two points on

this graph. We computed a neighborhood

graph for the PBMC dataset in the 10-PC

space, choosing a neighborhood size

of k = 30. Two examples of geodesic

in the PBMC dataset are shown in

Figure 1D projected onto tSNE space in

which two data points (blue) were chosen

at random and the shortest path on the

neighborhood graph is shown in green

along with intermediate nodes shown a

circles. While pairs of endpoints visuall

appear as if the geodesic between them

might be the straight magenta lines, the

true geodesics are instead curved, jus

as in the case of the Earth’s surface in

Figure 1A. Plotting additional geodesic

onto the tSNE map in Figure 1E, we see
s of points were chosen at random, and if a geodesic

nical lineage relation between the identified cell types

r relative arrangements demarcated by dotted lines.
mension d. See https://github.com/shuwang543/

catterplots of the pairwise distance between cluster
irwise distances are shown alongside p values.
either the Euclidean distance in 10-PC space or the
each cluster’s centroid was taken as the centroid’s
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that besides the magenta one, geodesics

of the 10-PC PBMC data are mostly not

straight lines on these planar representa-

tions. These symptoms are not a partic-

ular drawback of tSNE but rather suggest

that even this simple PBMC dataset may

have intrinsically curved geometry both

within and between clusters that cannot

be visualized on a plane, inevitably lead-

ing to distorted neighborhoods at various

scales.

From a biological standpoint, the geo-

desics shown in Figure 1E are reminis-

cent of canonical hematopoietic relation-

ships between PBMCs that cannot be

seen from the 2D representation alone.

Clustering by k-means for k = 5

(Figure 1F) identifies platelets, erythroid

precursors, monocytes, a mixture of nat-

ural killer and T cells, and B cells, as

determined by DGE (Figure 1G), and the

geodesics between the cell types are

consistent with their relative positions

on the simplified hematopoiesis lineage

tree shown in Figure 1F. For example,

the yellow geodesic jumps across the

lymphocytes in Figure 1E to connect

the platelets with the monocytes and

erythroid precursors, reflecting their

common myeloid ancestry. The red

and orange geodesics each connect a

lymphocyte cluster to a myeloid cluster,

and both geodesics take a path through

the same neighborhood that connects

the three myeloid cell types, in agreement

with the tree in Figure 1F indicating

that any differentiation path between lym-

phocytes and myeloid cells would not

skip over a myeloid precursor state. In

general, high-dimensional distances and

paths in single-cell expression data,

e.g., as represented by geodesics in the

PBMC dataset, are often considered to

be indicative of relationships between

cell types. These high-dimensional paths

are best characterized using experi-

mental data from different stages of

development, although various methods

for trajectory inference assume that

certain high-dimensional paths or geode-

sics represent developmental relations4

absent such data. Manifolds and geode-

sics also underlie quantitative analyses

of phylogenetic trees,5 and manifold

learning techniques based on studying

quantities such as Laplacians or diffusion

maps can be used to leverage the high-

dimensional geometry of ‘omics datasets
726 Cell Systems 14, September 20, 2023
to enable continuous versions of differen-

tial gene expression analysis.6

Relative distances are distorted:

Discrete geometry and

combinatorics

Whereas concerns are occasionally

raised about distorted quantitative dis-

tances in low-dimensional representa-

tions as a warning against over-interpret-

ing visualizations, one might hope that a

least some notion of relative proximity is

preserved at local or global scales. Unfor-

tunately, even relative proximities of high-

dimensional points are nearly impossible

to preserve in lower dimensions. We saw

in Figure 1B that four points can be equi-

distant on the sphere but not in the plane

and in general it is possible to have a

most N + 1 equidistant points in an N-D

Euclidean space. Thus, k > 3 high-dimen-

sional points may well be equidistant, ye

any representation of those points in the

plane will arbitrarily make some points

closer or farther (the situation can be

worse if one considers non-Euclidean

metrics in the high-dimensional space)

In other words, given a planar representa-

tion of kN-D points, many points will seem

closer or farther apart even under a nul

hypothesis that theN-D points are equally

dissimilar.

Instead of equidistant arrangements o

points, one could alternatively conside

whether it is possible to arrange k points

xi in the plane so that the Euclidean dis-

tances d(xi, xj) follow any particular rank

ordering, i.e., an arrangement of relative

proximities, such as d(x1, x2) < d(x1, x3) <

d(x2, x3). This is related to the possibility

of representing the original ordering o

each point’s nearest neighbors faithfully

in a low-dimensional representation

and such an ordering might be used to

infer the relative similarities of single cells

or disease states. Given r =

�
k
2

�
pairwise

distances, there exist potentially r! permu-

tations of the d(xi, xj)’s that each define a

distinct ordering. Unfortunately, while al

the r! orderings are possible in high di-

mensions, most of them are impossible

in the Euclidean plane. To see this in a

simpler way, consider the possible per-

mutations of only the terms d(xi, xk)’s fo

a fixed xk: intuitively, this is equivalent to

placing xk a certain relative distance

from every other xi. For example, given

three points x1, x2, and x3 on a line, such
as in Figure 1H, a fourth point x4 can

achieve only four out of six possible per

mutations of d(x1, x4), d(x2, x4), and d(x3
x4), each corresponding to one of the re

gions in Figure 1H demarcated by dotted

lines (since x2 is between x1 and x3
d(x2,x4) can never be the largest distance)

In other words, in a 1D representation o

four high-dimensional points, there is a

33% chance that the relative proximity

of the fourth point is impossible to repre

sent on a line and therefore inevitably mis

represented no matter how it is placed.

For the general case of placing the poin

xk into an existing arrangement of k � 1

points xi in an N-D Euclidean space, the

exact number of permutations of the

d(xi, xk) terms can be computed. In

Figure 1I, we show the proportion o

possible permutations for various values

of k and embedding dimension d. The

proportions drop rapidly with increasing

k, and at k = 10, only 0.16% of permuta

tions are possible in a 2D representation

Thus, it is practically impossible that the

relative proximities of k = 103-105 high

dimensional points are preserved in low

dimensional representations. Even less

ambitious criteria may be impossible to

satisfy with low-dimensional representa

tions: suppose that instead of preserving

relative distances of all the data points

we wish to preserve only the relative dis

tances of one data point X to severa

points of interest, e.g., points in or outside

of X’s local neighborhood. For k = 10

such points including X, we would again

only have a 0.16% chance of representing

X’s relative position to the other nine

correctly. At a global scale, suppose we

wished to preserve the relative distances

between centroids of clusters; again

there is only a 0.16% chance of repre

senting the relative position of one

centroid to the other nine correctly.

In the PBMC dataset, we evaluated

whether tSNEorUMAPwere able to repro

duce the relative proximity of cluster cen

troids computed by k-means. Specifically

for k = 5, 6, and 7, we computed pairwise

Euclidean distances of the k cluster cen

troids in the 10-PC space, as well as the

tSNE or UMAP space, and evaluated the

Spearman rank correlation r between

the two sets of pairwise distances (plot

in Figure 1J show results for tSNE). A faith

ful reproduction of relative proximities

would correspond to a rank correlation o



Figure 2. Combinatorial and topological descriptors of high-dimensional data shape
(A) Examples of k-simplices, their inductive relation to (k + 1) simplices, and simplicial complexes.
(B) (Top) Projection of PBMCdata onto amanually selected plane guided by PARTI analysis. Projections of the six vertices of the 5-simplex, fit by PARTI, shown as
magenta stars alongside their respective nearest data points in 10-PC Euclidean space. Cells colored by k-means clustering for k = 6. Red lines indicate edges
along which particular clusters have a substantial percent total variance. The edge with the greatest variance for each cluster is labeled with the percent total
variance. (Bottom) Selected differentially expressed genes (p < 10�10) of the NK cell and T cell clusters.
(C) The homology groupsHk, which are summarized by Betti numbers bk, categorize the k-dimensional cycles on amanifold. Betti numbers for the circle, sphere,
and torus are listed. Various 1D cycles on the torus are shown. Cycles that can be continuously deformed into one another, and therefore belong to a common
category, are shown in the same color. The green cycles are trivial because they can be deformed into a point. Therefore, only the blue and red categories
contribute non-trivially to H1, each contributing 1 to the Betti number b1 of the torus. More details for computing homology groups can be found at https://github.
com/shuwang543/what_cannot_be_seen_in_2D

(legend continued on next page)
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exactly 1, but actual correlation values

were only 0.72, 0.46, and 0.48 for tSNE,

while UMAP did much worse (Figure 1K).

We also computed rank correlations by re-

placing the Euclidean 10-PC distance with

the geodesic distances used in the previ-

ous section (Figure 1K), and correlations

did not improve. Overall, the resulting cor-

relations corresponded to p values ranging

from 0.02 to 0.86. Thus, not only are rela-

tive proximities of cluster centroids not re-

produced exactly, but in some cases, it is

statistically unclear whether the relative

proximities represented in tSNE or UMAP

even correlate with ground truth. Retro-

spectively, this is a sensible result since

only a tiny proportion of distance permuta-

tions can possibly be represented in the

Euclidean plane. So, in general, one must

avoid interpreting even the relative

proximity of points on 2D visualizations,

and biological questions that pertain to

the relative arrangement of points ought

to be addressed by computing high-

dimensional distances (using Euclidean,

geodesic, or whatever metric is most

meaningful to a given study).

While discrete geometry can be used to

reason about the qualitative properties of

visualizations, many discrete tools can

also be used for directly describing the

high-dimensional data itself. In single-

cell ‘omics analysis, clustering is perhaps

the most prevalent form of discrete geo-

metric analysis, in which data distribu-

tions are effectively summarized as a

collection of categories. However, it is

also valuable to simultaneously charac-

terize the distribution of data points both

within and between clusters, e.g., charac-

terizing major axes of variation, and one

approach is to fit polygons (polytopes in

higher dimensions) to data. The simplest

class of polytopes that can be readily fit

to data are simplices (or a union of

simplices called a simplicial complex):

isolated vertices are 0-simplices, a line

segment is a 1-simplex, a triangle a 2-sim-

plex, a tetrahedron a 3-simplex, etc., and,

in general, a k-simplex may be defined
(D) Points sampled uniformly from the sphere shown
the same neighborhood on the sphere but ripped ap
ripped apart can be found at https://github.com/shu
(E) Two instances of barcode plots of the persistent h
the Witness-complex estimation method of the javaP
Witness complexes were computed with maximum
computed with coefficients over Z2.
(F) Maximal interval lengths normalized by the media
tributions are shown for both the PBMC data (blue)
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inductively as a k-dimensional objec

with k + 1 vertices and boundaries

composed of (k �1)-simplices (as in

Figure 2A). For example, a single-cel

RNA sequencing data analysis package

called PARTI7 applies algorithms fo

fitting a k-simplex to data and interprets

the resulting k + 1 vertices of the k-sim-

plex as extremal archetypes of expres-

sion, in analogy to cell types determined

by clustering. However, in addition, the

1D edges, 2D faces, etc. of the k-simplex

can also be used to describe the distribu-

tion of data points between archetypes

which may correspond to differentia-

tion trajectories or cells that transition

continuously between different functiona

states, which can be further investigated

experimentally.

PARTI suggested a 5-simplexmodel fo

the PBMC data based on explained vari-

ability. While a complete representation

of the 5-dimensional PARTI model in 2D

is impossible, we manually found a linea

projection (Figure 2B) for the PBMC data

to visually convey the information

captured by the 1-simplices (edges) o

the model. Data points are colored by

k-means clustering for k = 6, which splits

the previous, continuous NK/T cell cluste

into NK cells and T cells as defined by

DGE (Figure 2B). The 6 clusters happen

to correspond to the 6 vertices (magenta

stars) fit by PARTI, suggesting that we

might interpret the 6 vertices as these

classical immune cell types. However

the cells themselves are distributed be-

tween vertices, as shown in Figure 2B

and cells in each cluster appear to

distribute only along specific edges o

faces, e.g., the platelets distribute sub-

stantially in the direction of the erythroid

precursor, comprising 43% of the clus-

ter’s total 10-PC variance. Specifically

we computed the percent total variance

of each cluster along the direction of othe

cell types, defining the direction in 10-PC

space using pairs of nearest data

points (represented as magenta circles

in Figure 2B) to the vertices, i.e., 1D edges
in tSNE space, colored by the original X, Y, or Z values
art on tSNE are marked by red circles. Other instanc
wang543/what_cannot_be_seen_in_2D.
omology of the PBMC dataset, each with a different s
lex package (http://appliedtopology.github.io/javaple
dimension of 3, maximum filtration value of 4, for 20

n length of all intervals in a given barcode plot for 10
and normal distribution (orange) with the same covaria
of the simplex. We found that each clus

ter, except for B cells, had substantia

variance (>10%) in the direction of othe

cell types, and the largest of those direc

tions are shown in Figure 2B as red edges

labeled with corresponding percentage

values (T cells had two tied directions

with 15%). In other words, a substantia

portion of cell-type heterogeneity is along

directions pointed toward other specific

cell types, as might be expected from he

matopoiesis. Furthermore, we note tha

the 5-simplex model detects that the

continuous NK/T cell cluster is bent

V-shaped along the Erythroid-T cell edge

and the NK-T cell edge. Thus, while the

distinction between NK cells and T cells

in expression space did not manifes

geometrically as disjoint clustering, it did

manifest as a nonlinear feature within a

continuous cluster, which could be de

tected from the 1-simplices fit by PARTI

Retrospectively, this nonlinear cluste

also contained curved geodesics in

Figure 1E, in concordance with the

expectation that intrinsic curvature in the

PBMC data leads to curved geodesics.

We note that the visualization in

Figure 2B is neither necessary nor suffi

cient for reaching these conclusions: the

key steps were fitting a 5-simplex mode

to capture the PBMCdata variability using

a simple discrete object, characterizing

the vertices of the model as cell types

and quantifying the variance between

vertices, which can all be done in any

dimension. PARTI has been applied in

the literature to understand continuums

of cell-type tasks in intestinal villi and live

hepatocytes,8 and simplices have also

been used to understand the micro

environmental cell-type composition ar

chetypes in breast cancer.9 Beyond

simplices, more general polytopes have

even been used to describe high-dimen

sional fitness landscapes in the contex

of epistatic interactions.10 In general

just as clustering in high-dimensions

first before visualizing clusters in a 2D rep

resentation is preferable to clustering
of the points in 3D. Examples of points belonging to
es of manifolds whose neighborhoods are inevitably

et of 100 randomly sampled landmark points used in
x/). Longest bars in H1 and H2 are highlighted in red.
0 different filtration values. Homology groups were

0 different sets of 100 random landmark points. Dis-
nce matrix as the 10-PC PBMC data as a null.
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directly on the 2D representation, various

other kinds of discrete relations between

data points can be described and

computed using other tools from discrete

geometry.

Neighborhoods are qualitatively

distorted: Algebraic topology and

homology groups

Of the geometric features that one might

hope are well represented in low-dimen-

sional visualizations, perhaps the least

demanding requirement is for points that

are neighbors to continue being neigh-

bors in a low-dimensional representation,

even if relative order of local neighbors is

off. In other words, we would like the

data and its low-dimensional representa-

tion to have some notion of topological

equivalence. There are different possible

technical definitions, but here we will

mean homotopy equivalence, which

roughly means that there is a way to

continuously deform (i.e., no ripping apart

of neighboring points and no gluing

together of distant points) the original

data to their low-dimensional representa-

tion and vice versa. We saw, however, in

Figure 1C, that this is impossible for

even the Earth’s surface; note this is a

clear instance in which the global shape

of high-dimensional data has conse-

quences for the local shape of low-dimen-

sional representations; and so local and

global features are not decoupled. From

the perspective of algebraic topology,

the key to understanding why no planar

map can be homotopy equivalent to the

Earth’s surface is the hole inside the hol-

low sphere, which has no equivalent in-

side the 2D plane.

In general, all manifolds can be classi-

fied by the holes they contain, or more

precisely by the cycles on a manifold

that envelope those holes. For example,

circles and loops are 1D cycles, whereas

spheres and ellipsoids are 2D cycles.

Without referring to exact definitions

here, all the k-dimensional cycles are

further classified into a set of categories

Hk called a homology group, based on

which cycles can be deformed continu-

ously into each other. Often, each group

is simply characterized by a Betti number

bk, which essentially counts the number of

k-dimensional holes in the manifold, with

b0 counting the number of connected

components. For example, the Betti

numbers of the circle, sphere, and torus

are listed in Figure 2C. The torus shown
in Figure 2C has non-zero Betti numbers

b2 = 1, b1 = 2, and b0 = 1, where three cat-

egories of 1D cycles are shown in red,

blue, and green. Since the green cycles

can be deformed to a single point, there

is no hole, and they do not contribute to

the Betti number b1. However, the red

and blue cycles can neither be deformed

to a point nor to each other, and therefore

correspond to two different holes result-

ing in the Betti number b1 = 2.

One application for knowing the homol-

ogy groups of a manifold is that in order

for twomanifolds to be homotopy equiva-

lent, it is necessary for them to have

matching Betti numbers. Unfortunately,

any manifold contained in a 2D plane wil

always have bi = 0 for i > 1, explaining

why the Earth’s surface (b2 = 1) cannot

be homotopy equivalent to any set of

points on a map and will therefore always

be ripped apart discontinuously in a

planar representation. For example,

Figure 2D shows a tSNE map of 10,000

points sampled uniformly from a spherica

surface, with red circles highlighting some

of the neighborhoods from the sphere that

have been ripped apart on the map.

Describing the homology of data points

has been a major goal of TDA. However,

to define the topology of a finite set of

data points, one typically has to choose

free parameters (e.g., a distance cutoff),

so for a given set of data points a resulting

homology may be parameter dependent.

Thus, in TDA, one is instead concerned

with persistent homology—homology

groups that persist over large ranges

of parameters—as an indication of the

robustness of any resulting description

of the data homology. Applying the java-

Plex package11 for computing persistent

homology on the PBMC dataset’s 10-PC

space, we computed the first 3 persistent

homology groups using the Witness-

complex approach to define topology.

Briefly, this approach builds a simplicia

complex (Figure 2A) to model the data,

selecting a random subset of data points

as the 0-simplices (vertices) and connect-

ing them into k-simplices if there are suffi-

cient data points (‘‘witnesses’’) occupying

the space between any subset of k + 1

vertices (defined by a distance cutoff rela-

tive to other vertices). The distance cutoff

can be tweaked with a filtration param-

eter, which increases all cutoffs globally

by a fixed amount. The resulting groups

are shown in Figure 2E as barcode
plots for two instances of the Witness

complex computation (not to be confused

with the experimental barcodes used in

sequencing preparation) in which each

blue bar corresponds to a hole/homolog

group that persists over a range of dis

tances (the filtration parameter).

The barcodes in Figure 2E suggest tha

the data have non-zero Betti numbers in

all three computed homology groups

judging from the bars highlighted in red

that are substantially longer than the

short bars arising from holes that appea

briefly due to random fluctuations

We computed barcodes for 100 instance

of Witness-complexes, compared to a

normal distribution with the same covari

ance matrix as the PBMC data (a nu

model with no interesting topology and

therefore trivial homology); the longes

bars were significantly longer on average

for H1 and H2 in the PBMC data

(Figure 2F). Specifically, Figure 2F show

the histograms of the longest bar length

divided by the median bar length of a

given barcode. A non-zero b2 is sufficien

to show that any 2D representation o

the data will be discontinuously ripped

analogous to the discontinuous edges o

cartographic maps. This may also explain

why the yellow, cyan, or blue geodesic

shown in Figure 1E suddenly jump acros

the tSNE space; there would always be

continuous paths of cell expression tha

are ripped apart into disjoint path seg

ments on any 2D map. In general, one

must be cautious when interpreting the

visual neighborhoods of a 2D represen

tation, because if the topology of the

high-dimensional data is even slightl

complex (i.e., bi > 0 for i > 1), at leas

some local neighborhoods will inevitabl

be misrepresented and ripped apart like

in Figure 2D. Thus, biological question

concerning the neighborhoods or topol

ogy of data should be approached b

analyzing the high-dimensional neighbor

hood graphs (e.g., k-nearest neighbors) o

using tools from TDA, such as persisten

homology.

We have found that 2D representation

can generally be inadequate for recaptur

ing even the topology of single-cell ‘omic

data, even when topology is being

defined by the relatively forgiving notion

of homotopy equivalence. In the plane

where the only non-zero Betti number

are b1 and b0, the only kinds of globa

shapes that can be represented are
Cell Systems 14, September 20, 2023 729



t

l

r

r

,

,

t

r

,

t

t

/

f

f

l

-

-

.

-

f

-

-

t

-

f

r

y

s

/

-

y

,

t

.

-
s
-
y

ll
s

.,

.,
l,
l-
l.

Commentary
ll
essentially branching trees, possibly with

cycles, and amorphous blobs. In the

PBMC dataset, the presence of non-

zero b1 and b2 supports the idea that the

developmental relations between these

immune cells do not form a literal tree in

the graph-theoretical sense12 but contain

cycles of various dimensions. Cycles

have also been identified in the context

of evolution, resulting from horizontal ex-

change of genetic material between line-

ages that would otherwise only form a

tree,13 and other TDA tools have also

been used to identify novel candidate

cancer-associated genes in various tumor

types14 by using the topology of high-

dimensional tumor expression data as

context. In general, the zoo of possible to-

pological shapes is much bigger than just

the shapes that we can visualize in the

plane, and using tools from TDA such as

persistent homology, we can explore

these high-dimensional topologies and

their biological implications.

Discussion
Single-cell ‘omics data provide rich infor-

mation for biological studies, but the high-

dimensional nature of such data makes it

difficult to explore the data by visual in-

spection. Many methods such as tSNE

and UMAP aim to find low-dimensional

representations of data in the Euclidean

plane that can be directly visualized, hop-

ing to preserve geometric features of in-

terest. However, certain kinds of impor-

tant high-dimensional geometric features

are, unfortunately, mathematically impos-

sible to represent in the 2D Euclidean

plane, no matter what method is used,

leading to distorted visualizations and

missed geometric, and potentially biolog-

ical, insights at both local and global

scales. As an easily interpretable example

of general mathematical principles, we

have shown herein that the single-cell

RNA sequencing data of even a single

patient’s PBMCs displayed various

geometrical features exclusive to high di-

mensions. As an expected consequence,

proximity of data points in tSNE and

UMAP plots is distorted at quantitative

(geodesic), relative (pairwise distance

orderings), and qualitative (homotopy

equivalence) levels at both local and

global scales. In more complicated data-

sets, exclusively high-dimensional geo-

metric features could easily be even

more abundant. Thus, it is important not
730 Cell Systems 14, September 20, 2023
to over-interpret 2D visual representa-

tions of high-dimensional data withou

actually performing quantitative analysis

in the original (or relevant) higher dimen-

sions, just as one interprets maps of the

Earth only after fully grasping its spherica

properties in 3D. Clustering in highe

dimensions as opposed to on a 2D

representation is perhaps a common

example currently in practice, but many

other high-dimensional methods for un-

derstanding data shape can play a simila

role of replacing visual inspection in 2D

with more rigorous analysis.

Alternatively, concepts from topology

and geometry can directly characterize

the high-dimensional features of the data

offering complementary approaches to vi-

sual inspection in lower dimensions.Within

biology, these concepts have been em-

ployed in studies of cellular expression

spatial organization, and evolution, and

here we touched upon three different sub-

fields of mathematics for which there exis

computational tools suited to general data

analysis. While these tools open the doo

to high-dimensional descriptions of data

it is important to remember that any partic-

ular computational implementation comes

with assumptions that may or may not be

appropriate for the original context of a da-

taset. For example, in spite of the myriad

existing single-cell analysis methods

appealing to the concept of a data mani-

fold, in theory, there always exist infinitely

many manifolds that are consistent with

any given finite set of data points, in the

same way that one can choose differen

regression models to fit a set of data

points. Thus, understanding the assump-

tions of particular manifold methods can

becritical, as it determineswhatvariation in

the data is considered ‘‘noise’’ as opposed

to ‘‘signal.’’ In some methods, measure-

ment noise is not even considered explic-

itly, yet its presence can heavily affec

the ability to recover manifolds from

data (see https://github.com/shuwang543

what_cannot_be_seen_in_2D).

There exist other subfields of geometry

and topology that also provide rigorous

systems of analysis for generalizing

particular aspects of visual intuition to

higher dimensions. For example, alge-

braic geometry allows for generalizing

intuitions about the different types o

shapes traced out by different types o

equations (e.g., linear, quadratic, and

sigmoidal), and we have used algebro-
geometric results to infer biochemica

reaction properties from single-cell multi

plex data15 in analogy to how one charac

terizes ultrasensitivity of ligand binding

based on the shape of a Hill curve

However, not every subfield of geometry

or topology currently has well-developed

computational tools meant for data anal

ysis that handle not only the challenge o

generalizing visual intuitions to high di

mensions but also the additional chal

lenges of accounting for experimentally

noisy, sampled data. Thus, if the vas

array of subfields in geometry and topol

ogy are any indication, many aspects o

high-dimensional data geometry—and

their potential biological insights—have

remained unexplored by 2D visualizations

and form a vast array of rich subjects fo

future research.

DATA AND CODE AVAILABILITY

This paper analyzes existing, publicl

available data from the 10x Genomic

website: https://www.10xgenomics.com

resources/datasets/pbmcs-3p_acda_

sepmate-3-1-standard.

PBMCs from ACD-A treated blood

collection tubes isolated via SepMate

Ficoll Gradient (30 v3.1 Chemistry), and

single cell gene expression dataset b

Cell Ranger 6.1.0, 10x Genomics (2021

September 30).

All original code has been deposited a

GitHub and is publicly available as of the

date of publication. https://doi.org/10

5281/zenodo.8035481.
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