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Abstract

T Cell Engager (TCE)s are an exciting therapeutic modality in immuno-oncology that acts to bypass
antigen presentation and forms a direct link between cancer and immune cells in the Tumor Microen-
vironment (TME). TCEs are efficacious only when the drug is bound to both immune and cancer cell
targets. Therefore, approaches that maximize the formation of the drug-target trimer in the TME are ex-
pected to increase the drug’s efficacy. In this study, we quantitatively investigate how the concentration
of ternary complex and its biodistribution depend on both the targets’ specific properties and the design
characteristics of the TCE, and specifically on the binding kinetics of the drug to its targets. A simplified
mathematical model of drug-target interactions is considered here, with insights from the “three-body”
problem applied to the model. Parameter identifiability analysis performed on the model demonstrates
that steady state data, which is often available at the early pre-clinical stages, is sufficient to estimate
the binding affinity of the TCE molecule to both targets. We used the model to analyze several existing
antibodies, both clinically approved and under development, to explore their common kinetic features.
The manuscript concludes with an assessment of a full quantitative pharmacology model that accounts
for drug disposition into the peripheral compartment.
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1 Introduction

Cancer immunotherapy has revolutionized the field of cancer treatment, highlighting that the immune system
can eliminate tumors in many cases if given assistance [1]. Immunotherapy approaches include reactivating
immune cells through checkpoint inhibition [2], as well as through exogenous immune cell therapies such
as using Chimeric Antigen Receptor T (CAR-T) cells [3]. Despite these advances, only a subset of cancers
responds to these therapies (“hot” tumors), with some tumors remaining “cold”, possibly because of reduced
immune infiltration or lack of effective antigen presentation in the TME [4, 5].

One approach to circumvent this issue is to bypass antigen presentation altogether, connecting a therapeutic
agent directly with a tumor cell, a strategy implemented using bispecific T cell engagers, or TCEs [6, 7,
8, 9]. This therapeutic modality has been proposed for treating acute myeloid leukemia [10], multiple
myeloma [11], lymphoblastic leukemia [12], and refractory solid tumors [13]. TCE is a promising platform
for targeted therapy across different tumor types [14]. A list of TCE molecules that were considered in this
study is presented in Table 1. A more detailed review of the existing TCEs can be found in [9, 15].

In this study, the first objective is to evaluate the design characteristics of existing TCEs based on the simple
model presented in Figure 1. The TCE drug, X , targets receptors on immune cells, T1, which for TCEs is
often CD3 or CD28 [16, 17], and receptors on cancer cells, T2. The drug can bind reversibly to either target,
forming X-T1 dimer D1 at a rate constant kon1 and dissociating at a rate constant koff1 , or forming the X-T2

dimer D2 at a rate constant kon2 and dissociating at a rate constant koff2 . Finally, when either of the dimers
bind to the remaining free target, they can form a trimer Y , which is the T1-X-T2 ternary complex. We call
this system, involving immune cells, drug, and cancer cells, a “three-body” system. The key objective of
this study is to find binding properties for the drug X on either arm given the properties of the other two
targets, in such a way as to maximize concentration of Y . A schematic diagram of this process is given in
Figure 1(a).

One particular challenge with these types of drugs is that the efficacy curve for TCEs is bell-shaped, rather
than the standard Emax curve. By “bell shape”, we mean a nonmonotonic function with a single maximum
at some intermediate concentration, whereas the Emax curve is a typical pharmacology model that is mono-
tonic and saturable [18]. A TCE drug efficacy is maximized only when the drug is bound to both targets
(Figure 1(b), where Y exhibits a bell-shaped curve); dimers in this drug construct ( Figure 1(b), where D1

and D2 exhibit an Emax curve) are not expected to exhibit efficacy. This creates an important challenge,
since, while for a typical Emax curve, higher drug concentration may result in an efficacy plateau, and in-
crease in dose is mostly likely to just increase toxicity. For a bell-shaped efficacy curve (Figure 1(b), yellow
thick line), increase in drug concentration will result not only in higher toxicity but also in loss of efficacy.
As such, estimating maximally efficacious concentration for a TCE is significantly more challenging than
for a compound with a typical Emax efficacy curve.

One of the key steps during the early stages of drug development is lead compound selection, which is based
on many criteria, including drug affinity for the target, denoted as an inverse of dissociation constant KD

and defined as KD = koff
kon

, where kon is the rate constant at which the drug reversibly binds to its target, and
koff is the dissociation rate constant. The question of affinity optimization to maximize the drug’s efficacy
is particularly challenging for TCEs, even those targeting similar or even the same targets. For instance,
REGN5458 and REGN5459 are both targeting CD3 and BCMA receptors but with different affinities for
CD3 [30]. While tighter binding (lower KD) can be associated with achieving greater target engagement
with lower drug concentration (higher potency), for TCEs and other drugs, whose efficacy is predicated on
maximizing trimer concentration Y , this is not necessarily the case. Specifically, as was reported in [19,
31], very tight binding on each arm can “take up” most of the drug, leaving less drug available to bind to
the other arm, thereby decreasing the probability of trimer complex formation. Therefore, there likely exists
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an interplay of “optimal affinities” for both arms of the molecule, resulting in different variations of the
bell-shaped relationship between the drug concentration and trimer complex [19].

Four parameters are critical to characterize such a bell-shape curve at the site of action: 1) initial concen-
tration of T1, 2) initial concentration of T2, 3) binding affinity/dissociation constant of the TCE to target 1
KD1, and 4) dissociation constant KD2. The initial concentration of T1 depends on the number of T cells
in the body. Most of the existing TCEs bind to CD3 (see Table 1), and the average turnover parameters
for this particular target are relatively well understood [32]. The initial concentration of T2 depends on the
tumor and can vary dramatically. A review of existing CD3-based TCEs, summarized in Table 1, showed
that the initial concentration of tumor-specific targets is generally considered to be less than 5 × 103/cell;
this however can vary across different cancer types.

The most desirable targets on cancer cells are minimally expressed in normal cells, so as to minimize off-
target effects.

The affinity of the TCE molecule to T1 (CD3 on the T cells) can be significantly smaller, comparable,
or significantly larger than the binding affinity to T2 (targeted receptor protein on the cancer cells). For
example, the binding affinity of Blinatumomab [20], PF-06671008 [23], and 7370 [25] to T1 is lower than
their affinity to T2. The affinity of Acapatamab [28], Solitomab [21], and PF-07062119 [26] to their targets
are in a comparable range. On the other hand, TCE molecules such as BAY2010112 [22], Taralatamab [27],
and REGN5458 [33] have a significantly higher affinity (lower dissociation constant) to T1.

The binding kinetics of the TCE molecules with respect to each of the targets may also affect the distribution
of this type of antibody in different tissues. For instance, the biodistribution of CD3/HER2 TCE, also known
as T-cell–Dependent Bispecific (TDB), has been measured for different ranges of affinities to CD3 for solid

X+T1+T2 D1 + T2

D2 + T1 Y

kon1

koff1

kon1

koff1

koff2

kon2

koff2

kon2

(a) (b)

Figure 1: A schematic of the “three-body” model and the nominal bell-shape pattern. On the left side (a),
the three-body model described in terms of TCE, where X is the initial drug concentration, T1 is the target
receptor expressed on immune cells, and T2 is the target receptors expressed on cancer cells. The drug
can reversibly bind to either target to form dimers D1 and D2 or bind to both to form trimer complex Y .
Maximizing Y is expected to maximize drug efficacy. On the right side (b), a nominal bell-shape pattern of
the ternary complex Y normalized to Maximum Fluorescent Intensity (MFI) at steady state is visualized as
a function of initial TCE drug concentration (X in nM). Binding kinetics and initial conditions are adopted
from [19]. The chemical reactions are visualized in a simple form in order to provide an intuitive idea of the
reactions, and the diagram does not follow the conventions of a chemical reaction network: specifically, T2

(T1) is not involved in the dimerization reaction between X and T1(T2).
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Table 1: Existing CD3-based T Cell Engagers, sorted by the year of the referenced publication. TCEs might
be engineered in different antibody structures, e.g. TCE, Half-Life Extended Bispecific T Cell Engager
(HLE-TCE), and Knob-into-Holes (KIH). The targeted receptor protein of immune cells is CD3 for all the
molecules considered in this study.

TCE Molecule Target KD1(nM) KD2(nM) Type Structure kDa Ref

Blinatumomab CD19 ∼ 100 ∼ 1 Liquid TCE 54 [20]
Solitomab Ep-CAM 16± 12 77± 39 Liquid TCE 55 [21]
BAY2010112 PSMA 9.4± 4.3 47.0± 8.1 Solid TCE 55 [22]
PF-06671008 Pcad 11.5± 0.9 0.521± 0.162 Solid DART 57 [23]
CD3εL/HER2 HER2 50 0.5 Solid KIH > 100 [24]
CD3εH/HER2 HER2 0.5 0.5 Solid KIH > 100 [24]
CD3εVH/HER2 HER2 0.05 0.5 Solid KIH > 100 [24]
7370 FLT3 27 49× 10−3 Liquid IgG-based 146 [25]
PF-07062119 GUCY2C 7.47± 0.15 23.97± 0.97 Solid IgG1-FcyR > 100 [26]
Tarlatamab DLL3 0.64± 0.05 14.9± 0.4 Solid HLE-TCE > 100 [27]
Acapatamab PSMA 22.4± 2.8 14.8± 2 Solid HLE-TCE > 100 [28]
Anti-CD79b/CD3 CD79b 12.8 1 Liquid KIH 150 [29]

tumors in mouse models [24], confirming the intuition that higher affinities to CD3 (lower dissociation
constant KD1) increase drug uptake in the peripheral tissues including lymph nodes, thereby decreasing
their availability in the TME. Therefore, TCE molecules with lower affinities for CD3 are less toxic in
treatments designed for solid tumors.

The characterization of the bell-shape was analytically investigated by [31]. The integration of the three-
body model with the pharmacokinetics and efficacy of PF-06671008 TCE molecule was presented in [19].
Here, we build on these results to create a framework to allow quantitative comparison between different
TCE molecules based on their bell-shape response. We anchor the analysis to the affinity values of several
existing TCE molecules, and showcase the resulting bell-shape response and its sensitivity to different pa-
rameters. We further explore the identifiability of affinity values from the experimental data, and made the
connection between pharmacokinetics, efficacy and biodistribution of the TCE based on an example, where
TCE molecules that target HER2 were designed to have different affinities to CD3 receptor [24].

In what follows, the general properties of the two targets are assumed to be known, and the focus is on
approaches to identify KD values from preclinical experiments, and on characterizing their effect on the
bell-shape pattern of the concentration trimer Y at the site of action. A quantitative comparison is presented
for the TCE molecules that were available in the literature at the time of this writing. The computational
analysis was performed for different scenarios, including varying ratios between target concentrations to
quantify the sensitivity of projected efficacy (here correlated with maximizing the concentration of trimer
Y ) to initial conditions. The paper concludes with the formulation of a full quantitative pharmacology model
that should facilitate a broader discussion of biodistribution of TCE molecules.
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2 Methods

2.1 Three-body model

The initial process of lead compound selection is based on in vitro experiments, where cells are co-incubated
with the drug in order to evaluate their relative affinities and where drug clearance does not affect the
dynamics. Consequently, one can initially focus on just the nearly instantaneous formation of drug-target
dimers and trimers, which can be interpreted as a three-body model. In recent investigations such as [19]
it has been emphasized that the efficacy of the TCE drug trimer concentration at the site of action is a bell-
shaped function. A too low or too high concentration of a TCE does not lead to formation of a sufficient
number of trimer complexes: at low concentrations, too few trimers are formed, while at high concentrations
the equilibrium shifts towards increased formation of dimers D1 and D2 and away from trimers. There exist,
therefore, a “sweed spot” that maximizes trimer formation and consequently the expected efficacy.

A “three-body model” in the terminology of [31] is what all bispecific antibodies have in common. In
the three-body model, a bispecific antibody (binding species) connects to two different target molecules
(terminal species) to form a ternary complex. After the formation of dimers between the first target and
the antibody, the binding kinetics can be changed based on a cooperativity factor to increase/decrease the
binding affinity of the antibody molecule of the formed dimer to the second target. A positive cooperativity
can be interpreted as avidity [34, 35, 36, 37], where the apparent affinity to the second target is greater once
the drug has been bound to the first target, given that both targets are expressed on the same cell surface. The
cooperativity factor can be neglected in models of bispecific antibodies that target receptors on two different
cell types, such as TCEs.

As mentioned above, the model described in Figure 1 includes six state variables to describe the concen-
trations of the TCE X(t), the target receptor on the surface of the immune cells T1(t), the target receptor
on the surface of cancer cells T2(t), the dimer complex of immune cell-antibody D1(t), the dimer com-
plex of antibody-immune cell D2(t), and the ternary complex of immune cell-antibody-cancer cell Y (t).
The initial concentration of the dimer and trimer complexes are assumed to be zero at the starting point
D1(0) = D2(0) = Y (0) = 0. The initial concentration of the TCE X(0) is the concentration that is going
to be assessed in subsequent analysis. The system of Ordinary Differential Equations (ODEs) describing the
dynamics of these six variables is as follows:

Ẋ = −kon1T1X − kon2T2X + koff1D1 + koff2D2, (1a)

Ṫ1 = −kon1T1X + koff1D1 − kon1T1D2 + koff1Y, (1b)

Ṫ2 = −kon2T2X + koff2D2 − kon2T2D1 + koff2Y, (1c)

Ḋ1 = kon1T1X − koff1D1 − kon2T2D1 + koff2Y, (1d)

Ḋ2 = kon2T2X − koff2D2 − kon1T1D2 + koff1Y, (1e)

Ẏ = kon1T1D2 + kon2T2D1 − (koff1 + koff2)Y. (1f)

Note that the time dependence of the state variables is dropped for writing simplicity. The dot sign on top
of each state variable on the left side represents the time derivative.

Model 1 contains four parameters: kon1 , koff1 , kon2 , and koff2 . However, in preclinical measurements, using
for example surface resonance experiments, one only estimates the dissociation constants of the two binding
sites:

KD1 = koff1/kon1 , (2a)

KD2 = koff2/kon2 . (2b)
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Figure 2: Model-based steady state simulations of the three-body model (1). The vertical axis is normalized
to % MFI, which represents relative fluorescence intensity normalized to the maximum observed value in
a hypothetical experiment. This figure does not represent experimental data, but rather simulations using
the model under two different TCE concentration ranges. These simulations illustrate that if one were to
conduct experiments using different concentration ranges, they might observe distinctive patterns such as
those shown here, even if the underlying biological processes are consistent. The variables in the simulations
have different ranges of initial concentration of the TCE. The initial TCE concentration range and the range
of horizontal axis values in (a) are larger than in (b). The plots on the left show the concentrations of the
trimer and the targets, and the plots on the right side show the drug-target dimer concentrations.

The dissociation constants KD are sufficient to estimate the equilibrium concentration of each species in a

dimerization reaction (for example a + b
kon−−⇀↽−−
koff

ab), and different values of (kon, koff) that result in the same

dissociation constant can change the reaction rate but do not affect the equilibrium concentrations.

The steady state reached when performing a long-time simulation of the three-body model (1) will predict
the actual equilibrium concentrations, which can be thought of as an in silico equivalent of an in vitro
dose-response experiment used to estimate projected target occupancy as a function of drug concentration.
Figure 2 shows a numerical simulation of the system, with corresponding parameter values listed in Table 2,
representing the PF-006671008 molecule [19], and a total simulation duration of 1000 hours. The y-axis
in Figures 2a and 2b is normalized to capture % of Maximum Fluorescence Intensity (MFI), where MFI
represents fluorescence intensity normalized to the maximum observed value in a given experiment. Because
the normalization depends on the tested concentration range, MFI-based results may appear different across
experiments even if the underlying biological response is similar. The relative concentrations are measured
based on the relative strength of the fluorescent signal. Analyzing the factors that affect the characteristic
bell shape of the projected trimer concentration is the focus of this section. Picking the “right” range of
molecule concentrations is critical in visualization of the bell shape. For example, note when comparing
Figure 2a and Figure 2b, how different experimental results might look when reported in MFI format with
different ranges of drug concentration on the x-axis.

2.2 The bell-shaped response

We have investigated the sensitivity of the bell-shaped response peak, to the binding kinetics of the TCE
molecule at the site of action, here in the TME, and the initial concentration of each target. The maximum
concentration (peak) of the trimer complex Y and the corresponding initial TCE concentration that results in
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maximum trimer concentration (optimal TCE) are the main outputs of interest in this analysis. We used the
three-body portion of the quantitative model published for PF-06671008 TCE molecule [19], as an example,
to assess the sensitivity of the peak of the bell-shape by changing each of the parameters in model (1), while
keeping the other parameters of the model constant.

2.3 Comparison between TCEs

The three-body model (1) was used as a tool to quantitatively compare existing CD3-based TCEs summa-
rized in Table 1 based on their published binding kinetics to their targets. The molecules included in this
study are divided into two general categories: targeting solid tumors and targeting liquid tumors. Although
each of the molecules might have different structures, biodistribution, metabolism, or pharmacokinetic char-
acteristics, the three-body model captures the general structure of the interactions of these compounds with
their targets at the site of action.

Numerical simulations were conducted assuming initial target concentrations of 0.108 nM and 166 nM
(based on [19]). Due to the lack of reported association (kon) and dissociation (koff ) rate constants for all
molecules, kon was fixed to 1 nM−1 h−1, and koff was inferred from the published equilibrium dissociation
constant (KD × 1 nM−1 h−1) values listed in Table 1.

2.4 Biodistribution

A full dynamic model for biodistribution of the TCE molecules in humans with IV dosing is shown in
Equations (3). This is a modified version of the model presented in [19], where the number of tumor-
related compartments is reduced to two for simplicity, and all the immune system tissues such as lymph
nodes are lumped into a single additional compartment. We use this model to obtain a better mechanistic
understanding of the relationship between dissociation kinetics and biodistribution.

The differences between model (3) and the model presented in [19] are as follows: 1) an extra compartment
is included in order to represent tissues with a higher concentration of immune cells, e.g. lymph nodes, 2)
intermediate compartments are integrated into the main tumor compartment, and 3) biodistribution depends
on the affinity of the TCE molecule to different targets, which could be explained by the flow of the immune
cells between lymph nodes and the central compartment. The additional parameters included in this model
are not fit to data, and the presented parameters are chosen arbitrarily based on numerical simulations to
demonstrate the quantitative approach for explaining the biodistribution of the TCE molecules. Molecule
and target-specific parameters can be used as needed provided data availability.

The relative change of the target concentration is assumed to be negligible in comparison with the distribu-
tion rate constants of the TCE in the present model. Moreover, the rate constant of target 1 is assumed to be
faster between the central compartment and the lymph nodes (klcT and kclT ) relative to the rate constant of
the target 1 between the central compartment and the TME (kctT and ktcT ). The rate constants of the TCE
between the central compartment and the lymph nodes (klc and kcl) are assumed to be slower than the rate
constants of target 1 (klcT and kclT ). The reason is the increased flow rate of immune cells between lymph
nodes and the central compartment.
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Ẋc = ρu(t)− kelXXc − kcpXc + kpcXp
Vp
Vc

− kclXc − klcXl
Vl
Vc

− kon1XcT1c + koff1D1c − kon2CcT2c + koff2D2c − ktd(Xc −
Xt

kε
)
M1 +M2

wVc
, (3a)

Ẋp = kcpXc
Vc
Vp

− kpcXp, (3b)

Ẋl = kcl
Xc

αKD1 + β

Vc
Vl

− klcXl, (3c)

˙T1l = ksynT − kclTT1c
Vc
Vl

+ klcTT1l − kon1XlT1l + koff1D1l, (3d)

Ḋ1l = kon1XlT1l − koff1D1l, (3e)

˙T1c = −kctTT1c + ktcTT1t
M1 +M2

wVc
− kon1XcT1c + koff1D1c − kelTT1c, (3f)

˙D1c = kon1XcT1c − koff1D1c, (3g)
˙T2c = ksyn − kdegT2c − kon2XcT2c + koff2D2c, (3h)
˙D2c = −kelDD2c + kon2XcT2c − koff2D2c, (3i)

Ẋt = ktd(Xc −
Xt

kε
)− kon1T1tXt − kon2T2tXt + koff1D1t + koff2D2t, (3j)

˙T1t = kctTT1c
wVc

M1 +M2
− ktcTT1t − kon1T1tCt + koff1D1t

− kon1T1tD2t + koff1Y, (3k)
˙T2t = −kon2T2tCt + koff2D2t − kon2T2tD1t + koff2Y, (3l)

Ḋ1t = kon1T1tCt − koff1D1t − kon2T2tD1t + koff2Y, (3m)

Ḋ2t = kon2T2tCt − koff2D2t − kon1T1tD2t + koff1Y, (3n)

Ẏ = kon1T1tD2t + kon2T2tD1t − (koff1 + koff2)Y, (3o)

Ṁ1 =
kgeM1(1− M1+M2

kv
)

(1 + (
kge
kgl

(M1 +M2))kψ)1/kψ
− kmax × Y

kc50 + Y
M1, (3p)

Ṁ2 =
kmax × Y

kc50 + Y
M1 −M2/kτ . (3q)

In these equations, X is the concentration of drug, T is the concentration of targets, D is the drug-target
dimer concentration, Y is the trimer concentration, and M is the tumor volume intermediate compartment.
All parameters and variables are defined in detail in Tables 2 and 3. The dot sign on top of the variables is a
time derivative ḟ(t) = df(t)

dt .

2.5 Identifiability

The goal of performing identifiability analysis is to assess whether model parameters could be uniquely
recovered from experiments. In this paper we will discuss two different setups for identifiability: 1) identi-
fication of the KD values from time course data, and 2) identification of KD values from steady state data.
Time course data plays a major role in the drug development process for in vivo studies, and steady state
data is often used for in vitro studies to assess potential drug efficacy. Notably, this analysis is based on
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Table 2: Parameters used in model (3), are based on previously published parameters [19]; parameters
different from [19] are marked by asterisk.

Value Unit Definition

Vc 40.2 mL/kg Volume of distribution in the central compartment
Vp 211 mL/kg Volume of distribution in the peripheral compartment
V ∗
l 92 mL/kg Volume of distribution in the lymph compartment

kelX 1.16× 10−1 1/h Clearance in the central compartment
kelT 2.51 1/day Elimination rate of immune cells (Target 1)
kcp 6.27× 10−1 1/h Redistribution rate constant to the peripheral compartment
kpc 1.19× 10−1 1/h Redistribution rate constant to the central compartment
k∗clT 1× 10−1 1/day Target 1 redistribution to the lymph nodes
α 1 1/nM Empirical parameter
β 5 1 Empirical parameter

k∗lcT 5× 10−1 1/day Target 1 redistribution to the central from lymph
k∗cl 5× 10−2 1/day Redistribution rate constant to the lymph compartment
kon1 1.72 1/nM/h Binding of the antibody and target 1
koff1 19.66 1/h Unbinding rate of the antibody-target 2 dimer
kon2 1.57 1/nM/h Binding rate of the antibody and target 2
koff2 0.74 1/h Unbinding rate of the antibody-target 2 dimer
kdeg 1.5× 10−1 1/h Tumor T2c degradation rate constant
ksyn kdeg × T2c(0) nM/h Tumor synthesis rate constant
ksynT kelT × T1c(0)Vl

Vc
nM/h Synthesis rate of the immune cells (no proliferation)

ktd 1.082 1/h Disposition rate to the TME (depends on tumor physiology [38])
kctT 2× 10−3 1/day T cell redistribution from the central to the TME
ktcT 5× 10−4 1/day T cell redistribution from the TME.
kmax 1.32 1/day Maximum killing rate
kc50 6.9× 10−5 nM Concentration at half maximum
kge 1.9× 10−1 1/day Exponential tumor growth rate
kgl 1.23× 10−1 mL/day Linear tumor growth rate
kv 6.0 mL Maximum tumor volume
kτ 3.99 day Transduction time between tumor compartments.
kψ 20 1 Exponential to linear transition rate of the tumor
w 80 kg Weight of a patient.
ρ 9.52 nM/(µg/kg) Concentration unit conversion for in the central compartment

deterministic data and should be treated as a proof-of-concept approach to recover KD values from specific
experiments.

The standard context for performing identifiability analysis is for the case when the parameter values are to
be inferred from time course data for some measured quantities [39]. In this case, one typically considers
an ODE model in the state-space form

ẋ = f(k,x) and y = g(k,x), (4)

where x and y are the vectors of states and observed quantities, respectively, and k is a vector of scalar
parameters. For the three-body model (1), we would have x = [X,T1, T2, D1, D2, Y ]T , the observed
quantities would be y1 = X, y2 = T1, y3 = T2 (free drug, first target, and second target, respectively), and
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Table 3: Variables used in model (3).

Variable Unit Initial value Definition
u mg/kg/day - Input: drug dose.
Xc nM 0.0 Antibody concentration in central compartment.
Xl nM 0.0 Antibody concentration in immune system tissue.
Xp nM 0.0 Antibody concentrations in peripheral compartment.
Xt nM 0.0 Antibody concentrations in the TME.
T1l nM 5.0 Target 1 concentration in the immune system tissue.
T1c nM 0.83 Target 1 concentration in the central compartment.
T1t nM 1.08× 10−1 Target 1 concentration in the TME.
T2c nM 1.1 Target 2 concentration in the central compartment.
T2t nM 1.66× 102 Target 2 concentration in the TME.
D1l nM 0.0 Dimer drug-target 1 in the immune system tissue.
D1c nM 0.0 Dimer drug-target 1 in the central compartment.
D1t nM 0.0 Dimer drug-target 1 in the TME.
D2c nM 0.0 Dimer drug-target 2 in the central compartment.
D2t nM 0.0 Dimer drug-target 2 in the TME.
Y nM 0.0 Trimer concentration in the TME.
M1 mL 1.0 Tumor volume in growth compartment.
M2 mL 0.0 Tumor transduction compartment.

k = [kon1 , kon2 , koff1 , koff2 ]
T .

For a model (4), a function h(k) of parameters (could be just a parameter) can be

• globally identifiable if, for almost every solution of (4), any other solution of (4) with the same trajec-
tory for y must have the same value of h(k).

• locally identifiable if, for almost every solution of (4), there are finitely many possible values of h(k)
for any other solution of (4) with the same trajectory for y;

• nonidentifiable if, for almost every solution of (4), there are infinitely many possible values of h(k)
for other solutions of (4) with the same trajectory for y.

Let us elaborate on the notion of “almost every” in the above definitions. Every trajectory of (4) is uniquely
determined by a pair (k,x(0)) of the parameter vectors and initial conditions. Then “almost every” means
that that there exists a manifold of codimension at least one (and, thus, of Lebesque measure zero) in this
(k,x(0))-space such that the stated property may fail only for the trajectories from this manifold. For a more
precise formalization of this notion and related discussions, we refer to [40, Section 2]. Note that a globally
identifiable parameter is locally identifiable as well. The term “generic” (global or local) identifiability is
sometimes used in order to emphasize that there is a possible exceptional set in which identifiability does
not hold. We will give two simple examples to illustrate these notions.

Example 1. Consider a model ẋ = k1k2x with the observable y = x. Then the trajectories are of the
form x(t) = x0e

k1k2t. We can see that neither k1 nor k2 is identifiable because the same trajectory can be
produced by infinitely many triples (k1/c, k2c, x(0)), where c ranges over nonzero numbers. On the other
hand, take the function h(k) = k1k2. Consider the manifold consisting of all pairs of the form (k, 0), that
is, pairs of parameter vectors and the special initial state x(0) = 0. For every solution not starting from this
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manifold, we have identifiability. Indeed, if x0ek1k2t = x0e
k′1k

′
2t for all t, and x0 ̸= 0, then k1k2 = k′1k

′
2.

Thus, h(k) is globally identifiable.

Example 2. Consider a model ẋ = −kx with the observable y = x. Then the trajectories are of the form
x(t) = x0e

−kt. If x(0) ̸= 0, the growth rate k is uniquely defined by the function y(t) via, for example, a
formula k = ẏ(0)

y(0) . If x(0) = 0, then all values of k yield the same y(t) = 0.

We claim that in this model k is globally identifiable. Indeed, the trajectories not allowing for unique
reconstruction of k (namely, the trajectories with x(t) = 0) correspond to a codimension one subvariety
(k, 0) in the (k, x(0))-space parametrizing all the trajectories.

There are a number of software tools for assessing identifiability [41] using the time course data. We have
chosen to use the web-based Structural Identifiability Analyzer [42] , which is based on the algorithms
from [43, 44]. This algorithm takes as input a model in the format (4)1. For the three-body model (1), the
software showed that all four parameters kon1 , kon2 , koff1 , koff2 are globally identifiable from the time course
data.

While the time course identifiability results presented above are of mathematical interest, they are not the
most useful in our context, because most experimental measurements are typically done at steady state [20,
21, 22, 23, 25, 26, 27, 28]. Thus, we next turn our attention to the more interesting question of identification
on the basis of steady state data alone.

In this setup, we fix a subset T in the (k,x(0))-space of the considered trajectories (e.g., trajectories with
positive parameter values and nonnegative initial conditions). For the problem to be well-posed, it is nec-
essary that every trajectory in T converges to a steady state. For (k,x(0)) ∈ T , we will denote the corre-
sponding steady state by S(k,x(0)). Then we will call a function h(k) globally identifiable from the steady
state data if there exists a subset T0 ⊂ T of Lebesque measure zero such that

∀(ĥ, x̂(0)) ∈ T \ T0, (h̃, x̃(0)) ∈ T : y(S(k̂, x̂(0))) = y(S(k̃, x̃(0))) =⇒ h(k̂) = h(k̃).

We perform a detailed analysis of the three-body model in this setup in Section 3.4, and here we give illus-
trative examples explaining the steady state setting and its differences from the time course identifiability.

Example 3. We revisit Example 2 with the model ẋ = −kx, and set T to be trajectories with positive k.
Then, for any initial condition, there is a unique attracting steady state S(k, x(0)) = 0. Assume that what
is measured is precisely this steady state. Since the steady state is zero regardless of the value of k, the
parameter k is not identifiable from the steady state data (unlike the time course setting of Example 2).

Example 4. Consider the model of logistic growth ẋ = x(k − x) with y = x and T being the set of
(k, x(0)) with k > 0 and x(0) ⩾ 0. It is well-known that, if x(0) > 0, there is a unique attracting steady
state S(k, x(0)) = k. Furthermore, we have S(k, 0) = 0. Therefore, the knowledge of the steady state is
sufficient to find the value of k if x(0) > 0. Thus, by setting T0 = {(k, x(0)) ∈ T | x(0) = 0}, we see that
k is globally identifiable.

The next example can serve as a toy model for the analysis of the three-body problem we will perform in
Section 3.4.

Example 5. Consider the following chemical reaction network with three species X1, X2, X3:

X1 +X2
k2−⇀↽−
k1

X3,

1The three-body model (1) in the required format can be found in the github repository at https://github.com/
mahdiarsadeghi/tce/blob/main/identifiability/00_time_course.md
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which, under the law of mass-action kinetics, is governed by the following ODE system (xi denotes the
concentration of Xi for i = 1, 2, 3):

ẋ1 = k1x3 − k2x1x2, ẋ2 = k1x3 − k2x1x2, ẋ3 = −k1x3 + k2x1x2. (5)

We will consider the set T of trajectories with positive parameter values and x1(0) = c1 > 0, x2(0) =
c2 > 0, x3(0) = 0. It is known [45] that every such trajectory converges to a steady state. We assume that
the measured quantities are the values of x2 and x3 at the steady state, that is, y = [x2, x3]

T , and we are
interested in identifiability of K = k1

k2
.

If (x∗1, x
∗
2, x

∗
3) are the coordinates of the steady state, then they satisfy the equation

0 = Kx∗3 − x∗1x
∗
2 = Kx∗3 − (c1 − x∗3)x

∗
2.

The equation contains two unknown values, K and c1, so we cannot find the value of K using only this
information.

Assume now that we can perform two independent experiments with the same (but still unknown) value of
c1 and different values of c2, we will denote them c

[1]
2 and c

[2]
2 . Formally, we have model consisting of two

copies of (5) and the set of trajectories

T = {(k,x[1](0),x[2](0)) | k, x[1]2 (0), x
[2]
2 (0) > 0, x

[1]
1 (0) = x

[2]
1 (0) > 0, x

[1]
3 (0) = x

[2]
3 (0) = 0}.

We denote the coordinates of the steady states by (x
[i]
1 , x

[i]
2 , x

[i]
3 ) for i = 1, 2. In this case we get a system of

two equations:
0 = Kx

[i]
3 − c1x

[i]
2 + x

[i]
2 x

[i]
3 , for i = 1, 2.

Regarding this system as a linear system in the unknowns c1 and K, we can use Cramer’s rule to eliminate
c1 and get a formula for K (this elimination task becomes more tedious in higher dimensions, so we will
employ Gröbner bases to do this in Section 3.4):

K =
x
[1]
2 x

[2]
2 (x

[1]
3 − x

[2]
3 )

x
[1]
3 x

[2]
2 − x

[2]
3 x

[1]
2

. (6)

The formula above is well-defined as long as x
[1]
3

x
[1]
2

̸= x
[2]
3

x
[2]
2

. The value of x∗3
x∗2

is completely determined by

K, c1, c2. Furthermore, it is an algebraic function in these variables (see [45, p. 1036]). We observe
that this function is nonconstant with respect to c2 when c1 and K are fixed. Indeed, since x∗3 ⩽ c1 and
x∗2 = c2 − x∗3 ⩾ c2 − c1, the value of the function can be made arbitrarily close to zero by taking c2

sufficiently large. Therefore, for every K, c1, c
[1]
2 , there are only finitely many values of c[2]2 with x

[1]
3

x
[1]
2

=
x
[2]
3

x
[2]
2

.

Therefore, a subset T0 of pairs trajectories for which x
[1]
3

x
[1]
2

=
x
[2]
3

x
[2]
2

is of measure zero inside T . Together

with (6), this proves identifiability of K. So we conclude that the value of K is identifiable from the steady
state data of two experiments.

2.6 Computational resources

SIAN [43] was used for structural identifiability analysis and analytical derivations. Numerical simulations
and figures are produced with the Julia programming language [46]. The DifferentialEquations package was
used for numerical calculations [47], with Tsit5() numerical algorithm that is suitable for non-stiff problems.
The numerical software for reproducing the figures presented in the manuscript along with more examples
are publicly available on Github [48].
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3 Results

3.1 Results regarding the bell-shaped response

We examined the bell-shape response using the molecule PF-06671008 TCE from [19] as an example to
assess the sensitivity of the peak of the bell-shape to the KD values between the drug and either of its two
targets (see Figure 3). As one can see in the two left subfigures of Figure 3a an increase in the values of
KD1, and KD2 results in a significant decrease of the maximal value of Y . On the other hand, by looking
at the right side of Figure 3a, it can be observed that the optimal concentration of TCE (the corresponding
initial concentration of the TCE at the peak of the trimer concentration) will be decreased by only reducing
KD1, and increased by increasing either KD1 or KD2.

The sensitivity of the maximum trimer concentration, and optimal TCE initial concentration to the ini-
tial concentration of the targets on the immune cells T1(0), and cancer cells T2(0) are visualized in one-
dimensional plots of Figure 3b. From the left side, it can be observed that the maximum trimer concen-
tration is sensitive to T1(0) and insensitive to T2(0), which is physiologically reasonable, since the initial
concentration of the first target, CD3 receptors on immune cells, is much smaller relative to the second tar-
get, P-cad protein on the tumor cells. This result is consistent with the sensitivity analysis presented in [19].
Surprisingly, any change above 0.01x, or below 100x in the initial concentration of the target T1(0) does not
affect the predicted optimal TCE concentration but significantly changes the peak of trimer concentration
Y .

The dissociation constants KD1 and KD2 depend on the TCE design, while T1(0) and T2(0) depend on the
tumor characteristics and variability among cancer patients. From a design perspective, it would be ideal if
the maximum trimer concentration and the corresponding TCE concentration are less sensitive to the initial
concentration of the targets. From a toxicity perspective, it would be favorable if a lower concentration of
TCE antibody can produce the same amount of trimer in the TME. In the analysis presented in Figure 3a,
it can be observed that the concentration of TCE that results in the maximum trimer concentration can be
decreased by reducing the dissociation constant of the first target KD1, and also that lower KD1 will result
in a slightly higher trimer concentration.

Figure 4 extends the visualizations presented in Figure 3. The sensitivity of the maximum trimer concentra-
tion is on the left, and the sensitivity of the corresponding initial concentration of the TCE molecule is on the
right. The red color represents a higher value of the nM concentrations in the log scale, and the blue color
represents lower concentrations in the log scale. The vertical pattern in Figure 4a, and the horizontal pattern
in Figure 4d are consistent with conclusions made from Figure 3. Moreover, the contrasting colors in the top
left and the bottom right of Figure 4b suggest that a simultaneous increase in dissociation constants KD1,
with a decrease in KD2, is favorable in reducing the required TCE concentration to achieve the maximum
concentration of the trimer at the site of action.

3.2 Results on comparison between TCEs

We used the three-body model (1) in order to quantitatively compare the existing CD3-based TCEs summa-
rized in Table 1. We grouped these molecules into two general categories: those targeting solid tumors and
those targeting liquid tumors. In addition to KD values summarized in Table 1, the initial concentration of
the targets is necessary for a computational study of the three-body model. As the initial concentration of
target receptors is highly dependent on cancer type, the comparison between the main characteristics of the
bell-shape pattern, like the trimer peak, the corresponding TCE concentration at the peak, and the width of
the peak, are done for different initial concentrations of the targets to capture a variety of scenarios.
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(a)

(b)

Figure 3: Log-log plots of the bell-shape characteristics: the effects of (a) sweeping dissociation constants,
and (b) sweeping target concentrations at the site of action on the peak of the trimer concentration Y and it
corresponding TCE concentration X . The horizontal axes are the log scale difference between the modified
parameter (marked with a star*) and their original value. Maximum trimer concentration is the peak of the
bell-shape, and Optimal TCE is the corresponding initial antibody concentration, based on model (1).
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(a) (b)

(c) (d)

Figure 4: Bell-shape characteristics heatmap: the effects of sweeping the TCE antibody dissociation con-
stants, KD1 and KD2, on (a) maximum of the trimer concentration of the bell-shape, and (b) the corre-
sponding optimal, TCE concentration. The effect of sweeping initial target concentrations on (c) maximum
of the trimer concentration of the bell-shape, and (d) the corresponding optimal concentration of the drug.
The colors are plotted in log scale concentrations in nM. The horizontal and vertical axes are in log scale
difference of the modified parameter (marked with a star*) and its original value, based on model (1).
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A visual comparison between the bell-shapes of the molecules considered in this study is shown in Figure 5.
The ratio of the initial concentration of the targets (T1(0) : T2(0)) is expected to be in the range of 1:10 to
1:1000 for solid tumors (Figure 5a), and in the range of 10:1 to 1:10 for liquid tumors (Figure 5b). It can
be observed that in addition to the peak of the bell-shape, and the corresponding concentration of the TCE,
the width of the bell-shape varies for different ratios of the initial concentration of the targets. For instance,
the width of the peak of Tarlatamab is higher for a dense tumor, where the initial concentration of the target
receptors on the cancer cells is greater than the concentration of target receptors on the immune cells.

The quantitative framework used for comparing bell-shapes of the TCE molecules at different ratios of
initial concentration of the targets can be extended to continuous ratios of the targets. For this purpose,
the basic characteristics of bell-shape are extracted across different ratios between the targets, shown in
Figure 6. The peak of the trimer concentration is the maximum of bell-shape (on top), the corresponding
TCE concentration is the initial concentration of the TCE that results in the maximum of the bell-shape (in
the middle), and the bell-shape width is simply the range of the TCE concentration that results in at least
50% of the maximum of the bell-shape (on the bottom).

For a realistic comparison between TCEs for solid tumors (Figure 6a), the left-hand side of the horizontal
axis should be considered, where the initial concentration of target receptors on cancer cells is much greater
than the initial concentration of the CD3 target receptors on immune T cells. Similarly, for a realistic
comparison between TCEs designed for liquid tumors (Figure 6b), the right middle or right side of the
horizontal should be taken into consideration.

3.3 Results on biodistribution

It is clear that the biodistribution of TCEs is highly dependent on the parameters given in Table 3. Note that
the parameters presented here are for a nominal TCE molecule, and are not identified from a specific data
set.

In addition to dissociation constants, parameters affecting drug distribution can have a critical impact on
trimer maximization. These parameters are essentially the disposition rate constant of the TCE to the lymph
nodes kcl, and the disposition rate constant of the TCE to the TME. Notably, other parameters, such as
the elimination rate (kelX ) in the model, could also be affected by TCE design. Efforts to extend the TCE
half-life led to the discovery of HLE-TCE molecules like Tarlatamab [27], and Acapatamab [28].

From the experimental results presented in [24], it can be observed that an increase in the affinity of the
TCE toward immune cells (CD3, or target 1) increases its concentration in immune system-related tissues
like lymph nodes. The mechanism of action suggests an inverse relationship between parameters kcl and
KD1. The numerical simulation presented in Figure 7a compares two nominal TCEs with different KD1

values administered at the same dose level. While pharmacokinetics in the central compartment Xc, and the
peripheral compartment Xp are similar, the concentrations at the lymph compartment Xl are different. Fur-
thermore, different affinities of the TCE molecule to different targets lead to a different trimer concentration
in the TME, which is discussed in detail in the previous section. Model 2, with parameters and initial con-
ditions specified in Tables 2 and 3, was used to simulate these two molecules. The only difference between
the two simulations is the value of koff1 , which was adjusted to reflect a 10-fold difference in KD1.

To better understand how a ten-fold change in the affinity can be compared with a ten-fold change in the
drug dose, Figure 7b is presented. Notably, parameters α and β, defined as empirical parameters related to
the lymph compartment, update the relationship with the dissociation constant KD1.
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(a) (b)

Figure 5: Numerical comparison between the bell shapes of TCEs designed for (a) solid tumors, and (b)
liquid tumors based on model (1). The relative concentration of the targets T1(0) : T2(0) is printed on the
top of each plot. The horizontal axes are in log scale, and the vertical axes are in linear scale.
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(a) (b)

Figure 6: Numerical comparison between the basic characteristics of the bell-shape response of different
TCEs designed for (a) solid, and (b) liquid tumors based on model (1). The top figures represent the value
of the peak of bell-shape, the middle figures represent the corresponding TCE antibody concentration at the
peak of the bell-shape, and the bottom figures represent the width of the peak of the bell-shape. The relative
initial concentration of the targets T1(0)/T2(0) is visualized in log scale of the horizontal axes.
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(a)

(b)

Figure 7: Numerical simulations of the biodistribution model (3) for (a) different dissociation constant KD1

between TCE and immune cells and the same dose (labels represent KD1 in nM), and (b) different dose of
TCE and the same dissociation constant (labels represent dosing levels in mg/kg).
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3.4 Results on identifiability from steady state data

In this section, it is proved that the dissociation constants KD1 = koff1/kon1 , and KD2 = koff2/kon2 are
identifiable from just three generic steady state measurements that are different in the initial concentration
of the TCE molecule with equal initial concentrations of the targets. By generic we mean that, for each ex-
eperiment, there are only finitely many values of the initial concetrations to avoid; for the precise statement,
see Theorem 1.

Several approaches to analyzing identifiability from steady states have been developed, see [49, 50], but
they are not applicable directly to our specific setup (due to limited observations, multiple experiments with
shared conserved quantities, etc).

Some of the proofs in this section rely on tedious symbolic computations which were performed on a com-
puter. The corresponding code can be found in the identifiability folder of the repository [48] with the
supplementary code for the paper.

In terms of state variables, consider a steady state X∗, T ∗
1 , T ∗

2 , D∗
1, D∗

2, Y ∗ of the system (1). Then the
numbers X∗, T ∗

1 , T ∗
2 , D∗

1, D∗
2, Y ∗, and kon1 , kon2 , koff1 , koff2 are related by a system of six polynomial

equations obtained by setting the left-hand sides of (1) to zero, that is:

0 = −kon1T
∗
1X

∗ − kon2T
∗
2X

∗ + koff1D
∗
1 + koff2D

∗
2, (7a)

0 = −kon1T
∗
1X

∗ + koff1D
∗
1 − kon1T

∗
1D

∗
2 + koff1Y

∗, (7b)

0 = −kon2T
∗
2X

∗ + koff2D
∗
2 − kon2T

∗
2D

∗
1 + koff2Y

∗, (7c)

0 = kon1T
∗
1X

∗ − koff1D
∗
1 − kon2T

∗
2D

∗
1 + koff2Y

∗, (7d)

0 = kon2T
∗
2X

∗ − koff2D
∗
2 − kon1T

∗
1D

∗
2 + koff1Y

∗, (7e)

0 = kon1T
∗
1D

∗
2 + kon2T

∗
2D

∗
1 − (koff1 + koff2)Y

∗. (7f)

We will start with establishing several properties of nonnegative steady states of the system (1).

Lemma 1. Assume that the rate constants kon1 , kon2 , koff1 , koff2 are positive. Then, for every solution of the
system (7) with nonnegative coordinates, the following hold:

D∗
1D

∗
2 = X∗Y ∗, X∗T ∗

1 = kD1D
∗
1, and X∗T ∗

2 = kD2D
∗
2. (8)

Proof. The projection of the solution set on the coordinates (D∗
1, D∗

2, X∗, Y ∗, koff1 , koff2)-coordinates
(obtained by performing elimination with Gröbner bases [51, Chapter 2, §1]; the Maple code can be found
in the supplementary materials [48]) yields the following equation:

(D∗
1koff1 +D∗

2koff2 +X∗koff1 +X∗koff2) (D
∗
1D

∗
2 −X∗Y ∗) = 0. (9)

If the left bracket vanishes, then, by the positivity of the rate constants and nonnegativity of the solution, we
deduce D∗

1 = D∗
2 = X∗ = 0, so D∗

1D
∗
2 −X∗Y ∗ = 0. Otherwise, the right bracket must vanish, so the same

equality holds. This gives us the first equality in (8). Adding this equation to (7) and computing projections
(again with Gröbner bases) to (D∗

1, D∗
2, X∗, koff2 , kon2 , T ∗

2 )- and (D∗
1, D∗

2, X∗, koff1 , kon1 , T ∗
1 )-coordinates,

respectively, we obtain that:

(X∗T ∗
2 kon2 −D∗

2koff2)(D
∗
1 −D∗

2) = 0,

(X∗T ∗
1 kon1 −D∗

1koff1)(D
∗
1 −D∗

2) = 0.

If D∗
1 ̸= D∗

2, the above equalities imply the last two equations from (8).
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Now we assume that D∗
1 = D∗

2, and add this equation to the system. By projecting on (D∗
2, X∗, koff2 , kon2 ,

T ∗
2 )- and (D∗

1, X∗, koff1 , kon1 , T ∗
1 )-coordinates, respectively, we obtain

(X∗ +D∗
2)(X

∗T ∗
2 kon2 −D∗

2koff2) = 0,

(X∗ +D∗
1)(X

∗T ∗
1 kon1 −D∗

1koff1) = 0.

In both equations above, vanishing of the left bracket would imply the vanishing of the right, so the right
one always vanishes. This yields the two remaining equations of (8) and concludes the proof.

The three-body model (1) has three conservation laws:

c1 = T1(t) +D1(t) + Y (t), c2 = T2(t) +D2(t) + Y (t), and c3 = X(t) +D1(t) +D2(t) + Y (t).

The set of nonegative states with the same values of c1, c2, c3 is referred to as stoichiometric class. Based
on the initial conditions D1(0) = D2(0) = Y (0) = 0, we have c1 = T1(0), c2 = T2(0), and c3 = X(0). In
the notation of Section 2.5, the lemma below establishes that, for the set of trajectories T with these initial
conditions and satisfying c1, c2, c3 > 0, the question of identifiability from steady states is well-posed.

Lemma 2 (cf. [52, p. 11]). Assume that the rate constants kon1 , kon2 , koff1 , koff2 are positive. Then, in each
stoichiometric class (i.e., for every positive values of c1, c2, c3), there exists exactly one positive steady state
which is globally asymptotically stable. Furthermore, its T ∗

1 - and T ∗
2 -coordinates are the unique positive

roots of

(T ∗
1 )

2 + (c3 +KD1 − c1)T
∗
1 − c1KD1 = 0, (10a)

(T ∗
2 )

2 + (c3 +KD2 − c2)T
∗
2 − c2KD2 = 0, (10b)

and the X∗-coordinate satisfies

X∗ =
koff1(T

∗
2 − c2 + c3) + koff2(T

∗
1 − c1 + c3)

(T ∗
1 kon1 + koff1 + T ∗

2 kon2 + koff2)
. (11)

Proof. The existence and uniqueness of globally asymptotically stable equilibrium was established in [52,
p. 11]. We recall the argument here. The system (4) can be represented by a chemical reaction network

X + T1
R1−−⇀↽−−
R−1

D1, X + T2
R2−−−⇀↽−−−
R−2

D2,

D2 + T1
R3−−−⇀↽−−−
R−3

Y, D1 + T2
R4−−⇀↽−−
R−4

Y,

(12)

With the rates R1 = kon1T1X , R−1 = koff1D1, R2 = kon2T2X , R−2 = koff2D2, R3 = kon1D2T1,
R−3 = koff1Y , R4 = kon2D1T2, and R−4 = koff2Y .

The subnetwork of (12) consisting of the boldfaced reactions R1, R−2, R−3, R4 forms an M-network (see [52,
p. 29]) and satisfies the requirements of [52, Theorem 4]: each species participates in exactly one reaction
and appears as a product of exactly one reaction, this is easy to see from the Petri net representation of the
subnetwork on Figure 8. Therefore, by [52, Theorem 4] the function maxR(x)−minR(x), where

R = {R1 −R−1, R−2 −R2, R−3 −R3, R4 −R−4},

is a convex robust Lyapunov function. The existence of such function implies the existence, uniqueness, and
global stability of an equilibrium in every stoichiometric class.
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Figure 8: Petri-net representation of the chosen irreversible subnetwork of (12)

We will now establish formulas (10) and (11). We augment the system (7) with the equations:

c1 − T ∗
1 −D∗

1 − Y ∗ = c2 − T ∗
2 −D∗

2 − Y ∗ = c3 −X∗ − Y ∗ −D∗
1 −D∗

2 = 0. (13)

Given the obtained system of nine equations, we next compute the projections (again, using Gröbner
bases; the Maple code can be found in the supplementary materials [48]) of the solution set onto the
(A, c1, c2, c3, kon1 , kon2 , koff1 , koff2)-coordinates, where A is taken to be T ∗

1 or T ∗
2 . We find that these pro-

jections satisfy precisely (10). Consider (10a) as a quadratic equation in T ∗
1 . The product of the roots is

equal to −c2KD2 < 0, from which we conclude that there exists exactly one positive root, so it must be the
T ∗
1 -coordinate of the unique steady state. The same applies to T ∗

2 .

Now we compute the projection onto the (X∗, T ∗
1 , T

∗
2 , c1, c2, c3, kon1 , kon2 , koff1 , koff2)-coordinates and find

a relation:

X∗(T ∗
1 kon1 + koff1 + T ∗

2 kon2 + koff2) = koff1(T
∗
2 − c2 + c3) + koff2(T

∗
1 − c1 + c3). (14)

The positivity of T ∗
1 kon1 + koff1 + T ∗

2 kon2 + koff2 implies that we can express X∗ uniquely and obtain (11).

In other words, Lemma 2 shows that T ∗
1 , T ∗

2 , and X∗ can be expressed as algebraic functions of k =
(kon1 , koff1 , kon2 , koff2) ∈ R4

>0 and c1, c2, c3 ∈ R>0. We will denote these functions by the same letter and
write, for example T ∗

1 (k, c1, c2, c3) for the positive root of (10a).

Next, we will consider several (two or three) experiments with the same c1 = T1(0) and c2 = T2(0)
but varying c3 = X(0) (cf. Example 5). The next proposition establishes that the vector (KD1 ,KD2) is
identifiable up to at most two possible values from the steady state data of two such experiments.

Proposition 1. Consider two vectors (T [i]
1 , T

[i]
2 , X [i]) ∈ R3

>0 for i = 1, 2. Assume that

(T
[1]
1 − T

[2]
1 )(T

[1]
2 − T

[2]
2 )(X [1]T

[1]
1 −X [2]T

[2]
1 )(X [1]T

[1]
2 −X [2]T

[2]
2 ) ̸= 0. (15)

Then, there exists a subset K ⊂ R>0 of cardinality at most two such that, for every k ∈ R4
>0, c1, c2, c

[1]
3 , c

[2]
3 ∈

R>0 satisfying
A[i] = A∗(k, c1, c2, c

[i]
3 )

for every A ∈ {T ∗
1 , T

∗
2 , X

∗} and i = 1, 2, we have (KD1 ,KD2) =
(
kon1
koff1

,
kon2
koff2

)
∈ K.

Furthermore, for every k ∈ R4
>0 and c1, c2, c

[1]
3 ∈ R>0, there are only finitely many values c[2]3 ∈ R>0 such

that (15) does not hold for A[i] = A∗(k, c1, c2, c
[i]
3 ), where A ∈ {T ∗

1 , T
∗
2 , X

∗} and i = 1, 2.
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Proof. Consider two vectors (T
[i]
1 , T

[i]
2 , X [i]) ∈ R3

>0 for i = 1, 2 and k ∈ R4
>0, c1, c2, c

[1]
3 , c

[2]
3 ∈ R>0

such that A[i] = A∗(k, c1, c2, c
[i]
3 ) for every A ∈ {T ∗

1 , T
∗
2 , X

∗} and i = 1, 2. We use (8) and equalities
D∗

1 = c1 − T ∗
1 − Y ∗ and D∗

2 = c2 − T ∗
2 − Y ∗ to write the following polynomial system:

Y [i]X [i] = (c1 − T
[i]
1 − Y [i])(c2 − T

[i]
2 − Y [i]),

T
[i]
1 X [i] = KD1(c1 − T

[i]
1 − Y [i]),

T
[i]
2 X [i] = KD2(c2 − T

[i]
2 − Y [i]),

for i = 1, 2.

By computing the projection of the solution set of this system to the (KD1, KD2, T [1]
1 , T [2]

1 , T [1]
2 , T [2]

2 , X [1],
X [2])-coordinates (using Gröbner bases), we find expressions of the form:

A1K
2
D1 +A2KD1 +A3 = 0, (16a)

B1KD2 +B2KD1 +B3 = 0, (16b)

where A1, A2, A3, B1, B2, B3 are polynomials from Q[T
[i]
1 , T

[i]
2 , X [i] | i = 1, 2]. Furthermore, A1 and B1

factor as follows:

A1 = X [1]X [2](T
[1]
1 − T

[2]
1 )(T

[1]
2 X [1] − T

[2]
2 X [2]), (17a)

B1 = X [1]X [2](T
[1]
2 − T

[2]
2 )(T

[1]
1 X [1] − T

[2]
1 X [2]). (17b)

Therefore, if (15) holds, A1 and B1 do not vanish. Then KD1 must be one of the roots of (16a) and then
KD2 is uniquely determined from (16b). Since the coefficients of the equations (16a) and (16b) depend only
on T

[i]
1 , T

[i]
2 , X [i] for i = 1, 2, these two solutions form the set K from the statement of the proposition.

In order to prove the second statement of the proposition, we fix k ∈ R4
>0 and c1, c2, c

[1]
3 ∈ R>0 and consider

T
[2]
1 , T

[2]
2 , and X [2] as functions in c3 = c

[2]
3 . By Lemma 2 , these functions are algebraic. We notice that (15)

is equivalent to inequalities:

T
[1]
1 ̸= T

[2]
1 , T

[1]
2 ̸= T

[2]
2 , X [1]T

[1]
1 ̸= X [2]T

[2]
1 , X [1]T

[1]
2 ̸= X [2]T

[2]
2 .

Since a nonconstant univariate algebraic function takes each value only finitely many times, it is sufficient
to prove that the functions

T
[2]
1 (c3), T

[2]
2 (c3), X [2](c3)T

[2]
1 (c3), X [2](c3)T

[2]
2 (c3) (18)

are nonconstant. To this end, we use (10a) and (10b) to write the Taylor series for T [2]
1 and T

[2]
2 at c3 = 0:

T
[2]
1 (c3) = c1 −

c1
c1KD1 + 1

c3 +O(c23) and T
[2]
2 (c3) = c2 −

c2
c2KD2 + 1

c3 +O(c23).

By plugging these to (11), we obtain an expansion for X [2]:

X [2](c3) =

(
koff2

c1KD1
+1 +

koff1
c2KD2

+1

)
c3 +O(c3)

2

c1kon1 + c2kon2 + koff1 + koff2 +O(c3)
=

koff2
c1KD1

+1 +
koff1

c2KD2
+1

c1kon1 + c2kon2 + koff1 + koff2

c3 +O(c23).

From these expansions, we see that indeed none of the functions (18) is constant. This finished the proof of
the second claim of the proposition.
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The following theorem establishes that, using the terminology of Section 2.5, the vector (KD1 ,KD2) is
globally identifiable from the steady state data for three generic experiments with the same values of c1, c2
but varying value of c3.

Theorem 1 (Unique identifiability from three experiments). Consider three vectors (T [i]
1 , T

[i]
2 , X [i]) ∈ R3

>0

for i = 1, 2, 3. Assume that
R2 ̸= R3 or R2 < 0 or R3 < 0, (19)

where

Ri :=
(T

[1]
1 − T

[i]
1 )(X [1]T

[1]
2 −X [i]T

[i]
2 )

(X [1]T
[1]
1 −X [i]T

[i]
1 )(X [1]T

[1]
1 T

[1]
2 −X [i]T

[i]
1 T

[i]
2 )

for i = 2, 3.

Then there exists a vector kD ∈ R2
>0 such that for every k ∈ R4

>0, c1, c2, c
[1]
3 , c

[2]
3 , c

[3]
3 ∈ R>0 satisfying

A[i] = A∗(k, c1, c2, c
[i]
3 )

for every A ∈ {T ∗
1 , T

∗
2 , X

∗} and i = 1, 2, 3, we have
(
kon1
koff1

,
kon2
koff2

)
= kD.

Furthermore, for every k ∈ R4
>0 and c1, c2, c

[1]
3 , c

[2]
3 ∈ R>0, there are only finitely many values c[3]3 ∈ R>0

such that (19) does not hold for A[i] = A∗(k, c1, c2, c
[i]
3 ), where A ∈ {T ∗

1 , T
∗
2 , X

∗} and i = 1, 2, 3.

Proof. The proof strategy will be similar to the one for Proposition 1. Consider two vectors (T [i]
1 , T

[i]
2 , X [i]) ∈

R3
>0 for i = 1, 2, 3 and k ∈ R4

>0, c1, c2, c
[1]
3 , c

[2]
3 , c

[3]
3 ∈ R>0 such that A[i] = A∗(k, c1, c2, c

[i]
3 ) for every

A ∈ {T ∗
1 , T

∗
2 , X

∗} and i = 1, 2, 3.

Consider the relations (16a) and (16b) obtained in the proof of Proposition 1. Recall that (17a):

A1 = X [1]X [2](T
[1]
1 − T

[2]
1 )(T

[1]
2 X [1] − T

[2]
2 X [2]).

Furthermore, we have

A3 = X [1]X [2](X [1]T
[1]
1 −X [i]T

[i]
1 )(X [1]T

[1]
1 T

[1]
2 −X [i]T

[i]
1 T

[i]
2 ).

Therefore, R2 = A1
A3

. If R2 < 0, then (16a) has exactly one positive root. In this case, kD1 would be
uniquely determined, and then kD2 would be uniquely determined from (16b). The same argument applies
to R3 < 0 due to the symmetry between the second and the third experiment.

In order to take into account the third experiment, we apply the derivation of (16a) and (16b) from the proof
of Proposition 1 to the first and third vectors instead of the first and the second. This way, T [2]

1 , T
[2]
2 , X [2]

in (16a) will be replaced with T
[3]
1 , T

[3]
2 , X [3], and the resulting relation will also be true. This will yield one

more quadratic equation for KD1, which we will denote by Ã1K
2
D1 + Ã2KD1 + Ã3 = 0. Since Ã1 and

Ã3 are obtained from A1 and A3 by replacing T
[2]
1 , T

[2]
2 , X [2] with T

[3]
1 , T

[3]
2 , X [3], we have R3 = Ã1

Ã3
. If

R2 ̸= R3, then the quadratic equations (16a) and Ã1K
2
D1 + Ã2KD1 + Ã3 = 0 are not proportional, so they

have at most one common root thus leaving at most one possible value for kD1 .

In order to prove the second part of the theorem, we fix k ∈ R4
>0 and c1, c2, c

[1]
3 ∈ R>0, and consider the

function

f(c3) :=
(T

[1]
1 − T ∗

1 (c3))(X
[1]T

[1]
2 −X∗(c3)T

∗
2 (c3))

(X [1]T
[1]
1 −X∗(c3)T ∗

1 (c3)))(X
[1]T

[1]
1 T

[1]
2 −X∗(c3)T ∗

1 (c3)T
∗
2 (c3))

.
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Then we have R2 = f(c
[2]
3 ) and R3 = f(c

[3]
3 ). By Lemma 2, f(c3) is an algebraic function. Therefore, if

it is a nonconstant algebraic function, it takes each value only finitely many times, so the equality R2 = R3

will be true only for finitely many values of c[3]3 as desired. Now assume that f(c3) is a constant function.
Then R2 = f(c

[2]
3 ) = f(0). Using X∗(0) = 0 and T ∗

1 (0) = c1, we find that

f(0) =
(T

[1]
1 − c1)

(X [1]T
[1]
1 )2

.

Since c1 = T
[1]
1 + D

[1]
1 + Y [1], we have T

[1]
1 < c1, so f(0) < 0. This implies R2 < 0, so (19) is fulfilled

independently of the value of c[3]3 .

We will illustrate the above argument with a numerical example. We will first take the initial concentrations
and parameter values the same as in the example in the introduction:

X(0) = 1.0, T1(0) = 1.08 · 10−1, T2(0) = 166, D1(0) = D2(0) = Y (0) = 0,

kn1 = 1.72, kf1 = 19.66, kn2 = 1.57, kf2 = 0.74.

Through numerical simulations, we compute the values of X , T1, T2 at the steady state: X [1] = 2.8 ·
10−3, T

[1]
1 = 9.9 · 10−2, T

[1]
2 = 165. Next, we simulate one more experiment with all the initial conditions

staying the same except for X(0) = 1.1. The new steady state is X [2] = 3.1 ·10−3, T
[2]
1 = 9.8 ·10−2, T

[2]
2 =

164.9. Plugging these values into equations (16), we find two solutions for (KD1,KD2) one of which is
equal to the true values, and the other one is negative and can therefore be discarded. So, in this case,
two experiments are sufficient to find the unique parameter values. Even if the second solution of (16) was
positive, it could be discarded by performing one more experiment with different X(0), and choosing the
solution of (16) appearing among the solutions of (16) for the first pair of experiments.

The details of all the symbolic and numeric calculations from this section can be found in the identifiability
folder of the repository [48] with the supplementary code for the paper.

4 Discussion

Although each of the TCEs presented in this study was designed for a different cancer cell target, the initial
concentration of the targets on cancer cells is assumed to be equally expressed on the cancer cell surface to
visualize the quantitative differences between the bell-shapes in Figure 5.

From the three-body model perspective, a promising TCE antibody is the one that creates the largest trimer
concentration with the minimal initial concentration of the antibody at the site of action. Additionally,
to overcome natural intra-tumoral and inter-patient variability, it is favorable to have a TCE antibody with
minimal variation for different ratios of the initial concentrations of the targets. So, a TCE antibody molecule
is effective at the site of action if it results in: 1) a relatively higher peak of the trimer concentration at the
site of action, 2) a relatively lower exposure in the circulating compartment to avoid toxicity issues, 3) lower
affinity toward CD3 to prevent drug sing in the non-tumor compartments, and 4) robust characteristics of the
bell-shape for different range of target concentrations, to have the highest predictability for different initial
conditions across patients and tumors.

Among the molecules presented in Figure 6, it can be observed that the 7370, and PF-06671008 molecules
are projected to have the largest concentrations of trimers in TME with minimal initial target concentrations.
On the other hand, Solitomab creates a stable width of the peak for a wide range of ratios between the initial
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concentrations of the targets. It is apparent that stability across different initial concentrations of the targets
increases the consistency of the data in clinical research.

In addition to the TCE molecules presented in Table 1, other molecules are discussed in detail in the lit-
erature. PF-06863135 [53] (150 kDa), and AMG420 [11] (54 kDa) are both designed to target B-Cell
Maturation Antigen (BCMA) for patients diagnosed with multiple myeloma. Both of the molecules have
similar dissociation constants to CD3, but different dissociation constants to BCMA, 0.1 and 0.04 nM re-
spectively. The role of binding kinetics to BCMA is discussed as an important factor in the distribution
of the molecule toward different tissues in [11]. Also, the authors of [54] discussed the design and bio-
distribution of AMG211 (55 kDa), a CD3/CEA TCE molecule for patients with advanced gastrointestinal
adenocarcinomas. AMG211 has a significantly high dissociation constant to CD3 310 nM in comparison
with its dissociation constant toward CEA 5.5 nM. The biodistributions of these molecules are explained by
a computational model in [55].

A molecule with a bell-shaped efficacy curve will have an important property: its efficacy will be maximized
at the concentrations that correspond to the peak of trimer formation (Figure 1(b), yellow thick line), and
will be low at the concentrations that are significantly less or significantly higher than that. This provides an
opportunity to assess the predictions in the following way: with the understanding of PK properties of the
desired compound, one can calculate doses (using standard PK-PD modeling methodology) that will achieve
steady state concentrations in the tumor microenvironment below, at, or beyond the drug concentrations
predicted to maximize efficacy. One can then design a pre-clinical experiment, where animals receive drug
doses that will achieve these concentrations, and assess, whether efficacy is optimized at the intermediate
“optimal” concentration. It should be noted that because it takes time for a drug to accumulate in the TME,
it may take time to see the difference between the dosing regimens, with the higher-dose regimen achieving
higher efficacy short term (it will reach the “optimal” drug concentration sooner) but will then lose efficacy
in the longer term, since drug will continue accumulating, and therefore will soon move into the suboptimal
range on the right of the efficacy curve.

Interestingly, if one were to evaluate the dosing regimens of some of the approved TCEs, one would observe
that epcrotitamab (anti-CD3/anti-CD20) protocol dictates increasing spaces between doses, with the drug
given weekly during the first three treatment cycles, then given at 48 mg every 2 weeks between 4th-9th
treatment cycles, and finally every 4 weeks after the 10th treatment cycle. Glofitamab, another highly
efficacious anti-CD3/anti-CD20 antibody, is given at 30 mg every 2 weeks for the first treatment cycle, and
then every 4 weeks for subsequent cycles. Mosunetuzumab starts with weekly dosing, with 60 mg given
every 3 weeks for the second treatment cycle, and then lowering the dose to 30mg for subsequent treatment
cycles. All of these (increasing spacing between doses or lowering dosing for later treatment cycles) could
be potential mitigation strategies to ensure that the drug concentration remains in the “optimal” zone.

The simplified three-body model provides valuable initial insights, but it may not fully capture the complex-
ity of TCE interactions in vivo. Tailored version of this model for each target to incorporate factors such as
T cell dynamics, tumor heterogeneity, and drug disposition would improve the model’s predictive accuracy
for clinical applications for future programs.

A common safety concern for TCEs is cytokine release syndrome (CRS), which arises from excessive
immune activation and leads to a surge in inflammatory cytokines with potentially severe systemic ef-
fects. While the present study focuses on characterizing dose-response relationships with respect to effi-
cacy—using maximum trimer concentration as a key feature—understanding the full therapeutic window
will ultimately require integrating both efficacy and safety considerations.

In particular, the bell-shaped nature of the dose-response curve suggests that exceeding a certain concen-
tration could result not only in reduced efficacy but also in heightened toxicity risk. Thus, future modeling
efforts should aim to incorporate safety endpoints, such as cytokine profiles or clinical markers of CRS, to
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better inform dose selection. A recent review of clinical dose optimization strategies for T-cell-enhanced
therapies highlights various dosing approaches and emphasizes the importance of customized dosing regi-
mens via mathematical modeling in the future [56].

Additionally, while our study emphasizes the peak of the bell-shaped curve as a marker of maximum ef-
ficacy, we recognize that this alone is not sufficient to fully characterize the dose-response relationship.
We complement our peak-focused sensitivity analysis with numerical comparisons of the curve width (e.g.,
Figure 6), which offer insight into the robustness and breadth of the therapeutic window. A more com-
prehensive modeling framework—including toxicity metrics and safety thresholds—will be necessary to
support clinical dose optimization, and this remains an important direction for future work.

The proposed analysis can be used to further assess the optimal properties for the design of CD3-based
bispecific T cell engagers for a variety of scenarios and targets, to hopefully expand the applicability of this
modality to a larger number of indications.
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