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 A B S T R A C T

We consider a general class of translation-invariant systems with a specific category of output nonlinearities 
motivated by biological sensing. We show that no dynamic output feedback can stabilize this class of systems 
to an isolated equilibrium point. To overcome this fundamental limitation, we propose a simple control 
scheme that includes a low-amplitude periodic forcing function akin to so-called ‘‘active sensing’’ in biology, 
together with nonlinear output feedback. Our analysis shows that this approach leads to the emergence of an 
exponentially stable limit cycle. These findings offer a provably stable active sensing strategy and may thus 
help to rationalize the active sensing movements animals make when performing certain motor behaviors.
1. Introduction

Biological sensory systems often exhibit an attenuated response 
to constant (DC) stimuli, allowing such biosensors to excel at de-
tecting changes (AC) rather than measuring absolute values (Taylor 
& Krapp, 2007). This feature, often referred to as sensory adapta-
tion, poses significant challenges for conventional state estimation and 
control—see Sontag (2003, 2010) for specific examples related to con-
trol theory and systems biology. To overcome this sensory adaptation, 
animals appear to use ancillary movements, referred to as active sensing
movements, that drive robust responses in their change-detecting sen-
sory systems (Bajcsy, 1988; Gibson, 1962; Schroeder, Wilson, Radman, 
Scharfman, & Lakatos, 2010). Animals use this strategy to enhance sen-
sory information across sensory modalities, e.g., echolocation (Wohlge-
muth, Kothari, & Moss, 2016), whisking (Mitchinson et al., 2011) and 
other forms of touch (Prescott, Diamond, & Wing, 2011; Saig, Gordon, 
Assa, Arieli, & Ahissar, 2012), electrosense (Chen, Murphey, & MacIver, 
2020; Hofmann et al., 2013; Stamper, Roth, Cowan, & Fortune, 2012), 
and vision (Ahissar & Arieli, 2012; Michaiel, Abe, & Niell, 2020). It 
is well established that conditions of decreased sensory acuity lead to 
increased active movements (Chen et al., 2020; Deora, Ahmed, Daniel, 
& Brunton, 2021; Kiemel, Oie, & Jeka, 2002; Lockey & Willis, 2015; 
Michaiel et al., 2020; Rucci & Victor, 2015; Stamper et al., 2012; 
Stöckl, Kihlström, Chandler, & Sponberg, 2017; Wohlgemuth et al., 
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2016), suggesting a closed-loop perceptual process (Ahissar & Assa, 
2016; Biswas et al., 2018).

The ubiquity of active sensing in nature motivated us to explore 
the mathematical conditions that might necessitate active sensing. One 
theory is that active sensing is at least in part borne out of the need 
for nonlinear state estimation (Biswas et al., 2023; Sontag, Biswas, 
& Cowan, 2022). Under this theory, animals use active sensing—that 
is, the generation of time-varying motor commands that continuously 
stimulate their sensory receptors—so that the system states can be 
estimated from sensor measurements. A complementary approach—
and one we pursue in this paper—is that active movements do indeed 
enhance observability, but that full state estimation itself may be 
unnecessary. In other words, active sensing movements may enable 
stabilizing output feedback without recourse to state estimation as an 
intermediate step.

In this paper, we examine a class of systems with a nonlinear 
sensory output that mimics sensory adaptation and perceptual fading 
in nature (Fabre et al., 2020; Riggs, Ratliff, Cornsweet, & Cornsweet, 
1953; Taylor & Krapp, 2007), resulting in a system whose linearized 
dynamics is unobservable (Kunapareddy & Cowan, 2018) (Section 2). 
In essence, the usual state-estimate-based control framework that dom-
inates engineering practice in many fields (Barfoot, 2024) cannot be 
naïvely applied. More fundamentally, we show that the class of bio-
inspired nonlinear models considered here cannot be stabilized around 
an equilibrium point with any choice of dynamic output feedback 
https://doi.org/10.1016/j.ejcon.2025.101361
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Fig. 1. (A) Weakly electric fish control their position using active sensing to remain 
within a refuge; 𝑥(𝑡) is the fish’s position relative to the refuge. (B) Simplified model.

(Section 3). However, with appropriate control inputs, nonlinear ob-
servability can persist, allowing us to mimic active sensing behavior 
observed in animals (Biswas et al., 2018, 2023). Specifically, we present 
an active-sensing-based output feedback system (Section 4), prove that 
it stabilizes an arbitrarily small limit cycle (Section 5), and numerically 
characterize the nonlinear system dynamics (Section 6).

2. Biologically inspired system definition

Station-keeping behavior in weakly electric fish, Eigenmannia
virescens, provides an ideal system for investigating the interplay be-
tween active sensing and task-level control (Biswas et al., 2018; Chen 
et al., 2020; Stamper et al., 2012; Yeh, Yang, Biswas, & Cowan, 2024); 
see Fig.  1. These fish routinely maintain their position relative to 
a moving refuge and use both vision and electrosense to collect the 
necessary sensory information from their environment (Cowan et al., 
2014; Cowan & Fortune, 2007; Rose & Canfield, 1993; Sutton, Demir, 
Stamper, Fortune, & Cowan, 2016). While tracking the refuge position 
(task-level control), the fish additionally produce rapid ‘‘whisking-
like’’ forward and backward swimming movements (active sensing). 
When vision is limited (e.g., in darkness), the fish increase their 
active sensing movements (Biswas et al., 2018; Stamper et al., 2012; 
Yeh et al., 2024), likely to excite their change-detecting, high-pass 
electroreceptors (Nelson, Xu, & Payne, 1997).

To capture the essence of this behavior, suppose 𝑥 is the position 
of the animal and 𝑧 = 𝑥̇ is its velocity as it moves in one degree of 
freedom. We assume that a sensory receptor measures only the local 
rate of change of a stimulus, 𝑠(𝑥), as the animal moves relative to the 
sensory scene, i.e., 𝑦 = 𝑑

𝑑𝑡 𝑠(𝑥). Defining 𝛾(𝑥) ∶= 𝑑
𝑑𝑥 𝑠(𝑥), we arrive at 

a 2-dimensional, single-input, single-output normalized mass–damper 
system of the following form (Kunapareddy & Cowan, 2018; Sefati 
et al., 2013): 
𝑥̇ = 𝑧, 𝑥 ∈ R

𝑧̇ = −𝑧 + 𝑢, 𝑧, 𝑢 ∈ R

𝑦 = 𝑑
𝑑𝑡

𝑠(𝑥) = 𝛾(𝑥) 𝑧, 𝑦 ∈ R

(1)

where the mass and the damping constant are both assumed to be unity. 
Linearization of the above system (1) around any equilibrium, (𝑥∗, 0), 
yields the following system matrices:

𝐴 =
[

0 1
0 −1

]

, 𝐵 =
[

0
1

]

, 𝐶 =
[

0 𝛾∗
]

,

where 𝛾∗ = 𝛾(𝑥∗). Clearly (𝐴,𝐶) is not observable irrespective of 
𝛾∗(Rugh, 1996). Indeed, the output introduces a zero at the origin that 
cancels a pole at the origin, rendering 𝑥 unobservable.

To examine nonlinear observability, we can write the original non-
linear system (1) as 
𝜉̇ = 𝑓 (𝜉) + 𝐵𝑢, 𝑦 = ℎ(𝜉), (2)

where 𝜉 = (𝑥, 𝑧)⊤, 𝑓 (𝜉) = (𝑧, −𝑧)⊤ and ℎ(𝜉) = 𝛾(𝑥)𝑧. We can construct 
the observation space,  (set of all infinitesimal observables) by taking 
2 
Fig. 2. The system (1) cannot be stabilized to an equilibrium point by the dynamic 
feedback in (4).

𝑦 = 𝛾(𝑥)𝑧 with all repeated time derivatives

𝑦(𝑘) = 𝐿(𝑘)
𝑓 (𝛾(𝑥)𝑧)

as in Nijmeijer and Van der Schaft (1990), Sontag (1998). The super-
script ‘‘(𝑘)’’ indicates 𝑘th order derivative. Note that 𝐿(𝑘)

𝑓 ((𝛾(𝑥)𝑧)) lies in 
the span of the functions 𝛾 (𝑗)(𝑥)𝑧𝑗+1, 𝑗 = 0, 1,… , 𝑘. The rank condition 
on the observability co-distribution (Nijmeijer & Van der Schaft, 1990; 
Sontag, 1998) implies a sufficient condition for local observability as 
follows (Kunapareddy & Cowan, 2018): 

𝑧2(2(𝛾 ′(𝑥))2 − 𝛾(𝑥)𝛾 ′′(𝑥)) ≠ 0. (3)

Thus, ensuring observability requires non-zero velocity, 𝑧 ≠ 0, implying 
the need for active sensing (Kunapareddy & Cowan, 2018). Eq. (3) also 
requires a non-hyperbolic 𝛾 (i.e., 𝛾 ≠ 1∕(𝑐1𝑥+ 𝑐0), with constants 𝑐0, 𝑐1), 
leading to a non-logarithmic requirement for the sensing function 𝑠(𝑥). 
Note that the non-logarithmic constraint arises in the local analysis of 
a sufficient condition for observability, but it is not a requirement for 
the global observability condition discussed in Sontag et al. (2022). 

Given that, under the conditions described above, the system is 
locally nonlinearly observable, can we design a nonlinear output feed-
back controller that can stabilize the system to an equilibrium point? 
The following section addresses this question.

3. An impossibility result for stabilizing the system to a point

For the system in (1), dynamic output feedback cannot asymptoti-
cally stabilize the origin (0, 0), as shown in the following proposition.

Proposition 3.1.  Consider the system (1). Let 
𝑞̇ = 𝑔(𝑞, 𝑦, 𝑡)

𝑢 = 𝑘(𝑦, 𝑞, 𝑡)
(4)

be a dynamic, potentially time-varying, output feedback ( Fig.  2). Suppose 
(𝑥∗, 𝑧∗, 𝑞∗(𝑡)) = (0, 0, 𝑞∗(𝑡)) is a solution to the coupled system. Then there is 
a continuum of solutions, (𝜉∗, 0, 𝑞∗(𝑡)), 𝜉∗ ∈ R. 

Proof.  Since (0, 0, 𝑞∗(𝑡)) is a solution, we see from the second equation 
in (1) that 𝑢∗(𝑡) = 𝑘(0, 𝑞∗(𝑡), 𝑡) ≡ 0. That means that 𝑘(𝛾(𝜉∗)⋅0, 𝑞∗(𝑡), 𝑡) = 0, 
i.e. (𝜉∗, 0, 𝑞∗(𝑡)) is also a solution, for all 𝜉∗ ∈ R.  ■

In other words, no matter how ‘‘fancy’’ one makes the output 
feedback, there will always be a continuum of equilibria, and thus, 
stabilizing one’s favorite equilibrium among them is impossible. In 
the next section, we achieve the next best thing: by adding a time-
varying active sensing input to an output feedback term, we stabilize 
an arbitrarily small limit cycle.
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4. An exact active sensing strategy

For 𝑧 ≠ 0, the system (1) is locally observable but cannot be 
stabilized to a point using output feedback, raising the question of 
whether it is possible to create a ‘‘small’’ stable periodic orbit as the 
‘‘next best thing’’ to stabilizing a point. To explore this, we make two 
simplifying assumptions:

(A1) The position-dependent scene is locally quadratic, namely 𝑠(𝑥) =
1
2𝑥

2, leading to 𝛾(𝑥) = 𝑥.
(A2) The velocity, 𝑧, is directly measurable.

The assumption of a locally quadratic sensory scene is based on the 
idea that, in general, the response changes sharply as the stimulus 
moves farther from the reference point, providing a simplified model 
for the nonlinearity in the sensory system. These assumptions lead to 
the following simplified system with an augmented output equation 
𝑥̇ = 𝑧, 𝑥 ∈ R

𝑧̇ = −𝑧 + 𝑢, 𝑧, 𝑢 ∈ R

𝑦 =
[

𝑦1
𝑦2

]

= 𝑑
𝑑𝑡

[

𝑠(𝑥)
𝑥

]

=
[

𝑥𝑧
𝑧

]

, 𝑦 ∈ R2.

(5)

Note that the simplified system with augmented output (5) remains 
linearly unobservable; following the same reasoning from Section 3, 
this system is also not stabilizable via any dynamic output feedback. 
Thus, adding velocity sensing and simplifying the measurement nonlin-
earity neither mitigate the lack of observability nor enable output stabiliza-
tion, which were the main challenges associated with the bio-inspired 
sensor. However, the assumptions simplify the following exposition.

In the system (5), it is easily verified that setting the input 𝑢(𝑡) to 
𝛼(𝑡) = 𝑎 cos(𝑡)−𝑎 sin(𝑡) leads to a family of periodic solutions of the form 
𝑥(𝑡) = 𝑎 sin(𝑡) + 𝐶 and 𝑧(𝑡) = 𝑎 cos(𝑡), 𝐶 ∈ R. Our goal is to incorporate 
an output feedback term that stabilizes the system to the solution with 
𝐶 = 0. With this in mind, consider the following ‘‘active-sensing’’ based 
controller: 

𝑢(𝑡) =

active sensing
⏞⏞⏞
𝛼(𝑡) −

output feedback
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑘
(

𝐹 (𝑦) − 𝐹 (𝑦∗)
)

, (6)

where 𝐹 (𝑦) = 𝑦1𝑦2 and 𝐹 (𝑦∗) = 𝑦∗1(𝑡)𝑦
∗
2(𝑡). Here, the active sensing 

input 𝛼(𝑡) is a feed-forward term that maintains observability (Sontag 
& Wang, 2007). This leads to a single periodic solution,
(𝑥∗(𝑡), 𝑧∗(𝑡)) = (𝑎 sin(𝑡), 𝑎 cos(𝑡))

with associated periodic output 𝑦∗1(𝑡) = 𝑥∗(𝑡)𝑧∗(𝑡) and 𝑦∗2(𝑡) = 𝑧∗(𝑡). As we 
will show, the feedback term 𝑘(𝐹 (𝑦)−𝐹 (𝑦∗)) = 𝑘(𝑦1𝑦2−𝑦∗1(𝑡)𝑦

∗
2(𝑡)) ensures 

the system converges to 𝜉∗(𝑡) = (𝑥∗(𝑡), 𝑧∗(𝑡)) for appropriate choices of 
𝑎 and 𝑘. We can rewrite the system (5) with input (6) as follows: 
𝑥̇ = 𝑧

𝑧̇ = − 𝑧 − 𝑘(𝑥𝑧2 − 𝑎3 sin(𝑡) cos2(𝑡))

+ 𝑎 cos(𝑡) − 𝑎 sin(𝑡)

(7)

A numerical example showing the system’s states converge to a circular 
orbit of radius 𝑎 is shown in ( Fig.  3).

Linearization of (7) around 𝜉∗(𝑡) results in a linear 𝜋-periodic sys-
tem:
̇̃𝜉 = 𝐴(𝑡)𝜉,  where 𝜉 ∶= 𝜉 − 𝜉∗ (8)

𝐴(𝑡) ∶=
[

0 1
−𝛿 cos2(𝑡) −1 − 𝛿 sin(2𝑡)

]

, (9)

with the parameter 𝛿 defined as 
𝛿 ∶= 𝑘𝑎2. (10)

The linear 𝜋-periodic system (8) is parameterized by 𝛿 = 𝑘𝑎2, which 
depends on both the choice of the output feedback gain, 𝑘, and the 
square of the radius of the circular active sensing orbit, 𝑎. In the 
following sections, we analyze the stability of the system (8) using 
Lyapunov and Floquet theory.
3 
Fig. 3. Evolution of the system states, 𝑥(𝑡) and 𝑧(𝑡) for 𝛿 = 1∕2 with 𝑘 = 1, 𝑎 = 1∕
√

2
from initial condition (𝑥0 , 𝑧0) = (1, 1). (A) Time traces. (B) State trajectories on the 𝑥-𝑧
plane. The black dashed line represents the steady-state circular orbit of radius 𝑎.

5. Lyapunov stability of linearized, time-periodic system

Theorem 1.  The origin of the system (8) is stable in the sense of Lyapunov 
for 0 < 𝛿 ≤ 1

2 (−1 +
√

5) =∶ 𝛿†. 

Proof.  We consider a quadratic Lyapunov candidate function, 𝑉 (𝜉(𝑡))
given by 

(𝜉(𝑡)) = 1
2
𝜉(𝑡)⊤𝑃𝜉(𝑡), 𝑃 =

[

1 1
1 𝜂

]

, 𝜂 > 1. (11)

The derivative of 𝑉  along the trajectories of the linear system (8) is 
given by 
𝑉̇ (𝜉(𝑡)) = −𝜉(𝑡)⊤𝑄(𝑡)𝜉(𝑡), (12)

where 𝑄(𝑡) ∶= − 1
2 (𝑃𝐴(𝑡) + 𝐴(𝑡)⊤𝑃 ) is

[

𝛿 cos2(𝑡) 𝛿
2 (sin(2𝑡) + 𝜂 cos2(𝑡))

𝛿
2 (sin(2𝑡) + 𝜂 cos2(𝑡)) 𝛿𝜂 sin(2𝑡) + (𝜂 − 1)

]

.

Note that 𝑄(𝑡) is positive semidefinite (a sufficient condition for 
Lyapunov stability) if both the trace and determinant are nonnegative. 
Starting with the trace and assuming 𝛿 > 0, we have: 
Tr(𝑄) = 𝛿 cos2(𝑡) + (𝜂 − 1) + 𝜂𝛿 sin(2𝑡)

≥ (𝜂 − 1) − 𝜂𝛿.
(13)

Thus if 𝛿 < (𝜂 − 1)∕𝜂 then Tr(𝑄) > 0. The determinant is given by

Det(𝑄) = − 1
4
𝛿 cos2(𝑡)(4(1 − 𝜂)

+ 𝜂2𝛿 cos2(𝑡) − 2𝜂𝛿 sin(2𝑡) + 4𝛿 sin2(𝑡)).

Since −(1∕4)𝛿 cos2(𝑡) is negative ∀𝑡 except where it vanishes at 𝑘𝜋, 
𝑘 ∈ Z, we focus on ensuring that the expression within the parentheses 
is also negative. If we assume 𝛿 < 4(𝜂 − 1)∕(𝜂2 + 4) then we have
4(1 − 𝜂) + 𝜂2𝛿 cos2(𝑡) − 2𝜂𝛿 sin(2𝑡) + 4𝛿 sin2(𝑡)

= 4(1 − 𝜂) + 𝛿(𝜂 cos(𝑡) − 2 sin(𝑡))2

< −4(𝜂 − 1) + 𝛿(𝜂2 + 4)

< 0.

The fact that (𝜂 cos(𝑡) − 2 sin(𝑡))2 < (𝜂2 + 4) can be shown by direct 
calculation. This ensures Det(𝑄) ≥ 0 (only vanishing at 𝑡 = 𝑘𝜋, 𝑘 ∈ Z). 
Ensuring that 𝛿 < 4(𝜂−1)∕(𝜂2+4) also satisfies the trace condition (13), 
namely 𝛿 < (𝜂−1)∕𝜂. Note that max𝜂>1 4(𝜂−1)∕(𝜂2+4) =

1
2 (−1+

√

5) = 𝛿†

occurs at 𝜂† = 1+
√

5. Thus, choosing 𝜂 = 𝜂† in our candidate Lyapunov 
function, then if 0 < 𝛿 ≤ 𝛿†, the 𝑄 matrix is positive definite ∀𝑡 except 
where it becomes semi-definite at one instant per period. Hence 𝑉̇ ≤ 0
and the proof is complete.  ■
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Remark 5.1. The proof for Theorem  1 implies whenever 𝜉 ≠ 0 then 
the Lyapunov function is strictly decreasing, i.e., 𝑉̇ < 0, except at one 
instant per period where 𝑉̇ = 0. This will be useful in the following 
corollary.

Corollary 5.2.  The origin of (8) is asymptotically stable for 𝛿 ≤ 𝛿†.

Proof.  Consider the Lyapunov function from (11) with 𝜂 = 𝜂†. For 
𝛿 ≤ 𝛿†, 𝑉̇ ≤ 0 hence 𝑉  is a non-increasing function of time. Since 𝑉
is also lower bounded by 0, lim𝑡→∞ 𝑉 (𝑡) = 𝑉∞ ≥ 0. Consequently, since 
𝑉  is a positive definite, nonincreasing function of in 𝜉, 𝜉(𝑡) is bounded 
∀𝑡 ≥ 0.

Note that 𝑉 (𝜉(𝑡)) = 𝜉(𝑡)⊤𝑅(𝑡)𝜉(𝑡) with 𝑅(𝑡) ∶= −(𝑄(𝑡)𝐴(𝑡) + 𝐴(𝑡)⊤𝑄(𝑡))
is bounded since 𝜉(𝑡) is bounded and, by a straightforward calculation, 
all the terms in 𝑅(𝑡) are bounded, confirming that 𝑉̇  is uniformly 
continuous in time. Hence by Barbalat’s lemma, lim𝑡→∞ 𝑉̇ = 0.

To argue that lim𝑡→∞ 𝜉(𝑡) = 0, we adopt a pointwise approach. Note 
that for a continuous function 𝑓 (𝑡), lim𝑡→∞ 𝑓 (𝑡) = 0 ⟺ lim𝑘→∞ 𝑓 (𝑡0 +
𝑘𝜋) = 0 ∀𝑡0 ∈ (0, 𝜋). Also, note that since 𝑄(𝑡) is periodic and positive 
definite ∀𝑡 except at 𝑡 = 𝑛𝜋, 𝑛 ∈ Z, it follows that
lim
𝑘→∞

𝜉(𝑡0 + 𝑘𝜋)⊤𝑄(𝑡0)𝜉(𝑡0 + 𝑘𝜋) = lim
𝑘→∞

𝑉̇ (𝑡0 + 𝑘𝜋) = 0

for all 𝑡0 ∈ (0, 𝜋). Since for each 𝑡0 ∈ (0, 𝜋) each fixed matrix 𝑄(𝑡0) > 0, 
we have that lim𝑘→∞ 𝜉(𝑡0 + 𝑘𝜋) = 0 for all 𝑡0 ∈ (0, 𝜋). Since (8) is linear, 
solutions are continuous and thus the same is true for 𝑡0 = 0, 𝜋. In other 
words, 𝜉(𝑡) → 0 as 𝑡 → ∞, which completes the proof.  ■

Remark 5.3. Exponential stability. Since (8) is a continuous, linear, 
time-periodic system, its asymptotic stability implies the asymptotic 
stability of the corresponding time-invariant discrete-time map (i.e., 
the monodromy matrix). For a linear, time-invariant discrete-time sys-
tem to be asymptotically stable, its eigenvalues (𝜆𝑖) must lie strictly 
within the unit circle, and, therefore, the discrete-time system is also 
exponentially stable. The eigenvalues of the monodromy matrix are 
also called the Floquet multipliers of the system (Guckenheimer & 
Holmes, 2013). Thus, the corresponding Floquet exponents ln(𝜆𝑖) of the 
continuous-time system will lie in the open left-half plane, implying 
that the continuous-time system is also exponentially stable. We will 
numerically compute the Floquet multipliers for (8) in the next section. 

The Lyapunov stability analysis above has a few limitations. First, 
it is only local. Second, it leads to a somewhat conservative bound 
on 𝛿. Third, it does not address the convergence rate. Thus, we now 
turn toward numerical methods to examine local performance and 
characterize nonlinear stability.

6. Numerical stability analysis of active sensing controller

6.1. Linear stability analysis as a function of 𝛿

Suppose 𝛷(𝑡) is the corresponding fundamental matrix of the system 
(8), constructed from the two linearly independent solution vectors 
[

𝑥11(𝑡) 𝑧12(𝑡)
]⊤ and [𝑥21(𝑡) 𝑧22(𝑡)

]⊤ satisfying the initial conditions:
[

𝑥11(0)
𝑧12(0)

]

=
[

1
0

]

,
[

𝑥21(0)
𝑧22(0)

]

=
[

0
1

]

.

Since 𝐴(𝑡) is of 𝜋-periodic, the monodromy matrix, 𝑀 , is given by the 
evaluation of the fundamental solution matrix, 𝛷(𝑡) at time 𝑡 = 𝜋:

𝑀 = 𝛷(𝜋) =
[

𝑥11(𝜋) 𝑥21(𝜋)
𝑧12(𝜋) 𝑧22(𝜋)

]

.

The Wronskian, 𝑊 (𝑡) ∶= det𝛷(𝑡) satisfies 𝑊̇ = tr(𝐴(𝑡))𝑊  with 𝑊 (0) =
1. Hence integrating over (0, 𝜋), we obtain det(𝑀) = 𝑊 (𝜋) = 𝑒−𝜋 as 
follows:

𝜋 𝑑𝑊 = ln
𝑊 (𝜋)

=
𝜋
(−1 − 𝛿 sin(2𝑡))𝑑𝑡 = −𝜋
∫0 𝑊 𝑊 (0) ∫0

4 
Using Floquet theory (Guckenheimer & Holmes, 2013), the stability of 
the system (8) is determined by the eigenvalues of 𝑀 , 𝜆 = (tr(𝑀) ±
√

(tr(𝑀)2 − 4𝑒−𝜋 ))∕2 where the instability results if either eigenvalue 
has a modulus greater than one (gray regions in Fig.  4). Since the 
closed-form solution of the eigenvalues was difficult to obtain, we 
turned to numerical simulation. We determined the stability range for 
𝛿 ≤ 𝛿∗(≈ 3.2) and verified that the product of the eigenvalues is indeed 
𝑒−𝜋 for all 𝛿.

Remark 6.1. Note that the maximum value of 𝛿 ensuring stability based 
on the Floquet analysis is 𝛿∗ ≈ 3.2, which is considerably higher than 
the bound we obtained through the Lyapunov analysis in the previous 
section (𝛿† ≈ 0.618). This ‘‘daylight’’ between our analytical and 
numerical analyses arises from the conservative nature of the Lyapunov 
function approach. Instead of requiring that 𝑉̇ < 0 ∀𝑡 one must only 
ensure that over any period, 𝑉  decreases, namely 𝑉 (𝑡 + 𝜋) < 𝑉 (𝑡), ∀𝑡. 
We leave finding a tighter theoretical bound to future work, as the 
direct approach of explicitly integrating the flow of (8) appears to be 
nontrivial.

Remark 6.2. As noted in Remark  5.3, the system (8) is exponentially 
stable for sufficiently small 𝛿.  Our numerical simulations provide more 
insight into performance, e.g., allowing us to select the active sensing, 
𝑎, and feedback gain, 𝑘 to maximize the convergence rate by ensuring 
𝛿 ∈ [𝛿1, 𝛿2] (with eigenvalues closest to the origin); see Fig.  4. 

Linear analysis only provides insight into the local behavior around 
the limit cycle. To understand the global behavior of the nonlinear 
system (7), in the next section, we adopt a numerical approach to 
determine the domain of attraction (DoA), as in the general nonlinear 
case, the DoA does not admit an analytical representation. Additionally, 
techniques (Kang, Sun, & Xu, 2023; Vannelli & Vidyasagar, 1985) 
developed for autonomous systems are in general not trivial to extend 
to nonautonomous systems.

6.2. Numerical estimate of domain of attraction

In general, for a nonautonomous system, the convergence of state 
trajectories depends on both the initial conditions and the initial time. 

Definition 6.3.  Let 𝜉∗(𝑡) be the periodic solution and, 𝜑𝜉0 ,𝑡0 (𝑡) the 
solution of the nonautonomous, nonlinear system (7) with the initial 
condition 𝜉0(𝑡0). Given the system (7) is locally asymptotically stable 
with respect to 𝜉∗, the domain of attraction (DoA) (Sontag, 1998) of 𝜉∗
for a given initial time 𝑡0 is given by the set:
𝐷(𝑡0) ∶= {𝜉0 ∈ R2 ∣ lim

𝑡→∞
𝜑𝜉0 ,𝑡0 (𝑡) − 𝜉∗(𝑡) = 0}.

The set of initial conditions for which the system converges, irre-
spective of the initial time, is defined as follows. 

Definition 6.4.  The conservative domain of attraction for the system 
(7) is given by the set:
𝐷∗ = 𝐷(𝜉∗) ∶= ∩𝑡0∈[0,2𝜋]𝐷(𝜉∗, 𝑡0).

Note that the original nonlinear system (7) is 2𝜋-periodic, and re-
gardless of the initial time, 𝑡0 ∈ [0, 2𝜋], trajectories with initial states, 𝜉0
within 𝐷∗ (green region in Fig.  5) always converge to the periodic orbit 
𝜉∗(𝑡). Trajectories with initial states in the set {R2⧵∪𝑡0∈[0,2𝜋]𝐷(𝜉∗, 𝑡0)} al-
ways diverge, whereas the convergence or divergence of the trajectories 
originating from the set {∪𝑡0∈[0,2𝜋]𝐷(𝜉∗, 𝑡0) ⧵𝐷∗} depends on 𝑡0.

7. Discussion

In this manuscript, we present a control strategy inspired by the 
active sensing movements observed in animals. While the  system’s 
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Fig. 4. Eigenvalues of the linearized system (8) for different values of 𝛿 = 𝑘𝑎2. (A) Modulus of the eigenvalues. The gray region represents the stable area, where the modulus of 
both eigenvalues is less than one. The gray solid line denotes the square root of the product of eigenvalues (exp(−𝜋∕2)), and the blue dotted line denotes the critical value 𝛿∗ ≈ 3.2, 
above which the system (8) becomes unstable. (B) The real (solid line) and imaginary part (dashed line) of the eigenvalues. The eigenvalues are real for low values of 𝛿, become 
complex conjugates between (𝛿1 , 𝛿2) = (0.54, 1.94), and return to being real for higher values of 𝛿. Since the eigenvalues are closest to the origin within the interval (𝛿1 , 𝛿2), this 
ensures the maximum convergence rate. (C) Evolution of the eigenvalues on the complex plane with an increase in 𝛿. At 𝛿 = 0, the eigenvalues are 1 and exp(−𝜋), respectively. 
As 𝛿 → ∞, one eigenvalue approaches zero, while the other tends to infinity, with their product remaining constant exp(−𝜋). The gray regions in (B, C) are the same as in (A), 
representing the stable area.
Fig. 5. Domain of attraction (DoA) for the nonlinear system (8) for 𝛿 = 1∕2 with 𝑘 =
1, 𝑎 = 1∕

√

2. (A) Trajectories originating from the same initial location (𝑥0 , 𝑧0) = (2.5, 2.5)
(gray marker) behave differently. The trajectory initiated at 𝑡 = 0 (green) converges 
whereas the one initiated at 𝑡 = 7𝜋∕8 (red) diverges from the periodic solution, 𝜉∗(𝑡)
(black dashed circle). (B) The green region is the conservative DoA, 𝐷∗, from within 
which all initial conditions converge to the periodic solution irrespective of the 𝑡0. The 
red region denotes the set of all initial conditions that diverge irrespective of 𝑡0. The 
convergence (or not) of trajectories whose initial conditions lie within the gray region 
depends on the initial time, as illustrated in (A).

structure is motivated by the locomotion dynamics of weakly electric 
fish, the framework can be adapted to model the behaviors of other 
animals with translationally invariant plant dynamics and appropri-
ately modeled output measurements.  Our approach extends beyond 
the realm of biology to a broader class of control problems dealing 
with a lack of observability under linearized system dynamics. For 
example, Brivadis, Gauthier, Sacchelli, and Serres (2021) addressed 
5 
challenges related to the lack of observability at a target point (origin) 
arising from an output nonlinearity. In their system, observability was 
possible except at the origin, and the system matrix, 𝐴, was assumed 
to be invertible. In contrast, our system is linearly unobservable along 
the entire 𝑥-axis, and no restriction of invertibility on 𝐴 was imposed 
(in fact, 𝐴 is not invertible). Instead of stabilizing to the origin (which 
we proved is impossible using output feedback for our system), we 
designed the input to play a dual role—ensuring both observability 
and output stabilizability to a periodic orbit around the origin. With 
suitable parameter tuning, the periodic orbit can be made arbitrarily 
small (albeit with a reduced convergence rate), effectively ensuring that 
the trajectories remain within an arbitrarily close neighborhood of the 
origin. 

In conventional control engineering, the design of output feedback 
controllers often relies on the separation principle, which allows for 
the independent design of observers (based on sensor inputs) and 
controllers (assuming full-state measurements). However, this principle 
often does not apply to general nonlinear systems. Our approach offers 
an alternative to this method. Conceptually, ‘‘active sensing’’ is the 
opposite approach to applying a separation principle: control inputs 
are specifically designed to excite sensors, effectively enhancing the 
information gleaned from sensors and thereby improving feedback 
control. 

For observable nonlinear systems, it is well-known that generic 
feed-forward (open-loop) inputs are sufficient to guarantee observ-
ability (Sontag & Wang, 2007). In that vein, we address the lack of 
observability in our system (1) using a continuous open-loop active 
sensing input coupled with an output feedback term for stability. This 
choice reflects how animals engage in continuous active sensing. How-
ever, depending on sensory salience, animals often opt to perform these 
sensing movements intermittently rather than continuously (Biswas 
et al., 2023). Moreover, we did not impose any constraint on the energy 
budget, but animals likely tailor their movements for economy. Thus, 
in future work, we aim to explore both theoretical and practical aspects 
of optimal robust strategies for intermittent sensing that balance energy 
efficiency with sensory needs, taking into account uncertainty in sensor 
measurements. 
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Although recent works (Cellini, Boyacıoğlu, Stupski, & van Breugel, 
2024; Cellini, Boyacioğlu, & Van Breugel, 2023; Davis & Mongeau, 
2023), including our own (Biswas et al., 2023), have proposed effective 
computational heuristics for active sensing behaviors, the present study 
establishes a more theoretically grounded approach to integrated con-
trol and sensing. With the emergence of event cameras as alternative 
vision sensors (Chakravarthi, Verma, Daniilidis, Fermuller, & Yang, 
2024) and the growing adoption of distributed sensing systems (Wood, 
Araujo-Estrada, Richardson, & Windsor, 2019), there has been an in-
creasing interest in understanding the interplay between sensing and 
control in robotic applications. For example, motivated largely by 
insights from blowfly flight physics and visual physiology, researchers 
have explored the benefits of matching distributed, adaptive sens-
ing characteristics to actuation and dynamics using observability and 
controllability Gramians (Turin, Taylor, Krapp, Jensen, & Humbert, 
2025). Another recent study (Beuken, Shin, Bergbreiter, & Humbert, 
2024) demonstrated that distributed strain sensing on small unmanned 
aircraft systems (sUAS) can potentially decode vertical acceleration 
with the added advantage of reduced signal-to-noise ratio. Although 
both of these studies have made important contributions to understand-
ing and implementing intelligent distributed sensor designs that can 
better serve control purposes, our goal here was to take the next step, 
considering how the control policy should adapt to the codependent 
relationship between control and sensing. As an immediate next step, 
we plan to generalize our theoretical framework to higher-order sys-
tems. To validate the practical utility of our approach, we will evaluate 
the station-keeping performance of small aerial robots using event-
based cameras (Gehrig & Scaramuzza, 2024) as measurement sensors, 
leveraging their high temporal resolution, high dynamic range, and low 
latency for improved state estimation and feedback control—but at the 
cost of requiring active sensing since such cameras ‘‘perceptually fade’’ 
like the sensors we modeled in this paper. 
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