
Nature Chemical Biology

nature chemical biology

https://doi.org/10.1038/s41589-024-01730-1Article

Partitioning of a 2-bit hash function across
66 communicating cells

Jai P. Padmakumar1,2,8, Jessica J. Sun    2,8, William Cho3, Yangruirui Zhou    4,
Christopher Krenz    4, Woo Zhong Han5, Douglas Densmore    4,6,
Eduardo D. Sontag3,7 & Christopher A. Voigt    1,2 

Powerful distributed computing can be achieved by communicating
cells that individually perform simple operations. Here, we report
design software to divide a large genetic circuit across cells as well as the
genetic parts to implement the subcircuits in their genomes. These tools
were demonstrated using a 2-bit version of the MD5 hashing algorithm,
which is an early predecessor to the cryptographic functions underlying
cryptocurrency. One iteration requires 110 logic gates, which were
partitioned across 66 Escherichia coli strains, requiring the introduction of
a total of 1.1 Mb of recombinant DNA into their genomes. The strains were
individually experimentally verified to integrate their assigned input signals,
process this information correctly and propagate the result to the cell in
the next layer. This work demonstrates the potential to obtain programable
control of multicellular biological processes.

The complexity of the natural world, from the development of body
plans to the computational power of the brain, arises from distributed
computation performed by many communicating cells1–7. If the com-
putational power of a cell population were harnessed, it could solve
hard and energy-intensive problems, especially if they required repeti-
tive operations1,6,8,9. Cryptographic hash functions, which are used
in encryption and are well known from cryptocurrency, are one
such example. They secure data by mapping data of arbitrary size
(‘a message’) to a fixed size value (the ‘hash’). Beyond solving compu-
tational problems, fully realizing the potential of engineered biology
will require programming cell communities to coordinate their actions,
such as by growing into a living structure.

Synthetic genetic circuits can be used to program a cell to execute
a desired computational operation10–12. Their construction requires
the balancing of interacting regulators and the selection of many
genetic parts. This process was simplified by Cello automation soft-
ware, in which a user specifies the operation using a high-level textual
language (Verilog) that is mapped to a DNA sequence13,14. Logic minimi-
zation algorithms deconstruct the circuit into gates to which regulators

are assigned. However, the size of a circuit that can be placed into one
cell is limited because its function is performed by freely diffusing
molecules that can cross-react15,16. In addition, the expression of many
regulators burdens individual cells, leading to growth defects, circuit
failures and evolutionary breakage6,17–28. Methods to reduce burden
include integrating circuits into the genome and borrowing paradigms
from control theory29–37. In practice, these constraints still limit the
number of gates per cell to about ten18.

Transcriptional NOR gates are often used to construct circuits
because they require a single repressor and are easily encoded in DNA38–43.
They are easy to connect to build different circuits by changing the
pattern of promoters in front of each repressor gene. Libraries based
on different repressor families have been built, but they have various
problems restricting their use, such as sensitivity to ligands, large
operators that must be inserted into promoters, repetitive domains
and retroactivity16,19,43–54. The CI repressor from phage λ does not
exhibit these problems and was used in many early synthetic biology
projects9,38–40,55–65. While few homologs have been characterized, evi-
dence indicates their orthogonality and the number of sequenced

Received: 22 December 2023

Accepted: 14 August 2024

Published online: xx xx xxxx

 Check for updates

1MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, MA, USA. 2Department of Biological Engineering, Massachusetts Institute
of Technology, Cambridge, MA, USA. 3Department of Bioengineering, Northeastern University, Boston, MA, USA. 4Department of Electrical and Computer
Engineering, Boston University, Boston, MA, USA. 5Department of Computer Science, Boston University, Boston, MA, USA. 6Biological Design Center,
Boston University, Boston, MA, USA. 7Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA. 8These authors
contributed equally: Jai P. Padmakumar, Jessica J. Sun.  e-mail: cavoigt@gmail.com

http://www.nature.com/naturechemicalbiology
https://doi.org/10.1038/s41589-024-01730-1
http://orcid.org/0000-0002-3552-7094
http://orcid.org/0009-0005-6113-2589
http://orcid.org/0000-0002-0514-4586
http://orcid.org/0000-0002-7666-6808
http://orcid.org/0000-0003-0844-4776
http://crossmark.crossref.org/dialog/?doi=10.1038/s41589-024-01730-1&domain=pdf
mailto:cavoigt@gmail.com

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

synthesis tool Yosys (Fig. 1b and Methods). The logic synthesis initially
resulted in a total of 131 NOT and NOR gates connecting the inputs to
the outputs, which was later reduced to 110 gates (see below). The
wiring diagram has 16 binary inputs and 2 binary outputs; each itera-
tion of the algorithm reuses this function with different input states.
Each input and output variable has 2 bits, indicated by subscript 0
and 1. The 2-bit message chunk is represented by the inputs (m0 m1).
Ultimately, the concatenation of the inputs (a0 a1), (b0 b1), (c0 c1) and
(d0 d1) becomes the 8-bit hash; they are initialized as (00), (01), (10), (11)
and are updated after each iteration (Supplementary Fig. 1). The inputs
(s0 s1) and (t0 t1) are predefined constants that are updated after each
iteration using a lookup table of 64 values. Each iteration involves a left
shift in the value determined by s and an addition step using the value
from t that increases the security of the hash. Inputs (r0 r1) represent
the round number in binary. The MD5 wiring diagram integrates these
eight inputs into a 2-bit output (o0 o1) that is used to update b for the
next iteration, while a, c and d are updated using the previous values
of d, b and c, respectively.

Circuit partitioning
A partitioning algorithm was developed to divide a large circuit into
subcircuits carried by communicating cells (Fig. 1c and Methods). It
seeks to minimize the required number of cells while conforming to a
set of constraints. One constraint is the maximum number of gates in
a subcircuit, which is set to avoid overburdening cells. The second con-
straint is the total number of available orthogonal cell−cell communica-
tion signals. At one extreme, if only one gate were allowed per cell, the
solution would be to encode each gate in an independent cell, resulting
in 131 strains. At the other extreme, if all 131 gates were allowed in a single
cell, only one strain would be required to encode the complete circuit.

The partitioning algorithm is shown in Fig. 1c and is described in
more depth in Supplementary Fig. 2. It differs from graph partitioning
algorithms that fix the number of cells and divide gates among cells to
minimize wire crossing. Instead, we implemented a greedy algorithm
that seeks to group gates into cells without violating the constraints.
Some steps are stochastic, so the process was repeated n times and
the partition with the lowest number of cells was selected; in practice,
n = 1,000 was sufficient to identify good partitions for the MD5 circuit.
After partitioning, specific communication signals (‘colors’) must be
assigned to wires (‘edges’) between partitions, a challenge known as
the ‘edge coloring’ problem94. To simplify edge coloring, we mapped
this task to a simpler ‘node coloring problem’ that we solved using the
Welsh−Powell algorithm95 (Supplementary Fig. 3). After the generic
colors of the edges are computed, each color is randomly assigned to
one of the available communication signals, which includes a specific
device to send a signal and a specific device to receive the signal in the
next cell (see below). The output of the partitioning algorithm was a
set of Verilog files describing the logic operation and input/outputs
required for the subcircuit in each participating cell. These files can
be used by Cello to design the DNA sequences of all subcircuits to be
carried in the genomes of the participating strains.

The partitioning algorithm was run on the MD5 circuit while
constraining the maximum number of gates per cell to eight and
the number of communication signals to four. A solution was found
that partitioned the 131 gates across 66 subcircuits (Fig. 1b). Then, we
reduced the number of gates per cell by rerunning logic minimization
(Yosys) while including the possibility that an OR gate could be used in
the last layer. OR gates can be easily implemented at this position using
a tandem promoter. These changes reduced the total number of gates
in the MD5 circuit to 110 (Methods).

The constraints were set based on our previous experiences with
circuit design and the number of orthogonal signals that we could use
simultaneously. However, the effect of changing these constraints on
the number of cells required could be systematically explored using
the partitioning algorithm. Interestingly, the benefit from adding

viral genomes is growing rapidly. Coding theory predicts that up to 80
orthogonal CI repressor variants could be used in a cell66.

Distributed computing is a powerful approach to problem-solving
in which multiple cells collaborate by communicating the states of their
circuits42,67,68. Information is transmitted by a ‘sender device’ from one
cell that produces a diffusible chemical signal and a ‘receiver device’ in
the next cell that responds to it5,69–74. The receiver can be connected to
an input of a cellular genetic circuit, whose output can be connected to
a sender. Up to four orthogonal sender−receiver pairs have been used
together in a cell41,75,76. Distributed computing can be used to divide a
circuit too large for a single cell across multiple cells9,58,63,64,77–83. This
strategy reduces the burden on any one cell and improves robustness
by requiring consensus. Communicating cells have been used to per-
form two-input Boolean operations, solve a maze, implement memory
and function as a comparator, band-stop filter and adders39,42,43,84–88.
These multicellular circuits were small, so gate partitioning could be
performed easily by hand.

When designing electronic circuits, a common task is to divide
a circuit into subcircuits, for example, to distribute circuits that are
too large for one chassis (module, chip or board) across multiple
chassis89–92. Partitioning algorithms convert the circuit into a graph and
divide the nodes (gates) across a fixed number of chassis while mini-
mizing the edges (wires) spanning chassis93. Many variations of these
algorithms and corresponding software tools have been developed,
but a shared feature is that they keep the number of chassis fixed89.
In contrast, when dividing a genetic circuit across cells, the number
of gates per cell and number of signaling molecules are constraints,
whereas the number of cells (chassis) is variable.

Here, we demonstrate the partitioning of a hash algorithm into sub-
circuits encoded within Escherichia coli genomes, show that all the sub-
circuits function as designed and provide examples of the propagation
of signals over two and three layers. The 128-bit MD5 (‘message digest’)
algorithm has various roles, such as verifying data integrity after transfer,
and is a predecessor to the SH256 algorithm underlying Bitcoin. Here,
we used a 2-bit version of the MD5 function that was repeated to convert
an input string (message) into an 8-bit hash. This MD5 function was con-
verted to a circuit consisting of 110 NOR or NOT gates. Then, an algorithm
was developed to partition the gates across strains while constraining the
number of gates and communication channels per strain and allowing
the total number of strains to vary. This algorithm partitioned the 110
gates into 66 strains. The subcircuits were computationally designed
using Cello13,14, a new library of phage repressors, inducible systems75
and four sender−receiver devices41,75,76. The corresponding subcircuit
DNA was introduced into the genome of each strain, requiring up to
41 genes (23 regulatory) and 31 kb. Collectively, this project required
DNA construction on the scale of a small bacterial genome. The sub-
circuit functions were experimentally verified individually for correct
information propagation between pairs of strains and in an example
of a three-layer propagation culture between subcircuit strains.

Results
Wiring diagram design for a 2-bit MD5 hashing algorithm
The MD5 hashing algorithm was designed to run on a 32-bit computer,
where the input is a 512-bit message and the output is a 128-bit hash.
Here, we implemented a version designed to run on a 2-bit computer,
where the input is a 32-bit message and the output is an 8-bit hash. The
Verilog implementation is shown in Fig. 1a. The input is a binary message
that is either padded to 32 bits (if shorter) or broken into 32-bit mes-
sages (if longer), after which the message is divided into 2-bit chunks.
A different chunk serves as an input to 64 iterations, divided into
four 16-iteration rounds, resulting in scrambling of the input message
(Supplementary Fig. 1). The MD5 function calculations performed in
each iteration are identical in the 32-bit and 2-bit implementations.

The Verilog implementation of the MD5 function was converted
to a wiring diagram composed of NOT and NOR gates using the logic

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

communication signals stopped at approximately eight, irrespective
of the maximum number of gates per cell (Fig. 1d). Similarly, the benefit
from increasing the number of gates per cell plateaued at ten, which
is currently achievable but can lead to a higher probability of circuit
failure (Fig. 1d). In this regime, the benefit from allowing more gates
in a cell is incremental.

Gates based on phage repressors
We collated a set of phage repressors with the inclusion criteria of
known promoters (PR from the lysis−lysogeny switch) and unique

operator sequences (Fig. 2a)39. This set initially contained 20 pairs
of repressors and promoters (Supplementary Tables 1 and 2). Gates
were constructed using these repressors. Initially, NOT gates were
characterized using plasmids (Supplementary Methods). Two input
promoters (aTc-inducible PTet and IPTG-inducible PTac) were placed
in tandem to drive expression of the repressor. The output promoter
was fused to the gene encoding yellow fluorescent protein (yfp).
Repressor expression was controlled using a weak computationally
designed ribosome-binding site (RBS)96 (Supplementary Methods). The
repressor gene cassette included insulators to reduce the impact of the

a

b

c

• Select gate with minimal
intergate connections (gray)
• Add gates until max gates per
cell violated

• Max gates per cell
• Total channels

Constraints

• Color edges crossing subcircuits
using Welsh–Powell algorithm

• Merge cells if no constraints
violated

• Randomly select two subcircuits

Verilog and Yosys

Continue until all assigned

Repeat n times

d

Cello

Cell 1:

Cell 2:

Cell 3:

Logic

DNA

b1
d1
c1
r1

r0

d0

c0
b0

m0
t0a0

a1
m1

t1

s1s0

o1

o0

module md5Core(a_i, b_i, c_i, d_i, r_i, m_i, s_i, t_i, a_o);
 parameter WIDTH = 2;
 input [0:WIDTH-1] a_i, b_i, c_i, d_i;
 input [0:1] round_i;
 input [0:WIDTH-1] m_i;
 input [0:1] s_i;
 input [0:WIDTH-1] t_i;
 output [0:WIDTH-1] a_o;
 wire [0:WIDTH-1] a_i, b_i, c_i, d_i;
 wire [0:1] round_i;
 wire [0:WIDTH-1] a_o, tmp;
 reg [0:WIDTH-1] f;
 function [0:WIDTH-1] F;
 input [0:WIDTH-1] x, y, z;
 begin
 F = (x & y) | ((~x) & z);
 end
 endfunction
 function [0:WIDTH-1] G;
 input [0:WIDTH-1] x, y, z;
 begin
 G = (x & z) | ((~z) & y);
 end
 endfunction
 function [0:WIDTH-1] H;
 input [0:WIDTH-1] x, y, z;
 begin
 H = (x ^ y ^ z);
 end
 endfunction
 function [0:WIDTH-1] I;
 input [0:WIDTH-1] x, y, z;
 begin
 I = (y ^ (x | (~z)));
 end
 endfunction
 assign tmp = a_i + f + m_i + t_i;
 assign a_o = b_i + ((tmp << s_i) | (tmp >> (WIDTH - s_i)));
 always @ (a_i, b_i, c_i, d_i, r_i, m_i, s_i, t_i)
 begin
 case (round_i)
 `CORE_ROUND1:
 begin
 f = F(b_i, c_i, d_i);
 end
 `CORE_ROUND2:
 begin
 f = G(b_i, c_i, d_i);
 end
 `CORE_ROUND3:
 begin
 f = H(b_i, c_i, d_i);
 end
 `CORE_ROUND4:
 begin
 f = I(b_i, c_i, d_i);
 end
 endcase
 end

Total channels

N
o.

 o
f c

el
ls

1 5 10

10
1

15 20

20

25 30

30

40

50

60 8
12
16
20
40

1 40 80 120

1
20

40
60
80

100
120

Max gates per cell

4
5
6
7
8

Gates per cell: Channels:

Fig. 1 | Multicellular implementation of the MD5 circuit. a, Verilog behavioral
code used to create the circuit performing the MD5 function116 (Methods).
b, The Verilog file was used with Yosys to create the initial 131-gate circuit
diagram comprising only NOR and NOT gates (Methods). The meanings of the
variables describing the 16 inputs and 2 outputs are provided in the main text
and Supplementary Fig. 1. c, The circuit partitioning function. The constraints
used to divide the MD5 circuit were a maximum of five max gates per cell and four
channels. Gray gates show the initial gate chosen for each group. After partitions

were determined, Cello was used to map the subcircuits to DNA sequences to be
inserted into the cell genomes. The algorithm is described in more detail in the
Methods and Supplementary Figs. 2 and 3. d, Impact of changing the constraints
on the number of cells required to encode the MD5 circuit. Effects are shown for
increasing the number of total channels with various values for the maximum
number of gates per cell (left) and gates per cell with various values for the total
number of channels (right).

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

upstream promoter and to block transcriptional interference14,33,97,98.
The response function of each gate was measured by inducing cells
and measuring fluorescence using flow cytometry (Supplementary
Gate Datasheets and Supplementary Methods). Of the original set,
four were found to not produce sufficient repression, two caused
growth defects and two exhibited crosstalk (Supplementary Table 2).
From these experiments, 12 orthogonal gates were identified that
yielded strong responses. In several cases, to improve the dynamic
range or to change the threshold, either RBS libraries or synthetic
output promoters were designed (Supplementary Methods).

For simplicity, the final set of repressors and their cognate promoters
were renamed JR1−JR12 and PJR1−PJR12, respectively (for example, CI was
renamed JR1) (Fig. 2a and Supplementary Table 1).

The gates were then moved to the E. coli genome to measure their
response functions in this context. The parent strain E. coli YJP_MKC174
contains three landing pads, each containing a phage integrase site
(attB2, attB7 and attB5) to simplify the insertion of large DNA pay-
loads33. Their genomic loci were empirically determined to produce
high expression levels and are flanked by strong bi-directional termina-
tors to insulate against incoming or outgoing transcription. This strain

b
LacI

TetR

jr1

Rj13

Ret0

RiboJ
B0034

yfp DT65

RiboJ54

PJR1PTet PTac

aTc

IPTG

attR2attL2

oriC

E. coli
YJP_MKC174

Sensor array
attB2 JR3

JR7

JR1
JR2

JR4
JR5
JR6

JR8
JR9

JR11
JR12

JR10

P JR
1

P JR
2

P JR
3

P JR
4

P JR
5

P JR
6

P JR
7

P JR
8

P JR
9

P JR
10

P JR
11

P JR
12

Fold change

100

80

60

40

20

10

30

50

70

90

0

Promoters

Re
pr

es
so

rs

d

c

Input (RNAP/s)
10–4 10–3 10–2 10–1 100

O
ut

pu
t (

RN
AP

/s
)

10–4

10–3

10–2

10–1

100

f g

O
ut

pu
t (

RN
AP

/s
)

Input (RNAP/s)

Sender cells Receiver cells

DAPG

phlC phlB phlDphlA

pC-HSL

rpaI rpaL talS

Inputs Outputs

cinI

OHC14

PPhlFphlFAM

PRpa*ArpaRAM

PCincinRAM

PLuxBluxR

OC6

luxI

e

pC-HSLOHC14 DAPGOC6
– +

O
ut

pu
t (

RN
AP

/s
)

a

50 100 150 200 2500 300

DNA binding

JR3

JR7

JR1
JR2

JR4
JR5
JR6

JR8
JR9

JR11
JR12

JR10

Amino acid no.
+1–20–40–60 +20

–35 –10Spacer

Nucleotide no.

PJR1
PJR2
PJR3
PJR4
PJR5
PJR6
PJR7
PJR8
PJR9
PJR10
PJR11
PJR12

10–4 10–3 10–2 10–1 100
10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100

– + – + – +

Fig. 2 | Logic gates and cell−cell communication used to build subcircuits.
a, Library of phage repressors and their cognate promoters. The repressors are
aligned by their DNA-binding domains; Pfam peptidase S24 domains are shown
as dashed rectangles and ɑ-helical regions were predicted computationally
(Methods). The promoters are aligned by their transcription start site and
operator sequences are shown as colored boxes. Sequences and references
are provided in Supplementary Table 1. b, Genomic encoding of a NOT gate.
Gate JR1-3 is shown as an example with the order of the repressor and output
promoter/reporter reversed for clarity. Genetic parts and sequences are
provided in Supplementary Table 11. c, NOT gate response functions. The line
colors reflect the repressor colors from a. The lines were fitted to equation (2)
using the parameters in Supplementary Table 3. Schematics of each gate,
replicate data and growth impact are provided in the Supplementary Gate
Datasheets. The light gray lines are the average outputs of the gates in ON/OFF
states and show that the gates are ‘impedance matched’ and can be connected.

d, Orthogonality of the repressor−promoter pairs. All combinations of repressors
and output promoters were cloned to create 144 strains (Supplementary Fig. 4).
Fold change was calculated as the ratio of the fluorescence of induced and
uninduced cells, subtracting autofluorescence (E. coli JAI_MKC300). e, The OFF
and ON responses used by Cello to design subcircuits (Supplementary Table 6).
The data points represent three replicates performed on different days and the
bar heights are means. The strains used were E. coli rLux, rCin, rRpa and rPhl
(Supplementary Fig. 4). f, Genetic diagrams of the sender and receiver cells.
Genetic parts are provided in Supplementary Table 11. g, The response functions
of the sender−receiver devices. The x axis represents activity of the sender input
promoter (PTac) and the y axis represents activity of the receiver output promoter.
The response functions were obtained through fitting to equation (2) using three
replicates performed on different days and the parameters in Supplementary
Table 7. The light gray lines show the average output of sender−receiver pairs
when they are OFF (left) and ON (right).

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

also has the IPTG (LacI) and aTc (TetR) inducible systems in the attB5
landing pad. The gates were integrated into the attB2 landing pad and
oriented with the output promoter first to avoid readthrough from
strong input promoters (Fig. 2b).

When moving a gate from a plasmid to the genome, the strength of
the RBS usually needs to be increased, which was necessary for all but
one gate (JR6). To improve expression, we designed small RBS libraries
using the RBS Library Calculator96 and screened them in the attB2 land-
ing pad (Supplementary Methods). From these libraries, we selected
variants that yielded similar response functions across the full set of
repressors. Uniform response functions simplify their connection by
design automation software to build larger circuits.

The response functions of all the gates were then characterized.
Cells were grown with different concentrations of inducers in M9
medium (Methods). These experiments produce response functions
whose y axes represent arbitrary units of fluorescence and x axes rep-
resent the inducer concentration. Two steps were taken to convert the
axes to absolute units of promoter activity (flux of RNA polymerase
exiting the promoter per second, or RNAP/s). First, the fluorescence
from the PTet−PTac tandem promoter was measured as a function of
inducer concentration (E. coli JAI_MKC148), which could be used to
convert the x axis of the response functions to fluorescence. Second,
both axes were converted to RNAP/s using the reference promoter
BBa_J23101 (E. coli YJP_MKC254) (Supplementary Fig. 4)33,72,99. These
data were then fitted to

y = ymin + (ymax − ymin)
Kn

xn + Kn (1)

where y is the activity of the output promoter, x is the activity of the
input promoter, K is the threshold and n is the cooperativity. The
response functions are shown in Fig. 2c with the parameters given in
Supplementary Tables 3 and 4. The replicate information is given in
the Supplementary Gate Datasheets. The uniformity of these response
functions makes them easier to connect using Cello than previous
TetR-family-based gates49. When the output of a gate switches from ON
to OFF (horizontal lines in Fig. 2c), this crosses the range required to
turn the next gate from OFF to ON (vertical lines in Fig. 2c). The expres-
sion of phage repressors from the genome had little impact on cell
growth (Supplementary Gate Datasheets). To test for orthogonality,
144 strains were constructed by crossing the 12 repressors with the
12 promoters in their genomes. No crosstalk was observed (Fig. 2d
and Supplementary Figs. 4 and 5).

The gates and their response functions were used to build a user
constraint file (UCF) for Cello that can be used for automated circuit
design (Eco2C1G5T1)13,14. Genome-encoded NOR gates use two copies
of the same repressor gene, each of which is independently connected
to an input promoter33. The UCF includes constraints that enforce sepa-
ration of the repressor genes for one gate across the attB2 and attB7
landing pads. This prevents problems associated with RNAP roadblock-
ing that can occur with tandem promoters14 and avoids homologous
recombination. For repressors JR1, JR7 and JR9, we included gates
based on different RBSs that shifted the response function thresholds,
providing more flexibility in finding solutions for circuit designs
(Supplementary Gate Datasheets).

Characterization of cell−cell communication channels
Each channel was based on a sender device that produces the chemi-
cal signal and a receiver device that responds to it. We selected
four channels known to not cross-react with each other’s signals:
3-oxohexanoyl-homoserine lactone (OC6), 3-hydroxytetradecanoyl-
homoserine lactone (OHC14), para-coumaroyl-homoserine lactone
(pC-HSL) and 2,4-diacetylphloroglucinol (DAPG)41,75,76. First, we charac
terized the receiver devices that respond to each of these small mole
cules (based on LuxR, CinIAM, RpaRAM and PhlFAM)75,76. These regulators

were expressed from a contiguous ‘sensor array’ that we inserted into
the landing pad strain to generate E. coli JAI_MKC300 (Supplementary
Fig. 6 and Supplementary Methods). When needed, rpaRAM was encoded
with the DNA containing the circuit.

We measured the response functions of the four receiver devices.
The output promoter PLuxB, PCin, PRpa*A or PPhlF was fused to yfp and
inserted into the attB2 landing pad to create the E. coli rLux, rCin,
rRpa and rPhl ‘receiver cells’, respectively (Supplementary Fig. 4). Each
strain was grown at different concentrations of the exogenously added
communication signal (Supplementary Methods). The fluorescence
output was measured by cytometry and was converted to units of
RNAP/s. These data were fitted to the response function

y = ymin + (ymax − ymin)
cn

cn + Kn (2)

where c is the concentration of the signaling molecule. The full response
functions of the four receivers are shown in Supplementary Fig. 7
with parameters provided in Supplementary Table 5. Because Cello
designs digital logic circuits, it requires only the activities of the receiver
output promoters in the OFF and ON states (Fig. 2e).

The sender devices were then constructed. The input to a sender
device is defined as a promoter and the output is the expression of
the enzyme(s) that produce the communication signal72 (Supplemen-
tary Subcircuit Datasheets). The biosynthetic enzymes comprising
the sender devices were as follows: LuxI (OC6), CinI (OHC14), RpaIL/
TalS41 (pC-HSL) and PhlACBD41 (DAPG). To characterize the devices,
the IPTG-inducible PTac promoter was selected as the input. The first
three were inserted into the attB2 landing pad to create the following
‘sender cells’: E. coli sLux, sCin and sRpa (Fig. 2f). The DAPG biosynthetic
pathway was carried on a plasmid to obtain higher production levels
(plJAI_617), which was carried by the E. coli sPhl sender cell.

The circuit design algorithm was modified to incorporate trans-
mittal of the signal between cells. Previously, Cello predicted the acti
vity of a circuit output promoter only if it was fused to a fluorescent
reporter gene. Instead, we sought to predict how its activity would
propagate and induce the receiver promoter in the next cell in the
multicellular circuit. Performing this calculation requires a response
function whose x axis represents the activity of the output promoter
of the upstream cell and y axis represents the input promoter activity
of the receiver in the downstream cell.

We empirically measured these functions using sender and
receiver strains grown in liquid culture (Fig. 2g). Sender strains were
grown in M9 medium as previously described with different concen-
trations of IPTG (Methods). The supernatants were collected, filtered
and used to induce the receiver cells. The receiver cells were grown
separately for 16 h and then cultured for 3 h in the sender’s supernatant
(Methods). The data from these experiments were used to fit response
functions that capture transmission of the signal from the sender to
receiver cells (equation (2)), where c was replaced by the promoter
activity x of the sender device). The response functions are shown in
Fig. 2g, the parameters are provided in Supplementary Table 6 and
replicate information is provided in Supplementary Fig. 8. Each com-
munication channel had a similar 50-fold dynamic range with varying
activities in the OFF state. The average outputs of the NOT and NOR
gates spanned the ranges required to turn on the sender device to
induce a response in the receiver cells (horizontal lines in Fig. 2g).
Therefore, the subcircuit output(s) could be reliably connected to
the sender devices to transmit the signal to the next layer of the multi
cellular circuit.

Subcircuit design
Cello was modified to design the needed subcircuits (Supplementary
Methods). First, the logic minimization and gate assignment algorithms
had to be changed to design circuits with multiple outputs. Second,

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

the software was extended to automate the connection of outputs
that are not fluorescent reporters. This change enabled the cell−cell
communication devices to be connected and logic gates to be selected
based on their response functions (Fig. 2g). Cello 2.1 software was
used to design the DNA sequences for the subcircuits using the
phage repressor library (Supplementary Methods).

The output of the partitioning algorithm specified 66 subcircuits,
but some were identical, so only 41 strains needed to be constructed
(for example, E. coli sc21 is used nine times) (Supplementary Fig. 9).
The 41 Verilog files produced by the partitioning algorithm were
provided to Cello along with the information defining the sensors
and actuators (DNA sequences and responses) (Supplementary
Table 7). There are 16 inputs to the MD5 circuit, the states of which
were reported to the subcircuits using the IPTG, Ara, Cuma, aTc and
Van inducible systems present in the E. coli Marionette sensor array75.
The specific assignment of sensors to each MD5 input was based on
their ability to connect to the subcircuit. Note that the same input to
the MD5 circuit can be reported to subcircuits with different inducible
systems; for example, input d1 is reported by Ara in subcircuit sc2 by
aTc in subcircuit sc3. Similarly, the same input to the MD5 circuit can
be represented by different inducers for different subcircuits. The
outputs of the subcircuits were specified as sender devices, which were
randomly assigned to each ‘color’ from the partitioning algorithm.
They consisted of the biosynthetic pathways for the communication
signals as well as genes encoding YFP, red fluorescent protein (RFP), or
blue fluorescent protein (BFP) so that their induction could be visual-
ized. When the output of the subcircuit corresponded to an output
of the MD5 circuit (o0 and o1), only the fluorescent reporters were the
outputs (E. coli sc39 and sc41).

Cello 2.1 provided the subcircuit DNA sequences to be inserted into
the landing pads of the genome, as well as their predicted responses.
The median number of regulator genes required in a cell was eight
and the median DNA size was 25 kb (Fig. 3a). The largest subcircuit
was sc5, which has two inputs, eight gates and three communication
outputs, requiring 31 kb of DNA to encode the subcircuit alone (the
total amount of recombinant DNA in E. coli sc5 is 43 kb) (Fig. 3b,c).
Following the Cello specifications exactly, the DNA sequences for the
41 subcircuits were constructed and inserted into the attB2 and attB7
landing pads of E. coli JAI_MKC300 to create strains E. coli sc1 to sc41
(Supplementary Subcircuit Datasheets and Supplementary Methods).
The sender devices were encoded in the genome in the attB5 landing
pad, except for the DAPG sender, which was carried on a p15a plasmid.
For subcircuits sc5, sc6, sc15 and sc27, we observed toxicity due to the
DAPG sender device, which was resolved by replacing the origin with
that from a lower-copy pSC101 plasmid. Across the 41 strains, the total
recombinant DNA required for introduction was 1.1 Mb, including the
DNA inserted into the landing pads, the sensor array and the plasmid.

First, we used fluorescent reporters to characterize the responses
of the subcircuits carried by the 41 strains. Cells were induced with
different combinations of their inputs, including exogenously added
communication signals if needed (DAPG, OC6, OHC14 or pC-HSL)

(Methods). Cells were induced for 16 h in M9 medium at 37 °C using
multicolor flow cytometry (Methods). The activities of the output
promoters were characterized in RNAP/s using reference strains
containing the BBa_J23101 promoter fused to yfp, rfp or bfp (E. coli
YJP_MKC274, JAI_MKC399, JAI_MKC400) (Supplementary Fig. 10). For
the largest subcircuit (sc5), the responses of the output promoters
to all input combinations are shown in Fig. 3d. The data for all cellular
circuits are compiled into Fig. 3e for all subcircuits and combinations
of inputs (complete data are shown in the Supplementary Subcircuit
Datasheets). Cello accurately predicted whether the circuit would
be ON or OFF across all combinations of inputs, but the fine-tuned
expression levels predicted in both states were more variable.

Only 3 of the 41 subcircuits failed in the initial attempt and had
to be redesigned. Subcircuits E. coli sc39 and sc40 failed for the same
reason and were fixed with the same modification. They failed in two
states (−/−/+ and +/+/−), which we corrected by redefining an input to
be the Cuma sensor (in place of the aTc sensor) and rerunning Cello
to obtain new gate assignments. These changes improved the circuit
performance; however, while the +/+/− state was technically OFF, the
signal was still too high for the sender device to work properly. We hypo
thesized that this problem was caused by the weak RpoC terminator,
so we moved the JR3 gate to the 3′ end, which corrected the problem.
This was added as a constraint to the UCF for future designs. The third
failed subcircuit was E. coli sc21, which was OFF in the +/− state when it
should have been ON. Crosstalk has previously been observed between
RpaR and PLuxB and we suspected that this was also true for RpaRAM.
Therefore, we replaced PLuxB with PLux*TA, which corrected the problem76.
Despite these minor failures, the extent to which this large design
project could be automated and worked in the first pass is remarkable.

Communication between MD5 subcircuits
We characterized the ability of each cell carrying a subcircuit to
communicate its state to the next layer of cells in the MD5 circuit.
These experiments were performed independently by growing each
subcircuit-containing cell with different combinations of inducers
and measuring propagation of the communication signals to the
receiver cells (E. coli rLux, rCin, rRpa and rPhl). First, cells containing
a subcircuit were inoculated into M9 medium containing inducers and
the supernatant was collected (Methods). The receiver cells were
grown separately, diluted, added directly to the supernatant and
cultured for 3 h. All cells communicated to the next layer as expected,
producing the correct response. These data are shown for the largest
subcircuit (sc5) in Fig. 3d. In all four states, the subcircuit could transmit
its state to the next layer. Although E. coli sc5 carries up to 41 recombi-
nant genes (23 regulatory genes), this had little impact on the growth
rate (Supplementary Fig. 12). This is in striking contrast to previous
circuit designs, where we observed that smaller circuits decreased
the growth rate by up to 30% over 8 h, causing evolutionary breakage
within a day18.

The partition of the MD5 circuit is shown in Fig. 4a, including the
small molecules used to communicate the subcircuit states between

Fig. 3 | Division of the 2-bit MD5 circuit into subcircuits. a, Distribution of
subcircuit designs after running the partitioning algorithm and Cello. The total
DNA encompasses the amount of recombinant DNA that must be added to
the genome of each cell, as defined in the Methods. The number of regulatory
genes includes sensors and gates. The distributions are for 41 cells; datasheets
are provided in Supplementary Subcircuit Datasheets. b, The largest subcircuit
carried by one cell. Gates are colored by the repressor assigned. c, Genetic
design of the largest subcircuit carried by E. coli sc5. The complete sensor
array is shown, but only two sensors serve as inputs to this subcircuit. Most
of these constructs are carried in the genome, but the DAPG sender device is
carried on the pSC101 plasmid (Supplementary Fig. 4). Genetic part sequences
are provided in Supplementary Table 11. d, Characterization of the largest
subcircuit carried by E. coli sc5 (Methods). Left, activity of the sc5 output

promoters for all combinations of inputs (200 nM aTc and 100 μM Cuma); bars
represent the computational values predicted by Cello and points represent
three biological replicates performed on different days. Right, communication
of the subcircuit state of E. coli sc5 to the next layers of cells; bars represent
the mean activities of the output promoters of the receiver devices and points
represent three replicates performed on different days. The horizontal marks
at the top of the graph indicate the states where the receiver device should be
ON. Cytometry distributions are provided in Supplementary Fig. 11. e, Measured
versus Cello-predicted activities of the output promoters for all 41 strains
containing subcircuits (E. coli sc1 to sc41). The points represent the outputs
for all combinations of inducers in all subcircuits. Details and replicate
information are provided in the Supplementary Subcircuit Datasheets.

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

cells. The empirical responses of all 41 subcircuits are shown in Fig. 4b.
Each graph shows the response of the subcircuit to exogenously added
small molecules, which is representative of either the inputs to the MD5
circuit or the communication signals. The outputs were the transmit-
tal of the subcircuit state to the next layer of the multicellular circuit
and were read out using E. coli rLux, rCin, rRpa or rPhl. All subcircuits

performed as predicted, with those that should be in the ON state
marked with an overbar in Fig. 4b. None of the cells containing the sub-
circuits exhibited a statistically significant growth defect, in contrast to
our previous experiences10,18. The robustness of the MD5 subcircuits in
this work speaks to the careful design and screening of gates to avoid
toxicity and the impact of incorporating the circuits into the genome.

Cell–cell communication (attB5)

Cuma
aTc

yfp jr3 jr4 jr8 jr2 jr9 rfp

jr8 jr2 jr9 jr1 jr7 bfp

Rj111
SarJ

DT19

PlmJ
Rj72

RiboJ
B0034

ECK120033737

RiboJ60

RiboJ60

Rj81
DT56

Rj81
DT56

RiboJ71
Rj21

ilv geda

RiboJ71
Rj21

ilv geda

Rj91
RiboJ64

DT86

Rj91
RiboJ64

DT86

Rj13
Ret0

RiboJ54

RiboJ69
Rj31

RpoC

BydvJ
Rj41

ECK120029600DT65
B0034

RiboJ RiboJ57
B0064
ECK120017009

RiboJ10

luxI

CHRBS3b CHRBS3t
AraJ

DT82 M13 central

rpaI rpaL (4cI) talS

Sensor array

Circuit (attB2)

glvC locus

Circuit (attB7)

jr11

c

e

phlA phlC phlB phlD

RiboJ

rrnB T1

phlFAM cymRAM vanRAM lacIAM araCAM betIAM ttgRAM pcaUAM nahRAM cinRAMaraEtetRluxR

PJR8

PJR1 PTet PCymRC

PJR3 PTet

PJR3 PJR4 PJR7PJR4

PJR11PJR2 PJR9

PJR7PJR1 PJR11

plJAI_614

b
Inputs Subcircuit sc5 Communication

r0 (aTc)

r1 (Cuma)

pC-HSL

OC6

DAPG

sc15
sc16

sc10
sc14

sc18
sc22

Downstream

E. coli

d

Predicted output (RNAP/s)

M
ea

su
re

d
ou

tp
ut

 (R
N

AP
/s

)

10–410–5
10–5

10–3 10–2 10–1 100

10–4

10–3

10–2

10–1

100
a

C
ou

nt

No. of regulatory genes
2010 155

0

12

Total DNA (kb)
30 4020

4

8

C
ou

nt

0

10

4

8
6

2

Fluorescent reporters

aTc
Cuma

O
ut

pu
t

(R
N

AP
/s

)

yfp rfp bfp

Communication from E. coli sc5 to reciever cells

E. coli: sc5

–
– –

– –
– –

–
+

+
+
+

+
+

rLux sc5 rRpa sc5 rPhl

aTc
Cuma

Re
ce

iv
er

 o
ut

pu
t

(R
N

AP
/s

)

PCymRC

+
+

–
– –

–
+

+
+
+–

– –
– –

– –
–
+

+
+
+

+
+ +

+
–
– –

–
+

+
+
+

10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

10–3

10–1

Re
ci

ev
er

 o
ut

pu
t

(R
N

AP
/s

)

Inputs

In 1
In 2

sc# rLuxOC6

rCin

rRpa

rPhl

b1

d1
c1

r1

r0

d0

c0
b0

m0
t0
a0

a1

m1

t1

s1
s0

o1

o0

a

b

–
+

+– +
+–

– –
+

+– +
+–

–

–
+

+– +
+–

– –
+

+– +
+–

–

–
+

+– +
+–

– –
+

+– +
+–

–

+-

+–

–
+

+– +
+–

– –
+

+– +
+–

–

b1

d1

c1

r1

r0

d0

c0

b0

m0

t0

a0

a1

m1

t1

s1

s0

FF

F

F

F

F

F

F

D

D

D

D

A

A A

A

A

C

C

C

E

E

E

B

B

G

G

D

H

H

I

I

E

F

o1

o0

–
+

+– +
+–

– –
+

+– +
+–

– –
+

+– +
+–

–

E. coliE. coli

– +

–
– –

–+
+ +

+ –
– –

–+
+ +

+ –
– –

–+
+ +

+

– – – +
– – + +

– –+ +
– – + +

– –+ +
– – + +

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

+
+

++
+

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

+
–

–
–
–
+ +

+

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+ –

– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

+
–

–
–
–
+ +

+

+–– +

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

–
– –

–+
+ –

– –
–
–

–
+

++
+

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

–– + +

–– + + –– + +

–– + +

–– + + –– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

+–– +

–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

+
+

++
+ –

– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–– + +
–– + +

–
– –
– – – –

–+
+

+ + + +
–
– –
+
+

–
+

++
+

Fig. 4 | Multicellular computation of the 2-bit MD5 circuit. a, Circuit diagram
for the MD5 function (110 gates). The subcircuit partitions are shown by the
background colors and colored lines indicate the cell−cell communication signal
(blue, OC6; purple, OHC14; green, pC-HSL; orange, DAPG). Supplementary Fig. 10
provides the subcircuit number for each partition. b, All MD5 subcircuits
communicating to the next layer of cells (legend). The graphs are organized
spatially to mimic 4a. The bars represent the means of three experiments
performed on different days and the horizontal marks indicate the states where
the output should be ON. The bar colors correspond to the cells used to measure
the activity of the receiver devices (E. coli rLux, rCin, rRpa or rPhl). Complete

data, including replicates, are provided in the Supplementary Subcircuit
Datasheets along with the concentrations of the inducers used. Representative
cytometry distributions are provided in Supplementary Fig. 11. The lines between
graphs mark the cell−cell communication channels. The chemicals used for
communication signals were exogenously added: 10 μM OC6, 10 μM OHC14,
10 μM pC-HSL, 25 μM DAPG. The letters indicate cells that were repeated at
different positions in the MD5 circuit because they are identical in inputs,
outputs and logic function (A, E. coli sc19; B, E. coli sc20; C, E. coli sc11; D, E. coli
sc18; E, E. coli sc10; F, E. coli sc22; G, E. coli sc23; H, E. coli sc24; I, E. coli sc38).

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

The complete set of strains containing subcircuits cannot be con-
nected to each other to build the full MD5 circuit. This limitation was
due to the number of orthogonal cell−cell communication signals that
were available. To demonstrate propagation of the signal through the
three layers of the circuit in a co-culture, we selected two subcircuits
(E. coli sc2 and sc4) and receiver strains for the outputs (E. coli rCin and
rRpa) (Supplementary Fig. 13). Cultures of E. coli sc2 and sc4 were grown
and then mixed in media with different concentrations of the inducers.
After growth in the co-culture, the supernatants were used to induce
receiver cells. Using this protocol, E. coli sc2 correctly transmitted its
signals to E. coli sc4 followed by E. coli rRpa (and E. coli rCin) across all
input and output states. Note that, even if more cell−cell communica-
tion signals were available, it would remain difficult to connect the
subcircuits because the cells would need to be synchronized and when
a signal skips layers, this can lead to faults (transient incorrect outputs).

The full MD5 hash function was calculated using the empirical
responses measured for all strains containing subcircuits (Supple-
mentary Fig. 14). Each strain was treated individually as performing
the calculation and transmitting its signal to the next layer of the MD5
circuit. The data for the induction of a receiver cell by one cell contain-
ing a subcircuit were used for these calculations. A simulation was per-
formed in which the signal was propagated through the MD5 circuit for
64 iterations to complete the hash. These simulations performed the
correct hashing of ‘MIT’, indicating that the fuzzy logic implemented
by strains carrying individual subcircuits is sufficient for performing
the binary 2-bit hash.

Discussion
This work demonstrates how a circuit function that is too large and
complex to be performed by a single cell can be divided across a set
of communicating cells. This feat required the development of new
design automation algorithms and genomically encoded gates. These
tools allowed us to increase both the scale of individual circuits—to our
knowledge, subcircuit sc5 is the largest constructed to date and the
number of cells that can be part of a larger design project. This MD5
circuit design is a marked increase in complexity over earlier work,
in 2020 to encode an LCD calculator display chip (Texas Instruments
SN74LS49) across seven strains of E. coli (0.1 Mb)18, in 2011 to encode
an XOR gate across four strains (0.03 Mb)39 and in 2009 to encode an
edge detector in one strain (0.018 Mb)9. Note that the primary goal of
genetic circuit design is to gain control over the capabilities of biology—
evidenced in the natural world—not to beat electronics at computing
tasks. However, there may be a point at which computing by living cells
can outperform electronic circuits for some classes of problems1,8.

Building more powerful biological computers requires larger
circuits in individual cells. Information theory limits the number of
DNA-binding regulators to hundreds and, even with burden-mitigating
strategies, heterologous protein expression eventually overbur-
dens the cell23,24,66. However, it is possible to be more computation-
ally efficient with this capacity than with our two-input NOR gates.
The computational complexity of a single cell could be improved
by using multi-input logic, gate compression and analog circuits
to make orders-of-magnitude improvements in computational
complexity6,52,100–104.

The more difficult remaining challenge is to connect many cells
to perform distributed computing collectively. The human brain has
1015 connections between 1011 cells that passage information at the
1-ms timescale, representing a frustratingly high water mark for what
is possible via biology105. The programable passage of information
quickly and specifically between cells remains limiting. Relying on
chemical signals to perform this function in liquid cultures or between
colonies on a plate is slow (hours), requires a large cell density to make
sufficient titers and is limited by the number of orthogonal chan-
nels, and it is difficult to remove signal once it has been produced.
Various proposals have been made to use microfluidic devices or

three-dimensional (3D) printed cells in hydrogels to arrange commu-
nicating cells11,39,41,42,76,79,80,88,106–109. However, these approaches require
encoding the circuit function in the physical device itself (for example,
molding liquid channels between cells) and are constrained in terms
of the potential connectivity between cells, particularly if a circuit
requires a wire that bypasses gate layers. Brains overcome this limita-
tion through neurons extending their axons and dendrites to make
contact with many distant cells. Fully realizing the computational
potential of a cell population will require the ability to grow or print
‘brain-like’ structures that can transmit information rapidly through
physical contacts110.

Cryptographic problems may be suitable for biological compu
ters, particularly problems requiring repetitive independent calcula-
tions. Cryptocurrencies use an estimated 1% of global electricity111.
Here, we have begun to show how cells could be programmed to
perform a simple MD5 hash function, and scaling the approach to
the SHA256 algorithm underlying Bitcoin is theoretically possible.
However, circuit design based on digital layered gates is not ideal for
cellular regulatory networks. For one, our circuits are slow. Based on a
6-h cell-to-cell transmission time and the longest path through the MD5
circuit, we estimate that it would take 200 days to complete the ‘MIT’
hash (Supplementary Fig. 14) if done one step at a time. If performed
in culture, synchronization is also a problem where there is no intrinsic
‘clock’ in cellular regulatory networks. Rather, biological computation
thrives on amorphous and asynchronous analog computing, for which
few design automation tools are currently available112–115. There are doz-
ens of hash algorithms, in addition to MD5 and SH256, associated with
various cryptocurrencies, all of which have been designed for use with
electronic CPUs. One can imagine designing cryptography algorithms
specific for cell-based computers that use their highly parallelized,
asynchronous and amorphous structure1.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41589-024-01730-1.

References
1.	 Abelson, H. et al. Amorphous computing. Commun. ACM 43,

74–82 (2000).
2.	 Davidson, E. H. Genomic Regulatory Systems (Academic Press,

2001).
3.	 Turing, A. M. The chemical basis of morphogenesis. Philos. Trans.

R. Soc. Lond., Ser. B 237, 37–72 (1952).
4.	 Wolfram, S. A New Kind of Science (Wolfram Media, 2002).
5.	 Barcena Menendez, D., Senthivel, V. R. & Isalan, M. Sender–

receiver systems and applying information theory for quantitative
synthetic biology. Curr. Opin. Biotechnol. 31, 101–107 (2015).

6.	 Karkaria, B. D., Treloar, N. J., Barnes, C. P. & Fedorec, A. J. H. From
microbial communities to distributed computing systems. Front.
Bioeng. Biotechnol. 8, 834 (2020).

7.	 Zhang, Y. et al. A system hierarchy for brain-inspired computing.
Nature 586, 378–384 (2020).

8.	 Grozinger, L. et al. Pathways to cellular supremacy in
biocomputing. Nat. Commun. 10, 5250 (2019).

9.	 Tabor, J. J. et al. A synthetic genetic edge detection program. Cell
137, 1272–1281 (2009).

10.	 Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design.
Nat. Methods 11, 508–520 (2014).

11.	 Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits.
Nature 420, 224–230 (2002).

12.	 McAdams, H. H. & Arkin, A. Gene regulation: towards a circuit
engineering discipline. Curr. Biol. 10, R318–R320 (2000).

http://www.nature.com/naturechemicalbiology
https://doi.org/10.1038/s41589-024-01730-1

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

13.	 Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. &
Densmore, D. Genetic circuit design automation with Cello 2.0.
Nat. Protoc. 17, 1097–1113 (2022).

14.	 Nielsen, A. A. et al. Genetic circuit design automation. Science
352, aac7341 (2016).

15.	 Lucks, J. B., Qi, L., Whitaker, W. R. & Arkin, A. P. Toward scalable
parts families for predictable design of biological circuits. Curr.
Opin. Microbiol. 11, 567–573 (2008).

16.	 Nielsen, A. A., Segall-Shapiro, T. H. & Voigt, C. A. Advances in
genetic circuit design: novel biochemistries, deep part mining,
and precision gene expression. Curr. Opin. Chem. Biol. 17,
878–892 (2013).

17.	 Fernandez-Rodriguez, J., Yang, L., Gorochowski, T. E., Gordon, D. B. &
Voigt, C. A. Memory and combinatorial logic based on DNA
inversions: dynamics and evolutionary stability. ACS Synth. Biol. 4,
1361–1372 (2015).

18.	 Shin, J., Zhang, S., Der, B. S., Nielsen, A. A. & Voigt, C. A.
Programming Escherichia coli to function as a digital display.
Mol. Syst. Biol. 16, e9401 (2020).

19.	 Bragdon, M. D. J. et al. Cooperative assembly confers regulatory
specificity and long-term genetic circuit stability. Cell 186,
3810–3825 (2023).

20.	 Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing
and engineering evolutionary robust genetic circuits. J. Biol. Eng.
4, 12 (2010).

21.	 Ceroni, F., Algar, R., Stan, G. B. & Ellis, T. Quantifying cellular
capacity identifies gene expression designs with reduced burden.
Nat. Methods 12, 415–418 (2015).

22.	 Huang, H. H. et al. dCas9 regulator to neutralize competition in
CRISPRi circuits. Nat. Commun. 12, 1692 (2021).

23.	 McBride, C. D., Grunberg, T. W. & Del Vecchio, D. Design of genetic
circuits that are robust to resource competition. Curr. Opin.
Syst. Biol. https://doi.org/10.1016/j.coisb.2021.100357 (2021).

24.	 Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T.
Interdependence of cell growth and gene expression: origins and
consequences. Science 330, 1099–1102 (2010).

25.	 Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-
modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848
(2009).

26.	 Şimşek, E., Yao, Y., Lee, D. & You, L. Toward predictive
engineering of gene circuits. Trends Biotechnol. 41, 760–768
(2023).

27.	 Zhang, R. et al. Topology-dependent interference of synthetic gene
circuit function by growth feedback. Nat. Chem. Biol. 16, 695–701
(2020).

28.	 Zhang, R. et al. Winner-takes-all resource competition redirects
cascading cell fate transitions. Nat. Commun. https://doi.org/
10.1038/s41467-021-21125-3 (2021).

29.	 Barajas, C., Huang, H. H., Gibson, J., Sandoval, L. & Del Vecchio, D.
Feedforward growth rate control mitigates gene activation
burden. Nat. Commun. 13, 7054 (2022).

30.	 Chen, Y. et al. Genetic circuit design automation for yeast.
Nat. Microbiol. 5, 1349–1360 (2020).

31.	 Guan, Y. et al. Mitigating host burden of genetic circuits by
engineering autonegatively regulated parts and improving
functional prediction. ACS Synth. Biol. 11, 2361–2371 (2022).

32.	 Liu, Q., Schumacher, J., Wan, X., Lou, C. & Wang, B. Orthogonality
and burdens of heterologous AND gate gene circuits in E. coli.
ACS Synth. Biol. 7, 553–564 (2018).

33.	 Park, Y., Espah Borujeni, A., Gorochowski, T. E., Shin, J. & Voigt, C. A.
Precision design of stable genetic circuits carried in highly-
insulated E. coli genomic landing pads. Mol. Syst. Biol. 16, e9584
(2020).

34.	 Barajas, C. & Del Vecchio, D. Synthetic biology by controller
design. Curr. Opin. Biotechnol. 78, 102837 (2022).

35.	 Grob, A., Di Blasi, R. & Ceroni, F. Experimental tools to reduce the
burden of bacterial synthetic biology. Curr. Opin. Syst. Biol. 28,
100393 (2021).

36.	 Son, H. I., Weiss, A. & You, L. Design patterns for engineering
genetic stability. Curr. Opin. Biomed. Eng. 19, 100297 (2021).

37.	 Ceroni, F. et al. Burden-driven feedback control of gene
expression. Nat. Methods 15, 387–393 (2018).

38.	 Lou, C. et al. Synthesizing a novel genetic sequential logic circuit:
a push-on push-off switch. Mol. Syst. Biol. 6, 350 (2010).

39.	 Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular
computing using genetically encoded NOR gates and chemical
‘wires’. Nature 469, 212–215 (2011).

40.	 Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a
genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).

41.	 Du, P. et al. De novo design of an intercellular signaling toolbox
for multi-channel cell−cell communication and biological
computation. Nat. Commun. 11, 4226 (2020).

42.	 Macia, J. et al. Implementation of complex biological logic
circuits using spatially distributed multicellular consortia. PLoS
Comput. Biol. 12, e1004685 (2016).

43.	 Sexton, J. T. & Tabor, J. J. Multiplexing cell−cell communication.
Mol. Syst. Biol. 16, e9618 (2020).

44.	 Garg, A., Lohmueller, J. J., Silver, P. A. & Armel, T. Z. Engineering
synthetic TAL effectors with orthogonal target sites. Nucleic Acids
Res. 40, 7584–7595 (2012).

45.	 Green, A. A. et al. Complex cellular logic computation using
ribocomputing devices. Nature 548, 117–121 (2017).

46.	 Hsia, J., Holtz, W. J., Maharbiz, M. M., Arcak, M. & Keasling, J. D.
Modular synthetic inverters from zinc finger proteins and small
RNAs. PLoS ONE 11, e0149483 (2016).

47.	 Jusiak, B., Cleto, S., Perez-Pinera, P. & Lu, T. K. Engineering
synthetic gene circuits in living cells with CRISPR technology.
Trends Biotechnol. 34, 535–547 (2016).

48.	 Nielsen, A. A. & Voigt, C. A. Multi-input CRISPR/Cas genetic
circuits that interface host regulatory networks. Mol. Syst. Biol. 10,
763 (2014).

49.	 Stanton, B. C. et al. Genomic mining of prokaryotic repressors for
orthogonal logic gates. Nat. Chem. Biol. 10, 99–105 (2014).

50.	 Taketani, M. et al. Genetic circuit design automation for the gut
resident species Bacteroides thetaiotaomicron. Nat. Biotechnol.
38, 962–969 (2020).

51.	 Didovyk, A., Borek, B., Hasty, J. & Tsimring, L. Orthogonal modular
gene repression in Escherichia coli using engineered CRISPR/
Cas9. ACS Synth. Biol. 5, 81–88 (2016).

52.	 Rondon, R. E., Groseclose, T. M., Short, A. E. & Wilson, C. J.
Transcriptional programming using engineered systems of
transcription factors and genetic architectures. Nat. Commun. 10,
4784 (2019).

53.	 Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying
genetic logic gates. Science 340, 599–603 (2013).

54.	 Zhang, S. & Voigt, C. A. Engineered dCas9 with reduced toxicity
in bacteria: implications for genetic circuit design. Nucleic Acids
Res. 46, 11115–11125 (2018).

55.	 Basu, S., Mehreja, R., Thiberge, S., Chen, M. T. & Weiss, R.
Spatiotemporal control of gene expression with pulse-generating
networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004).

56.	 Kobayashi, H. et al. Programmable cells: interfacing natural
and engineered gene networks. Proc. Natl Acad. Sci. USA 101,
8414–8419 (2004).

57.	 Ackers, G. K., Johnson, A. D. & Shea, M. A. Quantitative model
for gene regulation by lambda phage repressor. Proc. Natl Acad.
Sci. USA 79, 1129–1133 (1982).

58.	 Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R.
A synthetic multicellular system for programmed pattern
formation. Nature 434, 1130–1134 (2005).

http://www.nature.com/naturechemicalbiology
https://doi.org/10.1016/j.coisb.2021.100357
https://doi.org/10.1038/s41467-021-21125-3
https://doi.org/10.1038/s41467-021-21125-3

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

59.	 Kotula, J. W. et al. Programmable bacteria detect and record an
environmental signal in the mammalian gut. Proc. Natl Acad.
Sci. USA 111, 4838–4843 (2014).

60.	 Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of
transcriptional regulators. Nature 403, 335–338 (2000).

61.	 Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise
propagation in a synthetic transcriptional cascade. Proc. Natl
Acad. Sci. USA 102, 3581–3586 (2005).

62.	 Xiong, L. L., Garrett, M. A., Buss, M. T., Kornfield, J. A. & Shapiro, M. G.
Tunable temperature-sensitive transcriptional activation based on
lambda repressor. ACS Synth. Biol. 11, 2518–2522 (2022).

63.	 Karig, D. et al. Stochastic turing patterns in a synthetic bacterial
population. Proc. Natl Acad. Sci. USA 115, 6572–6577 (2018).

64.	 Liu, C. et al. Sequential establishment of stripe patterns in an
expanding cell population. Science 334, 238–241 (2011).

65.	 Ptashne, M. A Genetic Switch: Phage Lambda Revisited. 3rd ed.
(Cold Spring Harbor Laboratory Press, 2004).

66.	 Itzkovitz, S., Tlusty, T. & Alon, U. Coding limits on the number of
transcription factors. BMC Genomics 7, 239 (2006).

67.	 Payne, S. & You, L. Engineered cell−cell communication and its
applications. Adv. Biochem Eng. Biotechnol. 146, 97–121 (2014).

68.	 Duncker, K. E., Holmes, Z. A. & You, L. Engineered microbial
consortia: strategies and applications. Microb. Cell Fact. 20, 211
(2021).

69.	 Kylilis, N., Tuza, Z. A., Stan, G.-B. & Polizzi, K. M. Tools for
engineering coordinated system behaviour in synthetic microbial
consortia. Nat. Commun. 9, 2677 (2018).

70.	 Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic
ecosystems based on airborne inter- and intrakingdom communi
cation. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007).

71.	 Bacchus, W. & Fussenegger, M. Engineering of synthetic inter
cellular communication systems. Metab. Eng. 16, 33–41 (2013).

72.	 Canton, B., Labno, A. & Endy, D. Refinement and standardization
of synthetic biological parts and devices. Nat. Biotechnol. 26,
787–793 (2008).

73.	 Weiss, R. & Knight, T. F. Engineered communications for microbial
robotics. In Revised Papers from the 6th International Workshop
on DNA-Based Computers: DNA Computing (eds. Condon, A. &
Rozenberg, G.) 1−16 (Springer-Verlag, 2001).

74.	 Kong, W., Celik, V., Liao, C., Hua, Q. & Lu, T. Programming the
group behaviors of bacterial communities with synthetic cellular
communication. Bioresour. Bioprocess. 1, 24 (2014).

75.	 Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A.
Escherichia coli ‘Marionette’ strains with 12 highly optimized
small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

76.	 Vaiana, C. A. et al. Characterizing chemical signaling between
engineered ‘microbial sentinels’ in porous microplates. Mol. Syst.
Biol. 18, e10785 (2022).

77.	 Chen, T., Ali Al-Radhawi, M., Voigt, C. A. & Sontag, E. D. A synthetic
distributed genetic multi-bit counter. iScience 24, 103526 (2021).

78.	 Al-Radhawi, M. A. et al. Distributed implementation of Boolean
functions by transcriptional synthetic circuits. ACS Synth. Biol. 9,
2172–2187 (2020).

79.	 Balagaddé, F. K. et al. A synthetic Escherichia coli predator−prey
ecosystem. Mol. Syst. Biol. 4, 187 (2008).

80.	 Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J.
A synchronized quorum of genetic clocks. Nature 463, 326–330
(2010).

81.	 Payne, S. et al. Temporal control of self-organized pattern
formation without morphogen gradients in bacteria. Mol. Syst.
Biol. 9, 697 (2013).

82.	 Alnahhas, R. N. et al. Majority sensing in synthetic microbial
consortia. Nat. Commun. 11, 3659 (2020).

83.	 Cao, Y. et al. Collective space-sensing coordinates pattern scaling
in engineered bacteria. Cell 165, 620–630 (2016).

84.	 Ausländer, D. et al. Programmable full-adder computations in
communicating three-dimensional cell cultures. Nat. Methods 15,
57–60 (2018).

85.	 Regot, S. et al. Distributed biological computation with
multicellular engineered networks. Nature 469, 207–211
(2011).

86.	 Sarkar, K., Chakraborty, S., Bonnerjee, D. & Bagh, S. Distributed
computing with engineered bacteria and its application in solving
chemically generated 2 × 2 maze problems. ACS Synth. Biol. 10,
2456–2464 (2021).

87.	 Carignano, A. et al. Modular, robust, and extendible multicellular
circuit design in yeast. eLife 11, e74540 (2022).

88.	 Urrios, A. et al. A synthetic multicellular memory device.
ACS Synth. Biol. 5, 862–873 (2016).

89.	 Buluç, A., Meyerhenke, H., Safro, I., Sanders, P. & Schulz, C.
Recent advances in graph partitioning. Algorithm Engineering
(eds Kliemann, L. & Sanders, P.) 117–158 (Springer, 2016).

90.	 Hendrickson, B. & Kolda, T. G. Graph partitioning models for
parallel computing. Parallel Comput. 26, 1519–1534 (2000).

91.	 Augeri, C. J. & Ali, H. H. New graph-based algorithms for
partitioning VLSI circuits. In 2004 IEEE International Symposium
on Circuits and Systems (ISCAS) Vol. 4, 521−524 (IEEE, 2004).

92.	 Chen, Y. P., Wang, T. C. & Wong, D. F. A graph partitioning problem
for multi-chip design. In 1993 IEEE International Symposium on
Circuits and Systems (ISCAS) 1778−1781 (IEEE, 1993).

93.	 Perl, Y. & Snir, M. Circuit partitioning with size and connection
constraints. Networks 13, 365–375 (1983).

94.	 Diestel, R. Graph Theory 5th edn (Springer-Verlag, 2017).
95.	 Matula, D. W. & Beck, L. L. Smallest-last ordering and clustering

and graph coloring algorithms. J. ACM 30, 417–427 (1983).
96.	 Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of

synthetic ribosome binding sites to control protein expression.
Nat. Biotechnol. 27, 946–950 (2009).

97.	 Lou, C., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A.
Ribozyme-based insulator parts buffer synthetic circuits from
genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).

98.	 Chen, Y.-J. et al. Characterization of 582 natural and synthetic
terminators and quantification of their design constraints. Nat.
Methods 10, 659–664 (2013).

99.	 Shao, B. et al. Single-cell measurement of plasmid copy number
and promoter activity. Nat. Commun. 12, 1475 (2021).

100.	Macia, J. & Sole, R. How to make a synthetic multicellular
computer. PLoS ONE 9, e81248 (2014).

101.	 Ausländer, S., Ausländer, D., Lang, P. F., Kemi, M. & Fussenegger, M.
Design of multipartite transcription factors for multiplexed logic
genome integration control in mammalian cells. ACS Synth. Biol.
9, 2964–2970 (2020).

102.	Groseclose, T. M., Rondon, R. E., Herde, Z. D., Aldrete, C. A. &
Wilson, C. J. Engineered systems of inducible anti-repressors for
the next generation of biological programming. Nat. Commun. 11,
4440 (2020).

103.	Groseclose, T. M. et al. Biomolecular systems engineering:
unlocking the potential of engineered allostery via the lactose
repressor topology. Annu. Rev. Biophys. 50, 303–321 (2021).

104.	Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog
computation in living cells. Nature 497, 619–623 (2013).

105.	DeWeerdt, S. How to map the brain. Nature 571, S6–S8 (2019).
106.	Prindle, A. et al. A sensing array of radically coupled genetic

‘biopixels’. Nature 481, 39–44 (2011).
107.	 Ben Said, S., Tecon, R., Borer, B. & Or, D. The engineering of

spatially linked microbial consortia—potential and perspectives.
Curr. Opin. Biotechnol. 62, 137–145 (2020).

108.	Osmekhina, E. et al. Controlled communication between
physically separated bacterial populations in a microfluidic
device. Commun. Biol. 1, 97 (2018).

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

109.	Sardanyés, J., Bonforti, A., Conde, N., Solé, R. & Macia, J. Computa
tional implementation of a tunable multicellular memory circuit
for engineered eukaryotic consortia. Front. Physiol. 6, 281 (2015).

110.	 Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A.
Programming self-organizing multicellular structures with
synthetic cell−cell signaling. Science 361, 156–162 (2018).

111.	 Shirriff, K. Mining Bitcoin with pencil and paper: 0.67 hashes
per day. http://www.righto.com/2014/09/mining-bitcoin-with-
pencil-and-paper.html Ken Shirriff's Blog (2014).

112.	 Goñi-Moreno, A. & Amos, M. DiSCUS: a simulation platform for
conjugation computing. In Unconventional Computation and
Natural Computation (eds. Calude, C. S. & Dinneen, M. J.) 181−191
(Springer International Publishing, 2015).

113.	 Gutiérrez, M. et al. A new improved and extended version of the
multicell bacterial simulator gro. ACS Synth. Biol. 6, 1496–1508
(2017).

114.	 Gorochowski, T. E. Agent-based modelling in synthetic biology.
Essays Biochem. 60, 325–336 (2016).

115.	 Naylor, J. et al. Simbiotics: a multiscale integrative platform for 3D
modeling of bacterial populations. ACS Synth. Biol. 6, 1194–1210
(2017).

116.	 Rivest, R. The MD5 message-digest algorithm. RFC 10.17487/
RFC1321 (1992).

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

http://www.nature.com/naturechemicalbiology
http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html
http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.html
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc1321

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

Methods
Computational methods
All files are available at https://github.com/VoigtLab/MD5_circuit.
The Verilog code for the MD5 algorithm was adapted from https://
github.com/stass/md5_core/blob/master/md5_core.v. The code was
modified to reduce the size of the inputs to 2-bits. Yosys117 was used to
synthesize the circuit and minimize the number of NOT and NOR gates
using the control file ‘md5_opt.ys’. This version of the complete circuit
diagram was used for partitioning. After partitioning, wiring diagrams
for individual cells were generated by writing individual structural
Verilog files for each subcircuit, which were further minimized using
Yosys if possible. Verilog files can be found at https://github.com/
CIDARLAB/Cello-v2-1-Core/tree/main/library. Repressor secondary
structures were annotated using Interpro118 to identify Pfam domains.
Individual helices within the helix-turn-helix domain were mapped
using the Jpred 4 online web server119 and further validated visually by
multiple-sequence alignment to confirm predictions using MUSCLE120
with the default parameters.

Partitioning algorithm
The algorithm aims to minimize the total number of cells required
to implement a given circuit under two user-specified constraints:
the maximum number of gates per cell and the total number of com-
munication channels available. Circuit partitioning was done in two
stages: subcircuit assignment and merging (Supplementary Fig. 2).
In the subcircuit assignment stage, each gate was partitioned into a
particular subcircuit. First, the number of intergate connections for
each gate was determined. An intergate connection was defined as the
total number of gates to which a given gate is connected. A subcircuit
was initialized by randomly selecting a gate with the least number
of intergate connections. Next, all gates connected to the current
subcircuit (defined as any gate connected to any gate in the current
subcircuit) were identified to generate a list of ‘candidate’ gates. From
this list, a gate was randomly selected and added to the subcircuit. If
adding the gate caused any of the initial constraints to be violated, this
gate was removed from both the subcircuit and the list of candidate
gates and another gate was randomly chosen from the list. This pro-
cess was repeated until the subcircuit contained the user-specified
maximum number of gates per cell or no more candidate gates were
available to add to the subcircuit. This procedure was repeated until
all gates were assigned to a subcircuit. During the merging stage, the
goal was to optimize partitioning by combining smaller subcircuits. The
subcircuits were merged, if possible, by randomly combining pairs of
subcircuits while ensuring that the constraints were satisfied. First, a
subcircuit was randomly chosen and all other subcircuits were placed
into a randomly ordered list. The chosen subcircuit was merged with
each subcircuit in the list until a merge that satisfied the constraints
was found. If a merge was completed or no merge was found, another
subcircuit was randomly chosen and all other subcircuits were placed
into a randomly ordered list, with the process repeated. These itera-
tions were continued until no additional merges were found. After
all gates were partitioned into subcircuits (nodes), the wires (edges)
between subcircuits were ‘colored’, where each color was abstractly
associated with a chemical signal (undetermined at this point). Edges
were required to be colored such that all edges sharing a node had a
unique color (an ‘edge coloring’ problem). From the partitioned circuit
diagram, a new graph was constructed to convert the task into a node
coloring problem, where each node was colored such that connected
nodes were assigned different colors (Supplementary Fig. 3). First, all
gates containing an output that moves from one subcircuit to another
were numbered and a graph was constructed with each numbered gate
as a node. For each subcircuit, the gates that output a signal to the given
subcircuit and all gates that output a signal from the given subcircuit
were identified. Edges were drawn between all such gates and this
process was repeated for each subcircuit. Note that, because they are

connected to the same subcircuit, these gates require unique colors;
thus, the constructed graph transforms the edge coloring problem
into a node coloring problem. Node coloring was performed using the
Welsh−Powell algorithm95. The vertices were ordered by the number
of edges and each node was assigned a unique color such that no two
connected nodes were assigned the same color (Supplementary Fig. 3).
The algorithm sought to minimize the number of colors used. Once
the nodes were colored, they were mapped back to the original gates
and the edges were colored according to the node color. This process
was repeated a minimum of n = 1,000 times and the partition with the
smallest number of subcircuits was chosen.

Strains, DNA constructs, media and chemicals
Plasmid cloning was performed in E. coli NEB10β competent cells
(NEB, C3019I). When the plasmid contained an R6K origin, cloning
was performed using E. coli JTK164A or E. coli TransforMax EC100D
pir+ (Lucigen, CP09500). Strains modified to contain sensors or cir-
cuits were based on E. coli MG1655: E. coli YJP_MKC174 (containing
plYJP064-Sensor) or E. coli JAI_MKC300 (a ΔaraC derivative of E. coli
YJP_MKC173 containing the Marionette sensor array). Supplementary
Tables 8−10 list all strains used in this study. DNA sequences for all
constructs except those used to generate carrying E. coli strains are
provided in Supplementary Table 11. Subcircuit constructs are pro-
vided as GenBank files at https://doi.org/10.5281/zenodo.13247698.
Plasmid maps are provided in Supplementary Fig. 16. LB medium
(Difco, 244620) and LB medium + 2% Bacto-agar (Difco, 244620)
plates were used for all routine cloning. Minimal M9 medium was
used for all assays (unless otherwise noted): 1× M9 salts (Difco, 248510),
2 mM MgSO4 (Affymetrix, 18651), 100 μM CaCl2 (Sigma, C1016), 0.2%
Casamino acids (BD, 223050), 0.4% glucose (Fisher Chemical, D16-1),
0.34 mg ml−1 Vitamin B1 (Alfa Aesar, A19560). SOC recovery medium
(NEB, B9020S) was used for recovery after transformation. Antibiot-
ics were used at the following concentrations: 50 μg ml−1 kanamycin
(Kan, GoldBio, K-120-10), 100 μg ml−1 carbenicillin (Carb, GoldBio,
C-103-5), 5 μg ml−1 tetracycline (Tet, GoldBio, T-101-25), 50 μg ml−1
spectinomycin (Spec, GoldBio, S-140-5), 20 μg ml−1 gentamicin (Gm,
Enzo Lifesciences, no. 380-003-G001) and 25 μg ml−1 chloramphenicol
(Cm, Alfa Aesar, B20841). Cells were induced with the following: isopro-
pyl β-d-1-thiogalactopyranoside (IPTG, GoldBio, I2481C), anhydrotetra
cycline (aTc, Sigma, 37919), cuminic acid (Cuma, Sigma, 268402),
vanillic acid (Van, Sigma, 94770), l-arabinose (Ara, Sigma, A3256),
3-oxohexanoyl-homoserine lactone (OC6, Millipore Sigma, K3007),
3-hydroxytetradecanoyl-homoserine lactone (OHC14, Sigma, 51481),
2,4-diacetylphophloroglucinol (DAPG, Santa Cruz Biotechnology,
sc-206518), p-coumaroyl-homoserine lactone (pC-HSL, Millipore
Sigma, 07077) and p-coumarate (Sigma, C9008). For cytometry, cells
were diluted in PBS (EMD Millipore, 6505). The yfp, rfp and bfp genes
were eYFP, mRFP and mTagBFP2* (a derivative of mTagBFP2 with
restriction sites removed).

Flow cytometry
Fluorescence was measured using a BD LSRII Fortessa flow cytometer
with an HTS attachment running BD FACSDIVA v8.0 software. At least
30,000 events were recorded for each sample. The FITC, PE-Texas Red
and Pacific Blue channels were used to collect data for YFP, RFP and
BFP, respectively. The Cytoflow Python package was used to process
FCS 3.0 files and gate cells. The FSC, SSC, FITC, PE-Texas Red and Pacific
Blue voltages were set to 750, 300, 450, 600 and 418 V, respectively. The
medians of the distributions are reported. Fluorescence in arbitrary
units was converted to RNAP/s as follows. First, E. coli YJP_MKC254
(containing the reference promoter BBa_J23101 fused to yfp in the attB2
landing pad) was cultured under the same conditions as the sample of
interest. Autofluorescence was measured using E. coli YJP_MKC174 (for
NOT gate strains) or E. coli JAI_MKC300 (for all other strains) grown
under the same conditions as the sample of interest. The BBa_J23101

http://www.nature.com/naturechemicalbiology
https://github.com/VoigtLab/MD5_circuit
https://github.com/stass/md5_core/blob/master/md5_core.v
https://github.com/stass/md5_core/blob/master/md5_core.v
https://github.com/CIDARLAB/Cello-v2-1-Core/tree/main/library
https://github.com/CIDARLAB/Cello-v2-1-Core/tree/main/library
https://doi.org/10.5281/zenodo.13247698
https://www.ncbi.nlm.nih.gov/nuccore/A19560
https://www.ncbi.nlm.nih.gov/nuccore/B20841

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

promoter was measured previously to generate 0.029 RNAP/s/DNA99
and the copy number of the attB2 landing pad was measured to be 3.5
under similar growth conditions33, yielding a total RNAP flux of 0.102
RNAP/s. Arbitrary units were converted using the following equation:
(0.102)((<YFP>measured) − (<YFP>blank))/((<YFP>BBa_J23101) − (<YFP>blank)),
where (<YFP>measured), (<YFP>BBa_J23101) and (<YFP>blank) are the median
fluorescence values (in arbitrary units) obtained from the sample of
interest, reference promoter and appropriate autofluorescence con-
trol, respectively. Two subcircuits (sc5 and sc7) had multiple outputs
that need to be characterized with reporters whose signals were distinct
from YFP. To convert the fluorescence values (in arbitrary units) for RFP
and BFP to units of RNAP/s, the following protocol was used. The BBa_
J23101 promoter was fused to the rfp or bfp gene with the BBa_B0064
and BBa_B0034 RBSs and the ECK120017009 and ECK120033737 ter-
minators, respectively, to create expression cassettes. Note that the
RBS for the yfp cassette was BBa_B0034 and the terminator was DT3
in E. coli strain YJP_MKC254. These were inserted into the attB2 land-
ing pad of E. coli JAI_MKC300 to create E. coli JAI_MKC399 and E. coli
JAI_MKC400 (Supplementary Fig. 5). Autofluorescence was measured
in the relevant channels. Fluorescence values (in arbitrary units) were
then converted to RNAP/s using the equation described above except
that <YFP> was replaced with the fluorescence of the corresponding
reporter. To convert plasmid-based NOT gates to RNAP/s, the same
protocol was used, except that the BBa_J23101 reference promoter was
fused to yfp with BBa_B0064 as the RBS and L3S2P21 as the terminator
and placed onto a p15a plasmid (pJSBS_RPU). The plasmid was carried in
E. coli NEB10β. The copy number of p15a in E. coli NEB10β was estimated
to be nine under similar growth conditions33. Multiplying this value
by 0.029 RNAP/s/DNA99 yielded a total RNAP flux of 0.261 RNAP/s for
plasmid-borne BBa_J23101. Fluorescence (in a.u.) was then converted to
RNAP/s using the equation described above except that the 0.102 value
was replaced with 0.261. Distributions were converted to RNAP/s using
the same protocol, except that unit conversion was performed on a
per-cell basis rather than using median values (Supplementary Fig. 10).

NOT gate characterization for genome-encoded gates
Strains were streaked from glycerol stocks onto LB-agar plates with
Kan and grown overnight. Single colonies were picked and cultured
overnight in 400 μl M9 medium in 2-ml 96-deep-well plates (USA Sci-
entific, 1896-2000) covered with AeraSeal film (Excel Scientific) and
grown at 37 °C and 900 rpm (InforsHT Multitron Pro shaker incubator).
The cultures were diluted 1:100 into 400 μl M9 medium and grown for
1.5 h under the same conditions. The cultures were diluted 1:1,000 into
400 μl M9 medium containing 0, 10, 20, 30, 40, 50, 70, 100, 150, 200
or 1,000 μM IPTG or 1,000 μM IPTG + 200 nM aTc and grown for 4.5 h
under the same conditions. A 50-μl aliquot of each culture was then
diluted into 180 μl PBS containing 1 mg ml−1 Kan for flow cytometry
analysis. To obtain the response functions, the data were fitted to
equation (1) using the SciPy Python package scipy.optimize.curve_fit().
E. coli JAI_MKC148 carrying an integrated cassette (attB2 landing pad)
with a PTet−PTac promoter fused to yfp was run in parallel under the same
conditions to convert the x axis into arbitrary units.

Growth impact of NOT gates carried in the genome
Strains were streaked from glycerol stocks onto LB-agar plates with
Kan and grown overnight. Single colonies were inoculated into 400 μl
M9 medium in 2-ml 96-deep-well plates (USA Scientific, 1896-2000),
covered with AeraSeal film and grown overnight at 37 °C and 900 rpm
(InforsHT Multitron Pro shaker incubator). The cultures were then
diluted 1:100 into 400 μl M9 medium and grown for 1.5 h. Cultures
were then diluted 1:1,000 in M9 medium with appropriate inducer(s)
and grown under the same conditions for 5.5 h. The OD600 was meas-
ured by taking a 200-μl aliquot of the culture and transferring it to a
Nunc 96-well plate with an optically clear bottom (Thermo Scientific,
165305). The OD600 was then measured using a Synergy H1 plate reader

(BioTek Instruments), from which the OD600 of the M9 medium alone
was subtracted. To normalize these data, they were divided by the
OD600 obtained when the repressor was not expressed (no inducer),
also subtracting the OD600 of the M9 medium.

Characterization of crosstalk between phage repressors and
promoters
The 144 E. coli crosstalk strains (Supplementary Fig. 4) were streaked
from glycerol stocks onto LB-agar plates with Kan and Carb and grown
overnight. Each crosstalk strain contained a different combination
of repressor and output promoter (constructed using plasmids
plJAI_JR(1–12)-cross and plJAI_pJR(1–12); Supplementary Fig. 14).
Individual colonies were picked, inoculated into 150 μl M9 medium
in shallow-bottom 96-well plates (Thermo Scientific, 249662) and cul-
tured overnight at 37 °C and 1,000 rpm in an ELMI shaker. Aliquots were
then diluted 1:100 into 150 μl M9 medium and cultured for 1 h under
the same conditions. Aliquots were then diluted 1:1,000 into 150 μl
M9 medium with and without 1 mM IPTG and grown for 4.5 h under
the same conditions. A 50-μl aliquot of the culture was then diluted
into 180 μl PBS with 1 mg ml−1 Kan and fluorescence was measured by
flow cytometry.

Calculation of total recombinant DNA and number of
regulators
The following counting methods were used to compute the distri-
butions shown in Fig. 3a. For each cell, the ‘total DNA’ counts all the
synthetic DNA added to the cell, including the entire sensor array,
plasmid backbones, etc. The number of regulator genes counts all syn-
thetic genes added to the cell, including two repressor genes for each
NOR gate, the sensors required for the circuit and the genes that pro-
duce communication signals. Antibiotic markers and the repA gene
required for replication of the pSC101 origin were excluded from
the count. In the Supplementary Subcircuit Datasheets, ‘subcircuit
DNA alone’ counts the DNA integrated into the attB2 and attB7
landing pads.

Characterization of the ON/OFF states of sensors for genetic
circuit design
Sensor strains (E. coli JAI_MKC269, JAI_MKC322, JAI_MKC323,
JAI_MKC334, JAI_MKC335, JAI_MKC336, JAI_MKC337, JAI_MKC338,
JAI_MKC340, JAI_MKC342) were streaked from glycerol stocks onto
LB-agar plates with Kan. Single colonies of each strain were inoculated
into 150 μl M9 medium and grown for 16 h in shallow-bottom plates
(Thermo Scientific, 249662) at 37 °C and 1,000 rpm (ELMI plate shaker).
Cells were then diluted 1:100 into 150 μl M9 medium and cultured for
1.5 h under the same conditions. Then, cells were diluted 1:2,000 in
M9 medium with and without inducer and cultured for 5 h under the
same conditions. Lastly, 50 μl aliquots were diluted into 180 μl PBS with
1 mg ml−1 Kan, analyzed via flow cytometry and converted to RNAP/s.
Inducers and their concentrations were as follows: 25 μM DAPG,
100 μM Cuma, 10 μM OC6, 100 μM Van, 1,000 μM IPTG, 200 nM aTc,
4,000 μM Ara, 100 μM Sal, 10 μM pC-HSL and 10 μM OHC14. The sensor
strain diagrams are shown in Supplementary Fig. 4.

Characterization of sender−receiver response functions
Sender strains (E. coli sLux, sCin, sRpa, sPhl, Kan or Gm as appropri-
ate) and receiver strains (E. coli rLux, rCin, rRpa or rPhl) were streaked
from glycerol stocks onto LB-agar plates. Single colonies of the sender
cells were picked into 100 μl M9 medium (with Gm for E. coli sPhl and
no antibiotics otherwise) and grown for 8 h in shallow-bottom plates
(Thermo Scientific, 249662) at 37 °C and 1,000 rpm (ELMI plate shaker).
Cells were then diluted 1:2,500 into 150 μl M9 medium containing 0,
10, 20, 30, 40, 50, 70, 100, 150, 200 or 1,000 μM IPTG and cultured for
16 h under the same conditions. Cells were then diluted 1:1,000 into
1 ml M9 medium (for E. coli sRpa, the medium also contained 100 nM

http://www.nature.com/naturechemicalbiology

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

p-Coum) and cultured for 4 h at 37 °C and 900 rpm (InforsHT Multitron
Pro shaker incubator) in 2 ml deep-well plates (USA Scientific, 1896-
2000) under the same induction conditions as before. The plates were
then spun at 4,500g for 10 min at room temperature to pellet the cells.
A 400-μl aliquot of the supernatant medium was filter sterilized using
a 0.2-μm regenerated cellulose filter (Chrom Tech, 96F-RC020). Single
colonies of receiver cells were cultured for 16 h in M9 medium contain-
ing Gm. Receiver cells were diluted 1:1,000 into 150 μl of the sender
supernatant and cultured for 3 h in shallow-bottom plates (Thermo
Scientific, 249662) at 37 °C and 1,000 rpm (ELMI plate shaker). Aliquots
(50 μl) of the culture were then diluted into 180 μl PBS with 1 mg ml−1
Kan, analyzed via flow cytometry, converted to RNAP/s and fitted to
equation (2) (Supplementary Fig. 8).

Circuit characterization (fluorescence)
Strains were streaked from glycerol stocks onto LB-agar plates contain-
ing appropriate antibiotics and incubated at 37 °C overnight. Single
colonies were inoculated into 100 μl M9 medium (with 20 μg ml−1 Gm if
appropriate) and grown in shallow-bottom plates (Thermo Scientific,
249662) at 37 °C and 1,000 rpm (ELMI plate shaker) for 8 h. The cultures
were then diluted 1:2,500 into 150 μl M9 medium (with Gm if appropri-
ate) with appropriate inducers and grown in shallow-bottom plates at
37 °C and 1,000 rpm for 16 h (ELMI plate shaker). Then, a 1-μl aliquot
of the culture was diluted into 300 μl PBS containing 1 mg ml−1 Kan for
flow cytometry. The medians of the resulting distributions were used
to calculate the activities of the output promoters.

Circuit characterization (to receiver cells)
To induce the receiver cells via cell−cell communication signals,
the above ‘circuit characterization’ assay was continued as follows.
Aliquots of the 16-h culture were diluted 1:1,000 into 1 ml M9 medium
with appropriate inducers (and Gm if appropriate) in 2-ml deep-well
plates (USA Scientific, 1896-2000) and cultured for 4 h at 37 °C and
900 rpm (InforsHT Multitron Pro shaker incubator). For strains produc-
ing pC-HSL, the medium also contained 100 nM p-Coum. The plates were
then spun at 4,500g for 10 min at room temperature to pellet cells.
From the plates, 500 μl of the supernatant was aspirated and filtered
to remove cells. When the circuit outputs led to the production of
OC6, pC-HSL or DAPG, the samples were filtered using either cellulose
acetate 96-well filter plates (Cytiva Life Sciences, 7700-2808) or
regenerated cellulose 96-well filter plates (Chrom Tech, 96F-RC020).
OHC14-producing strains were processed using the Chrom Tech filters
because we found that OHC14 does not pass through cellulose acetate
filters. The filtered supernatant was then used to induce the appropri-
ate receiver cells: E. coli rLux, E. coli rCin, E. coli rRpa and E. coli rPhl.
The receiver cells were prepared by streaking from glycerol stocks
onto LB-agar plates with 20 μg ml−1 Gm followed by incubation at 37 °C
overnight. Single colonies were picked into 150 μl M9 medium and
grown for 16 h in shallow-bottom plates at 37 °C and 1,000 rpm.
Aliquots were taken and diluted 1:1,000 into 150 μl of the supernatant
collected from the circuit and incubated for 3 h at 37 °C and 1,000 rpm
in shallow-bottom plates. Aliquots (50 μl) of the culture were then
diluted into 180 μl PBS containing 1 mg ml−1 Kan and analyzed via
flow cytometry.

Growth impact of subcircuit sc5
Strains of E. coli G6 and E. coli JAI_MKC300 were streaked from glycerol
stocks onto LB-agar plates (with Gm as appropriate) and grown over-
night. Single colonies were picked into 100 μl M9 medium (with Gm
as appropriate) and cultured in shallow-bottom Nunc 96-well plates
(Thermo Scientific, 249662) at 37 °C and 1,000 rpm in an ELMI shaker.
The strains were then diluted 1:2,500 in 1 ml M9 medium and appropri-
ate inducers (with Gm if necessary) and cultured for 16 h at 37 °C and
900 rpm (InforsHT Multitron Pro shaker incubator) in 2-ml deep-well
plates (USA Scientific, 1896-2000). The cells were then diluted 1:100 in

1 ml M9 medium and cultured for 2 h under the same conditions. Then
900 μl of medium was used to measure the OD600 in a spectrophotom-
eter (Agilent Cary 60 UV-Vis). Each sample was diluted to an OD600 of
0.1 and grown under the same conditions for 2 h before measuring
the OD600 again. Doubling time was calculated assuming exponential
growth by multiplying the elapsed time (in minutes) divided by the
number of doublings in that time (log2(final OD600/initial OD600))
(Supplementary Fig. 12).

Co-culture of E. coli subcircuits
These experiments correspond to Supplementary Fig. 14. Subcircuit
strains were streaked from glycerol stocks onto LB-agar plates con-
taining appropriate antibiotics and incubated at 37 °C overnight.
Single colonies were inoculated into 100 μl M9 medium and grown
in shallow-bottom plates (Thermo Scientific, 249662) at 37 °C and
1,000 rpm (ELMI plate shaker) for 8 h. The two subcircuit cultures
were combined in a co-culture, diluted 1:2,500 in 150 μl M9 medium
with appropriate inducers and grown in shallow-bottom plates at 37 °C
and 1,000 rpm (ELMI plate shaker) for 16 h. Aliquots of the 16-h culture
were diluted 1:1,000 into 1 ml M9 medium with different combina-
tions of inducers in 2-ml deep-well plates (USA Scientific, 1896-2000)
and cultured for 4 h at 37 °C and 900 rpm (InforsHT Multitron Pro
shaker incubator). For strains producing pC-HSL, 100 nM Coum was
added to the medium. The plates were then spun at 4,500g for 10 min
at room temperature to pellet cells. From the plates, 600 μl of the
supernatant was aspirated and filtered to remove cells. The samples
were filtered through regenerated cellulose 96-well filter plates (Chrom
Tech, 96F-RC020). The filtered supernatant was then used to induce
the receiver cells. The receiver cells were prepared by streaking from
glycerol stocks onto LB-agar plates with 20 μg ml−1 Gm and incubating
at 37 °C overnight. Single colonies were picked into 150 μl M9 medium
and grown for 16 h in shallow-bottom plates at 37 °C and 1,000 rpm.
Aliquots were taken and diluted 1:1,000 into 150 μl of the supernatant
collected from the circuit and incubated for 3 h at 37 °C and 1,000 rpm
in shallow-bottom plates. Aliquots (50 μl) of the culture were then
diluted in 180 μl PBS with 1 mg ml−1 Kan and analyzed via flow cytometry.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequences for strains and plasmids used in this work are included in
the Supplementary Information file. GenBank files of full constructs
for each subcircuit can be found at https://doi.org/10.5281/zenodo.
13247698 ref. 121. Additional data are available from the correspond-
ing author upon reasonable request. Source data are provided with
this paper.

Code availability
Cello 2.1 is available at cellocad.org and can be accessed via Google
account. All files for Cello 2.1 can be found at https://github.com/
CIDARLAB/Cello-v2-1-Core/tree/main/library. The script used to simu-
late the MD5 algorithm can be found at https://github.com/VoigtLab/
MD5_Circuit. The manual for Cello 2.1 is provided as Supplementary
Software.

References
117.	 Wolf, C. Design and Implementation of the Yosys Open SYnthesis

Suite https://yosyshq.net/yosys/files/yosys_manual.pdf (2013).
118.	 Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51,

D418–D427 (2022).
119.	 Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a

protein secondary structure prediction server. Nucleic Acids Res.
43, W389–W394 (2015).

http://www.nature.com/naturechemicalbiology
https://doi.org/10.5281/zenodo.13247698
https://doi.org/10.5281/zenodo.13247698
https://github.com/CIDARLAB/Cello-v2-1-Core/tree/main/library
https://github.com/CIDARLAB/Cello-v2-1-Core/tree/main/library
https://github.com/VoigtLab/MD5_Circuit
https://github.com/VoigtLab/MD5_Circuit
https://yosyshq.net/yosys/files/yosys_manual.pdf

Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01730-1

120.	Edgar, R. C. MUSCLE: multiple sequence alignment with high accu
racy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

121.	 Voight, C & Sun, J. Subcircuit genome files. Zenodo
https://doi.org/10.5281/zenodo.13247698 (2004).

Acknowledgements
We thank J. Roberts (Boston University) and S. Oliveira (North Carolina
A&T State University) for their help in developing Cello 2.1. This work
was supported by funding from the National Science Foundation
SemiSynBio program awards CCF-1807575 (J.P., J.S., C.A.V.) and
CCF-1849588 (W.C., E.D.S., C.A.V.); DARPA Synergistic Discovery and
Design program (SD2) award FA8750-17-C-0229 (J.P., J.S., C.A.V.); an
award from the Schmidt Innovation Fellows Program (J.P., J.S., C.A.V.);
Air Force Office of Scientific Research award FA9550-22-1-0316
(W.C., E.D.S); National Science Foundation award 2211040 (Y.Z., D.D.)
and National Science Foundation’s Semiconductor Synthetic Biology
for Information Storage and Retrieval award 2027045 (C.K., W.Z.H.).

Author contributions
J.P., J.S. and C.A.V. conceived the study and designed the experiments.
J.P. and J.S. performed the experiments and analyzed the data.

W.C., Y.Z., D.D. and E.S. implemented the partitioning and edge
coloring algorithm. C.K., W.Z.H. and D.D. developed Cello 2.1. J.P., J.S.
and C.A.V. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41589-024-01730-1.

Correspondence and requests for materials should be addressed to
Christopher A. Voigt.

Peer review information Nature Chemical Biology thanks Irene
Otero-Muras, Xiao-Jun Tian and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturechemicalbiology
https://doi.org/10.5281/zenodo.13247698
https://doi.org/10.1038/s41589-024-01730-1
http://www.nature.com/reprints

	Partitioning of a 2-bit hash function across 66 communicating cells

	Results

	Wiring diagram design for a 2-bit MD5 hashing algorithm

	Circuit partitioning

	Gates based on phage repressors

	Characterization of cell−cell communication channels

	Subcircuit design

	Communication between MD5 subcircuits

	Discussion

	Online content

	Fig. 1 Multicellular implementation of the MD5 circuit.
	Fig. 2 Logic gates and cell−cell communication used to build subcircuits.
	Fig. 3 Division of the 2-bit MD5 circuit into subcircuits.
	Fig. 4 Multicellular computation of the 2-bit MD5 circuit.

