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Partitioning of a 2-bit hash function across  
66 communicating cells

Jai P. Padmakumar1,2,8, Jessica J. Sun    2,8, William Cho3, Yangruirui Zhou    4, 
Christopher Krenz    4, Woo Zhong Han5, Douglas Densmore    4,6, 
Eduardo D. Sontag3,7 & Christopher A. Voigt    1,2 

Powerful distributed computing can be achieved by communicating 
cells that individually perform simple operations. Here, we report 
design software to divide a large genetic circuit across cells as well as the 
genetic parts to implement the subcircuits in their genomes. These tools 
were demonstrated using a 2-bit version of the MD5 hashing algorithm, 
which is an early predecessor to the cryptographic functions underlying 
cryptocurrency. One iteration requires 110 logic gates, which were 
partitioned across 66 Escherichia coli strains, requiring the introduction of 
a total of 1.1 Mb of recombinant DNA into their genomes. The strains were 
individually experimentally verified to integrate their assigned input signals, 
process this information correctly and propagate the result to the cell in 
the next layer. This work demonstrates the potential to obtain programable 
control of multicellular biological processes.

The complexity of the natural world, from the development of body 
plans to the computational power of the brain, arises from distributed 
computation performed by many communicating cells1–7. If the com-
putational power of a cell population were harnessed, it could solve 
hard and energy-intensive problems, especially if they required repeti-
tive operations1,6,8,9. Cryptographic hash functions, which are used  
in encryption and are well known from cryptocurrency, are one  
such example. They secure data by mapping data of arbitrary size  
(‘a message’) to a fixed size value (the ‘hash’). Beyond solving compu-
tational problems, fully realizing the potential of engineered biology 
will require programming cell communities to coordinate their actions, 
such as by growing into a living structure.

Synthetic genetic circuits can be used to program a cell to execute 
a desired computational operation10–12. Their construction requires  
the balancing of interacting regulators and the selection of many 
genetic parts. This process was simplified by Cello automation soft-
ware, in which a user specifies the operation using a high-level textual 
language (Verilog) that is mapped to a DNA sequence13,14. Logic minimi-
zation algorithms deconstruct the circuit into gates to which regulators 

are assigned. However, the size of a circuit that can be placed into one 
cell is limited because its function is performed by freely diffusing 
molecules that can cross-react15,16. In addition, the expression of many 
regulators burdens individual cells, leading to growth defects, circuit 
failures and evolutionary breakage6,17–28. Methods to reduce burden 
include integrating circuits into the genome and borrowing paradigms 
from control theory29–37. In practice, these constraints still limit the 
number of gates per cell to about ten18.

Transcriptional NOR gates are often used to construct circuits 
because they require a single repressor and are easily encoded in DNA38–43.  
They are easy to connect to build different circuits by changing the 
pattern of promoters in front of each repressor gene. Libraries based 
on different repressor families have been built, but they have various 
problems restricting their use, such as sensitivity to ligands, large 
operators that must be inserted into promoters, repetitive domains 
and retroactivity16,19,43–54. The CI repressor from phage λ does not 
exhibit these problems and was used in many early synthetic biology  
projects9,38–40,55–65. While few homologs have been characterized, evi-
dence indicates their orthogonality and the number of sequenced 
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synthesis tool Yosys (Fig. 1b and Methods). The logic synthesis initially 
resulted in a total of 131 NOT and NOR gates connecting the inputs to 
the outputs, which was later reduced to 110 gates (see below). The 
wiring diagram has 16 binary inputs and 2 binary outputs; each itera-
tion of the algorithm reuses this function with different input states. 
Each input and output variable has 2 bits, indicated by subscript 0 
and 1. The 2-bit message chunk is represented by the inputs (m0 m1). 
Ultimately, the concatenation of the inputs (a0 a1), (b0 b1), (c0 c1) and  
(d0 d1) becomes the 8-bit hash; they are initialized as (00), (01), (10), (11) 
and are updated after each iteration (Supplementary Fig. 1). The inputs 
(s0 s1) and (t0 t1) are predefined constants that are updated after each 
iteration using a lookup table of 64 values. Each iteration involves a left 
shift in the value determined by s and an addition step using the value 
from t that increases the security of the hash. Inputs (r0 r1) represent 
the round number in binary. The MD5 wiring diagram integrates these 
eight inputs into a 2-bit output (o0 o1) that is used to update b for the 
next iteration, while a, c and d are updated using the previous values 
of d, b and c, respectively.

Circuit partitioning
A partitioning algorithm was developed to divide a large circuit into 
subcircuits carried by communicating cells (Fig. 1c and Methods). It 
seeks to minimize the required number of cells while conforming to a 
set of constraints. One constraint is the maximum number of gates in 
a subcircuit, which is set to avoid overburdening cells. The second con-
straint is the total number of available orthogonal cell−cell communica-
tion signals. At one extreme, if only one gate were allowed per cell, the 
solution would be to encode each gate in an independent cell, resulting 
in 131 strains. At the other extreme, if all 131 gates were allowed in a single 
cell, only one strain would be required to encode the complete circuit.

The partitioning algorithm is shown in Fig. 1c and is described in 
more depth in Supplementary Fig. 2. It differs from graph partitioning 
algorithms that fix the number of cells and divide gates among cells to 
minimize wire crossing. Instead, we implemented a greedy algorithm 
that seeks to group gates into cells without violating the constraints. 
Some steps are stochastic, so the process was repeated n times and 
the partition with the lowest number of cells was selected; in practice, 
n = 1,000 was sufficient to identify good partitions for the MD5 circuit. 
After partitioning, specific communication signals (‘colors’) must be 
assigned to wires (‘edges’) between partitions, a challenge known as 
the ‘edge coloring’ problem94. To simplify edge coloring, we mapped 
this task to a simpler ‘node coloring problem’ that we solved using the 
Welsh−Powell algorithm95 (Supplementary Fig. 3). After the generic 
colors of the edges are computed, each color is randomly assigned to 
one of the available communication signals, which includes a specific 
device to send a signal and a specific device to receive the signal in the 
next cell (see below). The output of the partitioning algorithm was a 
set of Verilog files describing the logic operation and input/outputs 
required for the subcircuit in each participating cell. These files can 
be used by Cello to design the DNA sequences of all subcircuits to be 
carried in the genomes of the participating strains.

The partitioning algorithm was run on the MD5 circuit while 
constraining the maximum number of gates per cell to eight and 
the number of communication signals to four. A solution was found 
that partitioned the 131 gates across 66 subcircuits (Fig. 1b). Then, we 
reduced the number of gates per cell by rerunning logic minimization 
(Yosys) while including the possibility that an OR gate could be used in 
the last layer. OR gates can be easily implemented at this position using 
a tandem promoter. These changes reduced the total number of gates 
in the MD5 circuit to 110 (Methods).

The constraints were set based on our previous experiences with 
circuit design and the number of orthogonal signals that we could use 
simultaneously. However, the effect of changing these constraints on 
the number of cells required could be systematically explored using 
the partitioning algorithm. Interestingly, the benefit from adding 

viral genomes is growing rapidly. Coding theory predicts that up to 80 
orthogonal CI repressor variants could be used in a cell66.

Distributed computing is a powerful approach to problem-solving 
in which multiple cells collaborate by communicating the states of their 
circuits42,67,68. Information is transmitted by a ‘sender device’ from one 
cell that produces a diffusible chemical signal and a ‘receiver device’ in 
the next cell that responds to it5,69–74. The receiver can be connected to 
an input of a cellular genetic circuit, whose output can be connected to 
a sender. Up to four orthogonal sender−receiver pairs have been used 
together in a cell41,75,76. Distributed computing can be used to divide a 
circuit too large for a single cell across multiple cells9,58,63,64,77–83. This 
strategy reduces the burden on any one cell and improves robustness 
by requiring consensus. Communicating cells have been used to per-
form two-input Boolean operations, solve a maze, implement memory 
and function as a comparator, band-stop filter and adders39,42,43,84–88. 
These multicellular circuits were small, so gate partitioning could be 
performed easily by hand.

When designing electronic circuits, a common task is to divide 
a circuit into subcircuits, for example, to distribute circuits that are 
too large for one chassis (module, chip or board) across multiple 
chassis89–92. Partitioning algorithms convert the circuit into a graph and 
divide the nodes (gates) across a fixed number of chassis while mini-
mizing the edges (wires) spanning chassis93. Many variations of these 
algorithms and corresponding software tools have been developed, 
but a shared feature is that they keep the number of chassis fixed89. 
In contrast, when dividing a genetic circuit across cells, the number 
of gates per cell and number of signaling molecules are constraints, 
whereas the number of cells (chassis) is variable.

Here, we demonstrate the partitioning of a hash algorithm into sub-
circuits encoded within Escherichia coli genomes, show that all the sub-
circuits function as designed and provide examples of the propagation 
of signals over two and three layers. The 128-bit MD5 (‘message digest’) 
algorithm has various roles, such as verifying data integrity after transfer, 
and is a predecessor to the SH256 algorithm underlying Bitcoin. Here, 
we used a 2-bit version of the MD5 function that was repeated to convert 
an input string (message) into an 8-bit hash. This MD5 function was con-
verted to a circuit consisting of 110 NOR or NOT gates. Then, an algorithm 
was developed to partition the gates across strains while constraining the 
number of gates and communication channels per strain and allowing 
the total number of strains to vary. This algorithm partitioned the 110 
gates into 66 strains. The subcircuits were computationally designed 
using Cello13,14, a new library of phage repressors, inducible systems75 
and four sender−receiver devices41,75,76. The corresponding subcircuit 
DNA was introduced into the genome of each strain, requiring up to 
41 genes (23 regulatory) and 31 kb. Collectively, this project required 
DNA construction on the scale of a small bacterial genome. The sub-
circuit functions were experimentally verified individually for correct 
information propagation between pairs of strains and in an example  
of a three-layer propagation culture between subcircuit strains.

Results
Wiring diagram design for a 2-bit MD5 hashing algorithm
The MD5 hashing algorithm was designed to run on a 32-bit computer, 
where the input is a 512-bit message and the output is a 128-bit hash. 
Here, we implemented a version designed to run on a 2-bit computer, 
where the input is a 32-bit message and the output is an 8-bit hash. The 
Verilog implementation is shown in Fig. 1a. The input is a binary message 
that is either padded to 32 bits (if shorter) or broken into 32-bit mes-
sages (if longer), after which the message is divided into 2-bit chunks. 
A different chunk serves as an input to 64 iterations, divided into  
four 16-iteration rounds, resulting in scrambling of the input message 
(Supplementary Fig. 1). The MD5 function calculations performed in 
each iteration are identical in the 32-bit and 2-bit implementations.

The Verilog implementation of the MD5 function was converted 
to a wiring diagram composed of NOT and NOR gates using the logic 
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communication signals stopped at approximately eight, irrespective 
of the maximum number of gates per cell (Fig. 1d). Similarly, the benefit 
from increasing the number of gates per cell plateaued at ten, which 
is currently achievable but can lead to a higher probability of circuit 
failure (Fig. 1d). In this regime, the benefit from allowing more gates 
in a cell is incremental.

Gates based on phage repressors
We collated a set of phage repressors with the inclusion criteria of 
known promoters (PR from the lysis−lysogeny switch) and unique 

operator sequences (Fig. 2a)39. This set initially contained 20 pairs 
of repressors and promoters (Supplementary Tables 1 and 2). Gates 
were constructed using these repressors. Initially, NOT gates were 
characterized using plasmids (Supplementary Methods). Two input 
promoters (aTc-inducible PTet and IPTG-inducible PTac) were placed 
in tandem to drive expression of the repressor. The output promoter 
was fused to the gene encoding yellow fluorescent protein (yfp). 
Repressor expression was controlled using a weak computationally 
designed ribosome-binding site (RBS)96 (Supplementary Methods). The 
repressor gene cassette included insulators to reduce the impact of the 
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module md5Core(a_i, b_i, c_i, d_i, r_i, m_i, s_i, t_i, a_o);
 parameter WIDTH = 2;
 input [0:WIDTH-1] a_i, b_i, c_i, d_i;
 input [0:1] round_i;
 input [0:WIDTH-1] m_i;
 input [0:1] s_i;
 input [0:WIDTH-1] t_i;
 output [0:WIDTH-1] a_o;
 wire [0:WIDTH-1] a_i, b_i, c_i, d_i;
 wire [0:1] round_i;
 wire [0:WIDTH-1] a_o, tmp;
 reg [0:WIDTH-1] f;
 function [0:WIDTH-1] F;
 input [0:WIDTH-1] x, y, z;
 begin
  F = (x & y) | ((~x) & z);
 end
 endfunction
 function [0:WIDTH-1] G;
 input [0:WIDTH-1] x, y, z;
 begin
  G = (x & z) | ((~z) & y);
 end
 endfunction
 function [0:WIDTH-1] H;
 input [0:WIDTH-1] x, y, z;
 begin
  H = (x ^ y ^ z);
 end
 endfunction
 function [0:WIDTH-1] I;
 input [0:WIDTH-1] x, y, z;
 begin
  I = (y ^ (x | (~z)));
 end
 endfunction
 assign tmp = a_i + f + m_i + t_i;
 assign a_o = b_i + ((tmp << s_i) | (tmp >> (WIDTH - s_i)));
 always @ (a_i, b_i, c_i, d_i, r_i, m_i, s_i, t_i)
 begin
  case (round_i)
  `CORE_ROUND1:
  begin
   f = F(b_i, c_i, d_i);
  end
  `CORE_ROUND2:
  begin
   f = G(b_i, c_i, d_i);
  end
  `CORE_ROUND3:
  begin
   f = H(b_i, c_i, d_i);
  end
  `CORE_ROUND4:
  begin
   f = I(b_i, c_i, d_i);
  end
  endcase
 end
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Fig. 1 | Multicellular implementation of the MD5 circuit. a, Verilog behavioral 
code used to create the circuit performing the MD5 function116 (Methods).  
b, The Verilog file was used with Yosys to create the initial 131-gate circuit 
diagram comprising only NOR and NOT gates (Methods). The meanings of the 
variables describing the 16 inputs and 2 outputs are provided in the main text 
and Supplementary Fig. 1. c, The circuit partitioning function. The constraints 
used to divide the MD5 circuit were a maximum of five max gates per cell and four 
channels. Gray gates show the initial gate chosen for each group. After partitions 

were determined, Cello was used to map the subcircuits to DNA sequences to be 
inserted into the cell genomes. The algorithm is described in more detail in the 
Methods and Supplementary Figs. 2 and 3. d, Impact of changing the constraints 
on the number of cells required to encode the MD5 circuit. Effects are shown for 
increasing the number of total channels with various values for the maximum 
number of gates per cell (left) and gates per cell with various values for the total 
number of channels (right).
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upstream promoter and to block transcriptional interference14,33,97,98. 
The response function of each gate was measured by inducing cells  
and measuring fluorescence using flow cytometry (Supplementary 
Gate Datasheets and Supplementary Methods). Of the original set,  
four were found to not produce sufficient repression, two caused 
growth defects and two exhibited crosstalk (Supplementary Table 2). 
From these experiments, 12 orthogonal gates were identified that 
yielded strong responses. In several cases, to improve the dynamic 
range or to change the threshold, either RBS libraries or synthetic 
output promoters were designed (Supplementary Methods).  

For simplicity, the final set of repressors and their cognate promoters 
were renamed JR1−JR12 and PJR1−PJR12, respectively (for example, CI was 
renamed JR1) (Fig. 2a and Supplementary Table 1).

The gates were then moved to the E. coli genome to measure their 
response functions in this context. The parent strain E. coli YJP_MKC174 
contains three landing pads, each containing a phage integrase site 
(attB2, attB7 and attB5) to simplify the insertion of large DNA pay-
loads33. Their genomic loci were empirically determined to produce 
high expression levels and are flanked by strong bi-directional termina-
tors to insulate against incoming or outgoing transcription. This strain 
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Fig. 2 | Logic gates and cell−cell communication used to build subcircuits. 
a, Library of phage repressors and their cognate promoters. The repressors are 
aligned by their DNA-binding domains; Pfam peptidase S24 domains are shown 
as dashed rectangles and ɑ-helical regions were predicted computationally 
(Methods). The promoters are aligned by their transcription start site and 
operator sequences are shown as colored boxes. Sequences and references  
are provided in Supplementary Table 1. b, Genomic encoding of a NOT gate. 
Gate JR1-3 is shown as an example with the order of the repressor and output 
promoter/reporter reversed for clarity. Genetic parts and sequences are 
provided in Supplementary Table 11. c, NOT gate response functions. The line 
colors reflect the repressor colors from a. The lines were fitted to equation (2)  
using the parameters in Supplementary Table 3. Schematics of each gate, 
replicate data and growth impact are provided in the Supplementary Gate 
Datasheets. The light gray lines are the average outputs of the gates in ON/OFF 
states and show that the gates are ‘impedance matched’ and can be connected.  

d, Orthogonality of the repressor−promoter pairs. All combinations of repressors  
and output promoters were cloned to create 144 strains (Supplementary Fig. 4).  
Fold change was calculated as the ratio of the fluorescence of induced and 
uninduced cells, subtracting autofluorescence (E. coli JAI_MKC300). e, The OFF 
and ON responses used by Cello to design subcircuits (Supplementary Table 6).  
The data points represent three replicates performed on different days and the 
bar heights are means. The strains used were E. coli rLux, rCin, rRpa and rPhl 
(Supplementary Fig. 4). f, Genetic diagrams of the sender and receiver cells. 
Genetic parts are provided in Supplementary Table 11. g, The response functions 
of the sender−receiver devices. The x axis represents activity of the sender input 
promoter (PTac) and the y axis represents activity of the receiver output promoter. 
The response functions were obtained through fitting to equation (2) using three 
replicates performed on different days and the parameters in Supplementary 
Table 7. The light gray lines show the average output of sender−receiver pairs 
when they are OFF (left) and ON (right).
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also has the IPTG (LacI) and aTc (TetR) inducible systems in the attB5 
landing pad. The gates were integrated into the attB2 landing pad and 
oriented with the output promoter first to avoid readthrough from 
strong input promoters (Fig. 2b).

When moving a gate from a plasmid to the genome, the strength of 
the RBS usually needs to be increased, which was necessary for all but 
one gate ( JR6). To improve expression, we designed small RBS libraries 
using the RBS Library Calculator96 and screened them in the attB2 land-
ing pad (Supplementary Methods). From these libraries, we selected 
variants that yielded similar response functions across the full set of 
repressors. Uniform response functions simplify their connection by 
design automation software to build larger circuits.

The response functions of all the gates were then characterized. 
Cells were grown with different concentrations of inducers in M9 
medium (Methods). These experiments produce response functions 
whose y axes represent arbitrary units of fluorescence and x axes rep-
resent the inducer concentration. Two steps were taken to convert the 
axes to absolute units of promoter activity (flux of RNA polymerase 
exiting the promoter per second, or RNAP/s). First, the fluorescence 
from the PTet−PTac tandem promoter was measured as a function of 
inducer concentration (E. coli JAI_MKC148), which could be used to 
convert the x axis of the response functions to fluorescence. Second, 
both axes were converted to RNAP/s using the reference promoter 
BBa_J23101 (E. coli YJP_MKC254) (Supplementary Fig. 4)33,72,99. These 
data were then fitted to

y = ymin + (ymax − ymin)
Kn

xn + Kn (1)

where y is the activity of the output promoter, x is the activity of the 
input promoter, K is the threshold and n is the cooperativity. The 
response functions are shown in Fig. 2c with the parameters given in 
Supplementary Tables 3 and 4. The replicate information is given in 
the Supplementary Gate Datasheets. The uniformity of these response 
functions makes them easier to connect using Cello than previous 
TetR-family-based gates49. When the output of a gate switches from ON 
to OFF (horizontal lines in Fig. 2c), this crosses the range required to 
turn the next gate from OFF to ON (vertical lines in Fig. 2c). The expres-
sion of phage repressors from the genome had little impact on cell 
growth (Supplementary Gate Datasheets). To test for orthogonality, 
144 strains were constructed by crossing the 12 repressors with the  
12 promoters in their genomes. No crosstalk was observed (Fig. 2d  
and Supplementary Figs. 4 and 5).

The gates and their response functions were used to build a user 
constraint file (UCF) for Cello that can be used for automated circuit 
design (Eco2C1G5T1)13,14. Genome-encoded NOR gates use two copies 
of the same repressor gene, each of which is independently connected 
to an input promoter33. The UCF includes constraints that enforce sepa-
ration of the repressor genes for one gate across the attB2 and attB7 
landing pads. This prevents problems associated with RNAP roadblock-
ing that can occur with tandem promoters14 and avoids homologous 
recombination. For repressors JR1, JR7 and JR9, we included gates 
based on different RBSs that shifted the response function thresholds,  
providing more flexibility in finding solutions for circuit designs  
(Supplementary Gate Datasheets).

Characterization of cell−cell communication channels
Each channel was based on a sender device that produces the chemi-
cal signal and a receiver device that responds to it. We selected 
four channels known to not cross-react with each other’s signals:  
3-oxohexanoyl-homoserine lactone (OC6), 3-hydroxytetradecanoyl- 
homoserine lactone (OHC14), para-coumaroyl-homoserine lactone  
(pC-HSL) and 2,4-diacetylphloroglucinol (DAPG)41,75,76. First, we charac
terized the receiver devices that respond to each of these small mole
cules (based on LuxR, CinIAM, RpaRAM and PhlFAM)75,76. These regulators 

were expressed from a contiguous ‘sensor array’ that we inserted into 
the landing pad strain to generate E. coli JAI_MKC300 (Supplementary 
Fig. 6 and Supplementary Methods). When needed, rpaRAM was encoded 
with the DNA containing the circuit.

We measured the response functions of the four receiver devices. 
The output promoter PLuxB, PCin, PRpa*A or PPhlF was fused to yfp and 
inserted into the attB2 landing pad to create the E. coli rLux, rCin, 
rRpa and rPhl ‘receiver cells’, respectively (Supplementary Fig. 4). Each 
strain was grown at different concentrations of the exogenously added 
communication signal (Supplementary Methods). The fluorescence 
output was measured by cytometry and was converted to units of 
RNAP/s. These data were fitted to the response function

y = ymin + (ymax − ymin)
cn

cn + Kn (2)

where c is the concentration of the signaling molecule. The full response 
functions of the four receivers are shown in Supplementary Fig. 7  
with parameters provided in Supplementary Table 5. Because Cello 
designs digital logic circuits, it requires only the activities of the receiver 
output promoters in the OFF and ON states (Fig. 2e).

The sender devices were then constructed. The input to a sender 
device is defined as a promoter and the output is the expression of 
the enzyme(s) that produce the communication signal72 (Supplemen-
tary Subcircuit Datasheets). The biosynthetic enzymes comprising 
the sender devices were as follows: LuxI (OC6), CinI (OHC14), RpaIL/
TalS41 (pC-HSL) and PhlACBD41 (DAPG). To characterize the devices, 
the IPTG-inducible PTac promoter was selected as the input. The first 
three were inserted into the attB2 landing pad to create the following 
‘sender cells’: E. coli sLux, sCin and sRpa (Fig. 2f). The DAPG biosynthetic 
pathway was carried on a plasmid to obtain higher production levels 
(plJAI_617), which was carried by the E. coli sPhl sender cell.

The circuit design algorithm was modified to incorporate trans-
mittal of the signal between cells. Previously, Cello predicted the acti
vity of a circuit output promoter only if it was fused to a fluorescent 
reporter gene. Instead, we sought to predict how its activity would 
propagate and induce the receiver promoter in the next cell in the 
multicellular circuit. Performing this calculation requires a response 
function whose x axis represents the activity of the output promoter 
of the upstream cell and y axis represents the input promoter activity 
of the receiver in the downstream cell.

We empirically measured these functions using sender and 
receiver strains grown in liquid culture (Fig. 2g). Sender strains were 
grown in M9 medium as previously described with different concen-
trations of IPTG (Methods). The supernatants were collected, filtered 
and used to induce the receiver cells. The receiver cells were grown 
separately for 16 h and then cultured for 3 h in the sender’s supernatant 
(Methods). The data from these experiments were used to fit response 
functions that capture transmission of the signal from the sender to 
receiver cells (equation (2)), where c was replaced by the promoter 
activity x of the sender device). The response functions are shown in 
Fig. 2g, the parameters are provided in Supplementary Table 6 and 
replicate information is provided in Supplementary Fig. 8. Each com-
munication channel had a similar 50-fold dynamic range with varying 
activities in the OFF state. The average outputs of the NOT and NOR 
gates spanned the ranges required to turn on the sender device to 
induce a response in the receiver cells (horizontal lines in Fig. 2g). 
Therefore, the subcircuit output(s) could be reliably connected to  
the sender devices to transmit the signal to the next layer of the multi
cellular circuit.

Subcircuit design
Cello was modified to design the needed subcircuits (Supplementary 
Methods). First, the logic minimization and gate assignment algorithms 
had to be changed to design circuits with multiple outputs. Second, 
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the software was extended to automate the connection of outputs 
that are not fluorescent reporters. This change enabled the cell−cell 
communication devices to be connected and logic gates to be selected 
based on their response functions (Fig. 2g). Cello 2.1 software was  
used to design the DNA sequences for the subcircuits using the  
phage repressor library (Supplementary Methods).

The output of the partitioning algorithm specified 66 subcircuits, 
but some were identical, so only 41 strains needed to be constructed 
(for example, E. coli sc21 is used nine times) (Supplementary Fig. 9). 
The 41 Verilog files produced by the partitioning algorithm were 
provided to Cello along with the information defining the sensors 
and actuators (DNA sequences and responses) (Supplementary 
Table 7). There are 16 inputs to the MD5 circuit, the states of which 
were reported to the subcircuits using the IPTG, Ara, Cuma, aTc and 
Van inducible systems present in the E. coli Marionette sensor array75. 
The specific assignment of sensors to each MD5 input was based on 
their ability to connect to the subcircuit. Note that the same input to 
the MD5 circuit can be reported to subcircuits with different inducible 
systems; for example, input d1 is reported by Ara in subcircuit sc2 by 
aTc in subcircuit sc3. Similarly, the same input to the MD5 circuit can 
be represented by different inducers for different subcircuits. The 
outputs of the subcircuits were specified as sender devices, which were 
randomly assigned to each ‘color’ from the partitioning algorithm. 
They consisted of the biosynthetic pathways for the communication 
signals as well as genes encoding YFP, red fluorescent protein (RFP), or 
blue fluorescent protein (BFP) so that their induction could be visual-
ized. When the output of the subcircuit corresponded to an output 
of the MD5 circuit (o0 and o1), only the fluorescent reporters were the 
outputs (E. coli sc39 and sc41).

Cello 2.1 provided the subcircuit DNA sequences to be inserted into 
the landing pads of the genome, as well as their predicted responses. 
The median number of regulator genes required in a cell was eight 
and the median DNA size was 25 kb (Fig. 3a). The largest subcircuit 
was sc5, which has two inputs, eight gates and three communication 
outputs, requiring 31 kb of DNA to encode the subcircuit alone (the 
total amount of recombinant DNA in E. coli sc5 is 43 kb) (Fig. 3b,c). 
Following the Cello specifications exactly, the DNA sequences for the 
41 subcircuits were constructed and inserted into the attB2 and attB7 
landing pads of E. coli JAI_MKC300 to create strains E. coli sc1 to sc41 
(Supplementary Subcircuit Datasheets and Supplementary Methods). 
The sender devices were encoded in the genome in the attB5 landing 
pad, except for the DAPG sender, which was carried on a p15a plasmid. 
For subcircuits sc5, sc6, sc15 and sc27, we observed toxicity due to the 
DAPG sender device, which was resolved by replacing the origin with 
that from a lower-copy pSC101 plasmid. Across the 41 strains, the total 
recombinant DNA required for introduction was 1.1 Mb, including the 
DNA inserted into the landing pads, the sensor array and the plasmid.

First, we used fluorescent reporters to characterize the responses 
of the subcircuits carried by the 41 strains. Cells were induced with 
different combinations of their inputs, including exogenously added 
communication signals if needed (DAPG, OC6, OHC14 or pC-HSL) 

(Methods). Cells were induced for 16 h in M9 medium at 37 °C using 
multicolor flow cytometry (Methods). The activities of the output 
promoters were characterized in RNAP/s using reference strains 
containing the BBa_J23101 promoter fused to yfp, rfp or bfp (E. coli 
YJP_MKC274, JAI_MKC399, JAI_MKC400) (Supplementary Fig. 10). For 
the largest subcircuit (sc5), the responses of the output promoters  
to all input combinations are shown in Fig. 3d. The data for all cellular  
circuits are compiled into Fig. 3e for all subcircuits and combinations  
of inputs (complete data are shown in the Supplementary Subcircuit  
Datasheets). Cello accurately predicted whether the circuit would  
be ON or OFF across all combinations of inputs, but the fine-tuned 
expression levels predicted in both states were more variable.

Only 3 of the 41 subcircuits failed in the initial attempt and had 
to be redesigned. Subcircuits E. coli sc39 and sc40 failed for the same 
reason and were fixed with the same modification. They failed in two 
states (−/−/+ and +/+/−), which we corrected by redefining an input to 
be the Cuma sensor (in place of the aTc sensor) and rerunning Cello 
to obtain new gate assignments. These changes improved the circuit 
performance; however, while the +/+/− state was technically OFF, the 
signal was still too high for the sender device to work properly. We hypo
thesized that this problem was caused by the weak RpoC terminator, 
so we moved the JR3 gate to the 3′ end, which corrected the problem. 
This was added as a constraint to the UCF for future designs. The third  
failed subcircuit was E. coli sc21, which was OFF in the +/− state when it 
should have been ON. Crosstalk has previously been observed between 
RpaR and PLuxB and we suspected that this was also true for RpaRAM. 
Therefore, we replaced PLuxB with PLux*TA, which corrected the problem76. 
Despite these minor failures, the extent to which this large design 
project could be automated and worked in the first pass is remarkable.

Communication between MD5 subcircuits
We characterized the ability of each cell carrying a subcircuit to 
communicate its state to the next layer of cells in the MD5 circuit. 
These experiments were performed independently by growing each 
subcircuit-containing cell with different combinations of inducers 
and measuring propagation of the communication signals to the 
receiver cells (E. coli rLux, rCin, rRpa and rPhl). First, cells containing 
a subcircuit were inoculated into M9 medium containing inducers and  
the supernatant was collected (Methods). The receiver cells were  
grown separately, diluted, added directly to the supernatant and  
cultured for 3 h. All cells communicated to the next layer as expected, 
producing the correct response. These data are shown for the largest  
subcircuit (sc5) in Fig. 3d. In all four states, the subcircuit could transmit 
its state to the next layer. Although E. coli sc5 carries up to 41 recombi-
nant genes (23 regulatory genes), this had little impact on the growth 
rate (Supplementary Fig. 12). This is in striking contrast to previous 
circuit designs, where we observed that smaller circuits decreased 
the growth rate by up to 30% over 8 h, causing evolutionary breakage 
within a day18.

The partition of the MD5 circuit is shown in Fig. 4a, including the 
small molecules used to communicate the subcircuit states between 

Fig. 3 | Division of the 2-bit MD5 circuit into subcircuits. a, Distribution of 
subcircuit designs after running the partitioning algorithm and Cello. The total 
DNA encompasses the amount of recombinant DNA that must be added to 
the genome of each cell, as defined in the Methods. The number of regulatory 
genes includes sensors and gates. The distributions are for 41 cells; datasheets 
are provided in Supplementary Subcircuit Datasheets. b, The largest subcircuit 
carried by one cell. Gates are colored by the repressor assigned. c, Genetic  
design of the largest subcircuit carried by E. coli sc5. The complete sensor  
array is shown, but only two sensors serve as inputs to this subcircuit. Most  
of these constructs are carried in the genome, but the DAPG sender device is 
carried on the pSC101 plasmid (Supplementary Fig. 4). Genetic part sequences 
are provided in Supplementary Table 11. d, Characterization of the largest 
subcircuit carried by E. coli sc5 (Methods). Left, activity of the sc5 output  

promoters for all combinations of inputs (200 nM aTc and 100 μM Cuma); bars 
represent the computational values predicted by Cello and points represent 
three biological replicates performed on different days. Right, communication 
of the subcircuit state of E. coli sc5 to the next layers of cells; bars represent 
the mean activities of the output promoters of the receiver devices and points 
represent three replicates performed on different days. The horizontal marks 
at the top of the graph indicate the states where the receiver device should be 
ON. Cytometry distributions are provided in Supplementary Fig. 11. e, Measured 
versus Cello-predicted activities of the output promoters for all 41 strains 
containing subcircuits (E. coli sc1 to sc41). The points represent the outputs  
for all combinations of inducers in all subcircuits. Details and replicate 
information are provided in the Supplementary Subcircuit Datasheets.
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cells. The empirical responses of all 41 subcircuits are shown in Fig. 4b. 
Each graph shows the response of the subcircuit to exogenously added 
small molecules, which is representative of either the inputs to the MD5 
circuit or the communication signals. The outputs were the transmit-
tal of the subcircuit state to the next layer of the multicellular circuit 
and were read out using E. coli rLux, rCin, rRpa or rPhl. All subcircuits 

performed as predicted, with those that should be in the ON state 
marked with an overbar in Fig. 4b. None of the cells containing the sub-
circuits exhibited a statistically significant growth defect, in contrast to 
our previous experiences10,18. The robustness of the MD5 subcircuits in 
this work speaks to the careful design and screening of gates to avoid 
toxicity and the impact of incorporating the circuits into the genome.
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Fig. 4 | Multicellular computation of the 2-bit MD5 circuit. a, Circuit diagram 
for the MD5 function (110 gates). The subcircuit partitions are shown by the 
background colors and colored lines indicate the cell−cell communication signal 
(blue, OC6; purple, OHC14; green, pC-HSL; orange, DAPG). Supplementary Fig. 10  
provides the subcircuit number for each partition. b, All MD5 subcircuits 
communicating to the next layer of cells (legend). The graphs are organized 
spatially to mimic 4a. The bars represent the means of three experiments 
performed on different days and the horizontal marks indicate the states where 
the output should be ON. The bar colors correspond to the cells used to measure 
the activity of the receiver devices (E. coli rLux, rCin, rRpa or rPhl). Complete 

data, including replicates, are provided in the Supplementary Subcircuit 
Datasheets along with the concentrations of the inducers used. Representative 
cytometry distributions are provided in Supplementary Fig. 11. The lines between 
graphs mark the cell−cell communication channels. The chemicals used for 
communication signals were exogenously added: 10 μM OC6, 10 μM OHC14,  
10 μM pC-HSL, 25 μM DAPG. The letters indicate cells that were repeated at 
different positions in the MD5 circuit because they are identical in inputs, 
outputs and logic function (A, E. coli sc19; B, E. coli sc20; C, E. coli sc11; D, E. coli 
sc18; E, E. coli sc10; F, E. coli sc22; G, E. coli sc23; H, E. coli sc24; I, E. coli sc38).
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The complete set of strains containing subcircuits cannot be con-
nected to each other to build the full MD5 circuit. This limitation was 
due to the number of orthogonal cell−cell communication signals that 
were available. To demonstrate propagation of the signal through the 
three layers of the circuit in a co-culture, we selected two subcircuits 
(E. coli sc2 and sc4) and receiver strains for the outputs (E. coli rCin and 
rRpa) (Supplementary Fig. 13). Cultures of E. coli sc2 and sc4 were grown 
and then mixed in media with different concentrations of the inducers. 
After growth in the co-culture, the supernatants were used to induce 
receiver cells. Using this protocol, E. coli sc2 correctly transmitted its 
signals to E. coli sc4 followed by E. coli rRpa (and E. coli rCin) across all 
input and output states. Note that, even if more cell−cell communica-
tion signals were available, it would remain difficult to connect the 
subcircuits because the cells would need to be synchronized and when 
a signal skips layers, this can lead to faults (transient incorrect outputs).

The full MD5 hash function was calculated using the empirical 
responses measured for all strains containing subcircuits (Supple-
mentary Fig. 14). Each strain was treated individually as performing 
the calculation and transmitting its signal to the next layer of the MD5 
circuit. The data for the induction of a receiver cell by one cell contain-
ing a subcircuit were used for these calculations. A simulation was per-
formed in which the signal was propagated through the MD5 circuit for 
64 iterations to complete the hash. These simulations performed the 
correct hashing of ‘MIT’, indicating that the fuzzy logic implemented 
by strains carrying individual subcircuits is sufficient for performing 
the binary 2-bit hash.

Discussion
This work demonstrates how a circuit function that is too large and 
complex to be performed by a single cell can be divided across a set 
of communicating cells. This feat required the development of new 
design automation algorithms and genomically encoded gates. These 
tools allowed us to increase both the scale of individual circuits—to our 
knowledge, subcircuit sc5 is the largest constructed to date and the 
number of cells that can be part of a larger design project. This MD5 
circuit design is a marked increase in complexity over earlier work, 
in 2020 to encode an LCD calculator display chip (Texas Instruments 
SN74LS49) across seven strains of E. coli (0.1 Mb)18, in 2011 to encode 
an XOR gate across four strains (0.03 Mb)39 and in 2009 to encode an 
edge detector in one strain (0.018 Mb)9. Note that the primary goal of 
genetic circuit design is to gain control over the capabilities of biology—
evidenced in the natural world—not to beat electronics at computing 
tasks. However, there may be a point at which computing by living cells 
can outperform electronic circuits for some classes of problems1,8.

Building more powerful biological computers requires larger 
circuits in individual cells. Information theory limits the number of 
DNA-binding regulators to hundreds and, even with burden-mitigating 
strategies, heterologous protein expression eventually overbur-
dens the cell23,24,66. However, it is possible to be more computation-
ally efficient with this capacity than with our two-input NOR gates. 
The computational complexity of a single cell could be improved 
by using multi-input logic, gate compression and analog circuits 
to make orders-of-magnitude improvements in computational 
complexity6,52,100–104.

The more difficult remaining challenge is to connect many cells 
to perform distributed computing collectively. The human brain has 
1015 connections between 1011 cells that passage information at the 
1-ms timescale, representing a frustratingly high water mark for what 
is possible via biology105. The programable passage of information 
quickly and specifically between cells remains limiting. Relying on 
chemical signals to perform this function in liquid cultures or between 
colonies on a plate is slow (hours), requires a large cell density to make 
sufficient titers and is limited by the number of orthogonal chan-
nels, and it is difficult to remove signal once it has been produced. 
Various proposals have been made to use microfluidic devices or 

three-dimensional (3D) printed cells in hydrogels to arrange commu-
nicating cells11,39,41,42,76,79,80,88,106–109. However, these approaches require 
encoding the circuit function in the physical device itself (for example, 
molding liquid channels between cells) and are constrained in terms 
of the potential connectivity between cells, particularly if a circuit 
requires a wire that bypasses gate layers. Brains overcome this limita-
tion through neurons extending their axons and dendrites to make 
contact with many distant cells. Fully realizing the computational 
potential of a cell population will require the ability to grow or print 
‘brain-like’ structures that can transmit information rapidly through 
physical contacts110.

Cryptographic problems may be suitable for biological compu
ters, particularly problems requiring repetitive independent calcula-
tions. Cryptocurrencies use an estimated 1% of global electricity111. 
Here, we have begun to show how cells could be programmed to 
perform a simple MD5 hash function, and scaling the approach to 
the SHA256 algorithm underlying Bitcoin is theoretically possible. 
However, circuit design based on digital layered gates is not ideal for 
cellular regulatory networks. For one, our circuits are slow. Based on a 
6-h cell-to-cell transmission time and the longest path through the MD5 
circuit, we estimate that it would take 200 days to complete the ‘MIT’ 
hash (Supplementary Fig. 14) if done one step at a time. If performed 
in culture, synchronization is also a problem where there is no intrinsic 
‘clock’ in cellular regulatory networks. Rather, biological computation 
thrives on amorphous and asynchronous analog computing, for which 
few design automation tools are currently available112–115. There are doz-
ens of hash algorithms, in addition to MD5 and SH256, associated with 
various cryptocurrencies, all of which have been designed for use with 
electronic CPUs. One can imagine designing cryptography algorithms 
specific for cell-based computers that use their highly parallelized, 
asynchronous and amorphous structure1.
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Methods
Computational methods
All files are available at https://github.com/VoigtLab/MD5_circuit. 
The Verilog code for the MD5 algorithm was adapted from https://
github.com/stass/md5_core/blob/master/md5_core.v. The code was 
modified to reduce the size of the inputs to 2-bits. Yosys117 was used to 
synthesize the circuit and minimize the number of NOT and NOR gates 
using the control file ‘md5_opt.ys’. This version of the complete circuit 
diagram was used for partitioning. After partitioning, wiring diagrams 
for individual cells were generated by writing individual structural 
Verilog files for each subcircuit, which were further minimized using 
Yosys if possible. Verilog files can be found at https://github.com/
CIDARLAB/Cello-v2-1-Core/tree/main/library. Repressor secondary 
structures were annotated using Interpro118 to identify Pfam domains. 
Individual helices within the helix-turn-helix domain were mapped 
using the Jpred 4 online web server119 and further validated visually by 
multiple-sequence alignment to confirm predictions using MUSCLE120 
with the default parameters.

Partitioning algorithm
The algorithm aims to minimize the total number of cells required 
to implement a given circuit under two user-specified constraints: 
the maximum number of gates per cell and the total number of com-
munication channels available. Circuit partitioning was done in two 
stages: subcircuit assignment and merging (Supplementary Fig. 2). 
In the subcircuit assignment stage, each gate was partitioned into a 
particular subcircuit. First, the number of intergate connections for 
each gate was determined. An intergate connection was defined as the 
total number of gates to which a given gate is connected. A subcircuit 
was initialized by randomly selecting a gate with the least number 
of intergate connections. Next, all gates connected to the current 
subcircuit (defined as any gate connected to any gate in the current 
subcircuit) were identified to generate a list of ‘candidate’ gates. From 
this list, a gate was randomly selected and added to the subcircuit. If 
adding the gate caused any of the initial constraints to be violated, this 
gate was removed from both the subcircuit and the list of candidate 
gates and another gate was randomly chosen from the list. This pro-
cess was repeated until the subcircuit contained the user-specified 
maximum number of gates per cell or no more candidate gates were 
available to add to the subcircuit. This procedure was repeated until 
all gates were assigned to a subcircuit. During the merging stage, the 
goal was to optimize partitioning by combining smaller subcircuits. The 
subcircuits were merged, if possible, by randomly combining pairs of 
subcircuits while ensuring that the constraints were satisfied. First, a 
subcircuit was randomly chosen and all other subcircuits were placed 
into a randomly ordered list. The chosen subcircuit was merged with 
each subcircuit in the list until a merge that satisfied the constraints 
was found. If a merge was completed or no merge was found, another 
subcircuit was randomly chosen and all other subcircuits were placed 
into a randomly ordered list, with the process repeated. These itera-
tions were continued until no additional merges were found. After 
all gates were partitioned into subcircuits (nodes), the wires (edges) 
between subcircuits were ‘colored’, where each color was abstractly 
associated with a chemical signal (undetermined at this point). Edges 
were required to be colored such that all edges sharing a node had a 
unique color (an ‘edge coloring’ problem). From the partitioned circuit 
diagram, a new graph was constructed to convert the task into a node 
coloring problem, where each node was colored such that connected 
nodes were assigned different colors (Supplementary Fig. 3). First, all 
gates containing an output that moves from one subcircuit to another 
were numbered and a graph was constructed with each numbered gate 
as a node. For each subcircuit, the gates that output a signal to the given 
subcircuit and all gates that output a signal from the given subcircuit 
were identified. Edges were drawn between all such gates and this 
process was repeated for each subcircuit. Note that, because they are 

connected to the same subcircuit, these gates require unique colors; 
thus, the constructed graph transforms the edge coloring problem 
into a node coloring problem. Node coloring was performed using the 
Welsh−Powell algorithm95. The vertices were ordered by the number 
of edges and each node was assigned a unique color such that no two 
connected nodes were assigned the same color (Supplementary Fig. 3). 
The algorithm sought to minimize the number of colors used. Once 
the nodes were colored, they were mapped back to the original gates 
and the edges were colored according to the node color. This process 
was repeated a minimum of n = 1,000 times and the partition with the 
smallest number of subcircuits was chosen.

Strains, DNA constructs, media and chemicals
Plasmid cloning was performed in E. coli NEB10β competent cells 
(NEB, C3019I). When the plasmid contained an R6K origin, cloning 
was performed using E. coli JTK164A or E. coli TransforMax EC100D 
pir+ (Lucigen, CP09500). Strains modified to contain sensors or cir-
cuits were based on E. coli MG1655: E. coli YJP_MKC174 (containing 
plYJP064-Sensor) or E. coli JAI_MKC300 (a ΔaraC derivative of E. coli 
YJP_MKC173 containing the Marionette sensor array). Supplementary 
Tables 8−10 list all strains used in this study. DNA sequences for all 
constructs except those used to generate carrying E. coli strains are 
provided in Supplementary Table 11. Subcircuit constructs are pro-
vided as GenBank files at https://doi.org/10.5281/zenodo.13247698. 
Plasmid maps are provided in Supplementary Fig. 16. LB medium 
(Difco, 244620) and LB medium + 2% Bacto-agar (Difco, 244620) 
plates were used for all routine cloning. Minimal M9 medium was 
used for all assays (unless otherwise noted): 1× M9 salts (Difco, 248510), 
2 mM MgSO4 (Affymetrix, 18651), 100 μM CaCl2 (Sigma, C1016), 0.2% 
Casamino acids (BD, 223050), 0.4% glucose (Fisher Chemical, D16-1), 
0.34 mg ml−1 Vitamin B1 (Alfa Aesar, A19560). SOC recovery medium 
(NEB, B9020S) was used for recovery after transformation. Antibiot-
ics were used at the following concentrations: 50 μg ml−1 kanamycin 
(Kan, GoldBio, K-120-10), 100 μg ml−1 carbenicillin (Carb, GoldBio, 
C-103-5), 5 μg ml−1 tetracycline (Tet, GoldBio, T-101-25), 50 μg ml−1 
spectinomycin (Spec, GoldBio, S-140-5), 20 μg ml−1 gentamicin (Gm, 
Enzo Lifesciences, no. 380-003-G001) and 25 μg ml−1 chloramphenicol  
(Cm, Alfa Aesar, B20841). Cells were induced with the following: isopro-
pyl β-d-1-thiogalactopyranoside (IPTG, GoldBio, I2481C), anhydrotetra
cycline (aTc, Sigma, 37919), cuminic acid (Cuma, Sigma, 268402), 
vanillic acid (Van, Sigma, 94770), l-arabinose (Ara, Sigma, A3256), 
3-oxohexanoyl-homoserine lactone (OC6, Millipore Sigma, K3007), 
3-hydroxytetradecanoyl-homoserine lactone (OHC14, Sigma, 51481), 
2,4-diacetylphophloroglucinol (DAPG, Santa Cruz Biotechnology, 
sc-206518), p-coumaroyl-homoserine lactone (pC-HSL, Millipore 
Sigma, 07077) and p-coumarate (Sigma, C9008). For cytometry, cells 
were diluted in PBS (EMD Millipore, 6505). The yfp, rfp and bfp genes  
were eYFP, mRFP and mTagBFP2* (a derivative of mTagBFP2 with  
restriction sites removed).

Flow cytometry
Fluorescence was measured using a BD LSRII Fortessa flow cytometer 
with an HTS attachment running BD FACSDIVA v8.0 software. At least 
30,000 events were recorded for each sample. The FITC, PE-Texas Red 
and Pacific Blue channels were used to collect data for YFP, RFP and 
BFP, respectively. The Cytoflow Python package was used to process 
FCS 3.0 files and gate cells. The FSC, SSC, FITC, PE-Texas Red and Pacific 
Blue voltages were set to 750, 300, 450, 600 and 418 V, respectively. The 
medians of the distributions are reported. Fluorescence in arbitrary 
units was converted to RNAP/s as follows. First, E. coli YJP_MKC254 
(containing the reference promoter BBa_J23101 fused to yfp in the attB2 
landing pad) was cultured under the same conditions as the sample of 
interest. Autofluorescence was measured using E. coli YJP_MKC174 (for 
NOT gate strains) or E. coli JAI_MKC300 (for all other strains) grown 
under the same conditions as the sample of interest. The BBa_J23101 
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promoter was measured previously to generate 0.029 RNAP/s/DNA99 
and the copy number of the attB2 landing pad was measured to be 3.5 
under similar growth conditions33, yielding a total RNAP flux of 0.102 
RNAP/s. Arbitrary units were converted using the following equation: 
(0.102)((<YFP>measured) − (<YFP>blank))/((<YFP>BBa_J23101) − (<YFP>blank)), 
where (<YFP>measured), (<YFP>BBa_J23101) and (<YFP>blank) are the median 
fluorescence values (in arbitrary units) obtained from the sample of 
interest, reference promoter and appropriate autofluorescence con-
trol, respectively. Two subcircuits (sc5 and sc7) had multiple outputs 
that need to be characterized with reporters whose signals were distinct 
from YFP. To convert the fluorescence values (in arbitrary units) for RFP 
and BFP to units of RNAP/s, the following protocol was used. The BBa_
J23101 promoter was fused to the rfp or bfp gene with the BBa_B0064 
and BBa_B0034 RBSs and the ECK120017009 and ECK120033737 ter-
minators, respectively, to create expression cassettes. Note that the 
RBS for the yfp cassette was BBa_B0034 and the terminator was DT3 
in E. coli strain YJP_MKC254. These were inserted into the attB2 land-
ing pad of E. coli JAI_MKC300 to create E. coli JAI_MKC399 and E. coli 
JAI_MKC400 (Supplementary Fig. 5). Autofluorescence was measured 
in the relevant channels. Fluorescence values (in arbitrary units) were 
then converted to RNAP/s using the equation described above except 
that <YFP> was replaced with the fluorescence of the corresponding 
reporter. To convert plasmid-based NOT gates to RNAP/s, the same 
protocol was used, except that the BBa_J23101 reference promoter was 
fused to yfp with BBa_B0064 as the RBS and L3S2P21 as the terminator 
and placed onto a p15a plasmid (pJSBS_RPU). The plasmid was carried in 
E. coli NEB10β. The copy number of p15a in E. coli NEB10β was estimated 
to be nine under similar growth conditions33. Multiplying this value 
by 0.029 RNAP/s/DNA99 yielded a total RNAP flux of 0.261 RNAP/s for 
plasmid-borne BBa_J23101. Fluorescence (in a.u.) was then converted to 
RNAP/s using the equation described above except that the 0.102 value 
was replaced with 0.261. Distributions were converted to RNAP/s using 
the same protocol, except that unit conversion was performed on a 
per-cell basis rather than using median values (Supplementary Fig. 10).

NOT gate characterization for genome-encoded gates
Strains were streaked from glycerol stocks onto LB-agar plates with 
Kan and grown overnight. Single colonies were picked and cultured 
overnight in 400 μl M9 medium in 2-ml 96-deep-well plates (USA Sci-
entific, 1896-2000) covered with AeraSeal film (Excel Scientific) and 
grown at 37 °C and 900 rpm (InforsHT Multitron Pro shaker incubator). 
The cultures were diluted 1:100 into 400 μl M9 medium and grown for 
1.5 h under the same conditions. The cultures were diluted 1:1,000 into 
400 μl M9 medium containing 0, 10, 20, 30, 40, 50, 70, 100, 150, 200 
or 1,000 μM IPTG or 1,000 μM IPTG + 200 nM aTc and grown for 4.5 h 
under the same conditions. A 50-μl aliquot of each culture was then 
diluted into 180 μl PBS containing 1 mg ml−1 Kan for flow cytometry 
analysis. To obtain the response functions, the data were fitted to 
equation (1) using the SciPy Python package scipy.optimize.curve_fit(). 
E. coli JAI_MKC148 carrying an integrated cassette (attB2 landing pad) 
with a PTet−PTac promoter fused to yfp was run in parallel under the same 
conditions to convert the x axis into arbitrary units.

Growth impact of NOT gates carried in the genome
Strains were streaked from glycerol stocks onto LB-agar plates with 
Kan and grown overnight. Single colonies were inoculated into 400 μl 
M9 medium in 2-ml 96-deep-well plates (USA Scientific, 1896-2000), 
covered with AeraSeal film and grown overnight at 37 °C and 900 rpm 
(InforsHT Multitron Pro shaker incubator). The cultures were then 
diluted 1:100 into 400 μl M9 medium and grown for 1.5 h. Cultures 
were then diluted 1:1,000 in M9 medium with appropriate inducer(s) 
and grown under the same conditions for 5.5 h. The OD600 was meas-
ured by taking a 200-μl aliquot of the culture and transferring it to a 
Nunc 96-well plate with an optically clear bottom (Thermo Scientific, 
165305). The OD600 was then measured using a Synergy H1 plate reader 

(BioTek Instruments), from which the OD600 of the M9 medium alone 
was subtracted. To normalize these data, they were divided by the 
OD600 obtained when the repressor was not expressed (no inducer), 
also subtracting the OD600 of the M9 medium.

Characterization of crosstalk between phage repressors and 
promoters
The 144 E. coli crosstalk strains (Supplementary Fig. 4) were streaked 
from glycerol stocks onto LB-agar plates with Kan and Carb and grown 
overnight. Each crosstalk strain contained a different combination  
of repressor and output promoter (constructed using plasmids 
plJAI_JR(1–12)-cross and plJAI_pJR(1–12); Supplementary Fig. 14). 
Individual colonies were picked, inoculated into 150 μl M9 medium 
in shallow-bottom 96-well plates (Thermo Scientific, 249662) and cul-
tured overnight at 37 °C and 1,000 rpm in an ELMI shaker. Aliquots were 
then diluted 1:100 into 150 μl M9 medium and cultured for 1 h under 
the same conditions. Aliquots were then diluted 1:1,000 into 150 μl 
M9 medium with and without 1 mM IPTG and grown for 4.5 h under 
the same conditions. A 50-μl aliquot of the culture was then diluted 
into 180 μl PBS with 1 mg ml−1 Kan and fluorescence was measured by 
flow cytometry.

Calculation of total recombinant DNA and number of 
regulators
The following counting methods were used to compute the distri-
butions shown in Fig. 3a. For each cell, the ‘total DNA’ counts all the 
synthetic DNA added to the cell, including the entire sensor array, 
plasmid backbones, etc. The number of regulator genes counts all syn-
thetic genes added to the cell, including two repressor genes for each  
NOR gate, the sensors required for the circuit and the genes that pro-
duce communication signals. Antibiotic markers and the repA gene 
required for replication of the pSC101 origin were excluded from  
the count. In the Supplementary Subcircuit Datasheets, ‘subcircuit  
DNA alone’ counts the DNA integrated into the attB2 and attB7  
landing pads.

Characterization of the ON/OFF states of sensors for genetic 
circuit design
Sensor strains (E. coli JAI_MKC269, JAI_MKC322, JAI_MKC323, 
JAI_MKC334, JAI_MKC335, JAI_MKC336, JAI_MKC337, JAI_MKC338, 
JAI_MKC340, JAI_MKC342) were streaked from glycerol stocks onto 
LB-agar plates with Kan. Single colonies of each strain were inoculated 
into 150 μl M9 medium and grown for 16 h in shallow-bottom plates 
(Thermo Scientific, 249662) at 37 °C and 1,000 rpm (ELMI plate shaker). 
Cells were then diluted 1:100 into 150 μl M9 medium and cultured for 
1.5 h under the same conditions. Then, cells were diluted 1:2,000 in 
M9 medium with and without inducer and cultured for 5 h under the 
same conditions. Lastly, 50 μl aliquots were diluted into 180 μl PBS with 
1 mg ml−1 Kan, analyzed via flow cytometry and converted to RNAP/s.  
Inducers and their concentrations were as follows: 25 μM DAPG,  
100 μM Cuma, 10 μM OC6, 100 μM Van, 1,000 μM IPTG, 200 nM aTc, 
4,000 μM Ara, 100 μM Sal, 10 μM pC-HSL and 10 μM OHC14. The sensor 
strain diagrams are shown in Supplementary Fig. 4.

Characterization of sender−receiver response functions
Sender strains (E. coli sLux, sCin, sRpa, sPhl, Kan or Gm as appropri-
ate) and receiver strains (E. coli rLux, rCin, rRpa or rPhl) were streaked 
from glycerol stocks onto LB-agar plates. Single colonies of the sender 
cells were picked into 100 μl M9 medium (with Gm for E. coli sPhl and 
no antibiotics otherwise) and grown for 8 h in shallow-bottom plates 
(Thermo Scientific, 249662) at 37 °C and 1,000 rpm (ELMI plate shaker). 
Cells were then diluted 1:2,500 into 150 μl M9 medium containing 0, 
10, 20, 30, 40, 50, 70, 100, 150, 200 or 1,000 μM IPTG and cultured for 
16 h under the same conditions. Cells were then diluted 1:1,000 into 
1 ml M9 medium (for E. coli sRpa, the medium also contained 100 nM 
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p-Coum) and cultured for 4 h at 37 °C and 900 rpm (InforsHT Multitron 
Pro shaker incubator) in 2 ml deep-well plates (USA Scientific, 1896-
2000) under the same induction conditions as before. The plates were 
then spun at 4,500g for 10 min at room temperature to pellet the cells. 
A 400-μl aliquot of the supernatant medium was filter sterilized using 
a 0.2-μm regenerated cellulose filter (Chrom Tech, 96F-RC020). Single 
colonies of receiver cells were cultured for 16 h in M9 medium contain-
ing Gm. Receiver cells were diluted 1:1,000 into 150 μl of the sender 
supernatant and cultured for 3 h in shallow-bottom plates (Thermo 
Scientific, 249662) at 37 °C and 1,000 rpm (ELMI plate shaker). Aliquots 
(50 μl) of the culture were then diluted into 180 μl PBS with 1 mg ml−1 
Kan, analyzed via flow cytometry, converted to RNAP/s and fitted to 
equation (2) (Supplementary Fig. 8).

Circuit characterization (fluorescence)
Strains were streaked from glycerol stocks onto LB-agar plates contain-
ing appropriate antibiotics and incubated at 37 °C overnight. Single 
colonies were inoculated into 100 μl M9 medium (with 20 μg ml−1 Gm if 
appropriate) and grown in shallow-bottom plates (Thermo Scientific, 
249662) at 37 °C and 1,000 rpm (ELMI plate shaker) for 8 h. The cultures 
were then diluted 1:2,500 into 150 μl M9 medium (with Gm if appropri-
ate) with appropriate inducers and grown in shallow-bottom plates at 
37 °C and 1,000 rpm for 16 h (ELMI plate shaker). Then, a 1-μl aliquot 
of the culture was diluted into 300 μl PBS containing 1 mg ml−1 Kan for 
flow cytometry. The medians of the resulting distributions were used 
to calculate the activities of the output promoters.

Circuit characterization (to receiver cells)
To induce the receiver cells via cell−cell communication signals, 
the above ‘circuit characterization’ assay was continued as follows.  
Aliquots of the 16-h culture were diluted 1:1,000 into 1 ml M9 medium 
with appropriate inducers (and Gm if appropriate) in 2-ml deep-well  
plates (USA Scientific, 1896-2000) and cultured for 4 h at 37 °C and  
900 rpm (InforsHT Multitron Pro shaker incubator). For strains produc-
ing pC-HSL, the medium also contained 100 nM p-Coum. The plates were  
then spun at 4,500g for 10 min at room temperature to pellet cells. 
From the plates, 500 μl of the supernatant was aspirated and filtered 
to remove cells. When the circuit outputs led to the production of 
OC6, pC-HSL or DAPG, the samples were filtered using either cellulose  
acetate 96-well filter plates (Cytiva Life Sciences, 7700-2808) or 
regenerated cellulose 96-well filter plates (Chrom Tech, 96F-RC020). 
OHC14-producing strains were processed using the Chrom Tech filters  
because we found that OHC14 does not pass through cellulose acetate 
filters. The filtered supernatant was then used to induce the appropri-
ate receiver cells: E. coli rLux, E. coli rCin, E. coli rRpa and E. coli rPhl. 
The receiver cells were prepared by streaking from glycerol stocks 
onto LB-agar plates with 20 μg ml−1 Gm followed by incubation at 37 °C 
overnight. Single colonies were picked into 150 μl M9 medium and  
grown for 16 h in shallow-bottom plates at 37 °C and 1,000 rpm.  
Aliquots were taken and diluted 1:1,000 into 150 μl of the supernatant 
collected from the circuit and incubated for 3 h at 37 °C and 1,000 rpm  
in shallow-bottom plates. Aliquots (50 μl) of the culture were then  
diluted into 180 μl PBS containing 1 mg ml−1 Kan and analyzed via  
flow cytometry.

Growth impact of subcircuit sc5
Strains of E. coli G6 and E. coli JAI_MKC300 were streaked from glycerol 
stocks onto LB-agar plates (with Gm as appropriate) and grown over-
night. Single colonies were picked into 100 μl M9 medium (with Gm 
as appropriate) and cultured in shallow-bottom Nunc 96-well plates 
(Thermo Scientific, 249662) at 37 °C and 1,000 rpm in an ELMI shaker. 
The strains were then diluted 1:2,500 in 1 ml M9 medium and appropri-
ate inducers (with Gm if necessary) and cultured for 16 h at 37 °C and 
900 rpm (InforsHT Multitron Pro shaker incubator) in 2-ml deep-well 
plates (USA Scientific, 1896-2000). The cells were then diluted 1:100 in 

1 ml M9 medium and cultured for 2 h under the same conditions. Then 
900 μl of medium was used to measure the OD600 in a spectrophotom-
eter (Agilent Cary 60 UV-Vis). Each sample was diluted to an OD600 of 
0.1 and grown under the same conditions for 2 h before measuring 
the OD600 again. Doubling time was calculated assuming exponential 
growth by multiplying the elapsed time (in minutes) divided by the  
number of doublings in that time (log2(final OD600/initial OD600))  
(Supplementary Fig. 12).

Co-culture of E. coli subcircuits
These experiments correspond to Supplementary Fig. 14. Subcircuit 
strains were streaked from glycerol stocks onto LB-agar plates con-
taining appropriate antibiotics and incubated at 37 °C overnight. 
Single colonies were inoculated into 100 μl M9 medium and grown 
in shallow-bottom plates (Thermo Scientific, 249662) at 37 °C and 
1,000 rpm (ELMI plate shaker) for 8 h. The two subcircuit cultures 
were combined in a co-culture, diluted 1:2,500 in 150 μl M9 medium 
with appropriate inducers and grown in shallow-bottom plates at 37 °C 
and 1,000 rpm (ELMI plate shaker) for 16 h. Aliquots of the 16-h culture 
were diluted 1:1,000 into 1 ml M9 medium with different combina-
tions of inducers in 2-ml deep-well plates (USA Scientific, 1896-2000) 
and cultured for 4 h at 37 °C and 900 rpm (InforsHT Multitron Pro 
shaker incubator). For strains producing pC-HSL, 100 nM Coum was 
added to the medium. The plates were then spun at 4,500g for 10 min 
at room temperature to pellet cells. From the plates, 600 μl of the 
supernatant was aspirated and filtered to remove cells. The samples 
were filtered through regenerated cellulose 96-well filter plates (Chrom 
Tech, 96F-RC020). The filtered supernatant was then used to induce 
the receiver cells. The receiver cells were prepared by streaking from 
glycerol stocks onto LB-agar plates with 20 μg ml−1 Gm and incubating 
at 37 °C overnight. Single colonies were picked into 150 μl M9 medium 
and grown for 16 h in shallow-bottom plates at 37 °C and 1,000 rpm. 
Aliquots were taken and diluted 1:1,000 into 150 μl of the supernatant 
collected from the circuit and incubated for 3 h at 37 °C and 1,000 rpm 
in shallow-bottom plates. Aliquots (50 μl) of the culture were then 
diluted in 180 μl PBS with 1 mg ml−1 Kan and analyzed via flow cytometry.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Sequences for strains and plasmids used in this work are included in 
the Supplementary Information file. GenBank files of full constructs  
for each subcircuit can be found at https://doi.org/10.5281/zenodo. 
13247698 ref. 121. Additional data are available from the correspond-
ing author upon reasonable request. Source data are provided with 
this paper.

Code availability
Cello 2.1 is available at cellocad.org and can be accessed via Google 
account. All files for Cello 2.1 can be found at https://github.com/
CIDARLAB/Cello-v2-1-Core/tree/main/library. The script used to simu-
late the MD5 algorithm can be found at https://github.com/VoigtLab/
MD5_Circuit. The manual for Cello 2.1 is provided as Supplementary 
Software.
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