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Abstract

Physiological adaptation is a fundamental property of biological systems across all levels of or-
ganization, ensuring survival and proper function. Adaptation is typically formulated as an asymp-
totic property of the dose response (DR), defined as the level of a response variable with respect to
an input parameter. In pharmacology, the input could be a drug concentration; in immunology, it
might correspond to an antigen level. In contrast to the DR, this paper develops the concept of a
transient, finite-time, cumulative dose response (cDR), which is obtained by integrating the response
variable over a fixed time interval and viewing that integral–area under the curve–as a function of
the input parameter. This study is motivated by experimental observations of cytokine accumulation
under T cell stimulation, which exhibit a non-monotonic cDR. It is known from the systems biology
literature that only two types of network motifs, incoherent feedforward loops and negative integral
feedback mechanisms, can generate adaptation. Three paradigmatic such motifs–two types of inco-
herent loops and one integral feedback–have been the focus of much study. Surprisingly, it is shown
here that these two incoherent feedforward loop motifs–despite their capacity for non-monotonic
DR–always yield a monotonic cDR, and are therefore inconsistent with these experimental data. On
the other hand, this work reveals that the integral feedback motif is indeed capable of producing a
non-monotonic cDR, and is thus consistent with these data.

Keywords: dose response, perfect adaptation, AUC, systems biology, incoherent feedforward loops,
integral feedback, immunology, T cells

1 Introduction

The capability to adapt and to formulate appropriate responses to environmental cues is a key factor for
the survival of life, at every level from individual cells, to organisms, to societies [1, 2, 3, 4]. A delicate
balance is needed in this process: organisms maintain tightly regulated levels of vital quantities, even in
the face of variations to be counteracted upon, a property sometimes called homeostasis or adaptation,
all the while being able to detect and react to changes in the environment. Underlying adaptation at the
cellular level are dynamical signal transduction and gene regulatory networks that measure and process
external and internal chemical, mechanical, and physical conditions (ligand, nutrient, oxygen concentra-
tions, pressure, light, temperature) eventually leading to changes in metabolism, gene expression, cell
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division, motility, and other characteristics. These mechanisms enable organisms to display transient
responses that gradually return to a baseline activity level when presented with relatively constant input
stimulation, a phenomenon usually called “perfect” or “exact” adaptation [5].

1.1 Dose response and cumulative dose response

In this paper, we continue the study of adaptation mechanisms, with an emphasis on monotonicity
properties of an output or reporter variable as a function of an input. We are concerned with ordinary
differential equation systems that model the interactions of several species, and where there is an “input”
(which might represent the dose of a drug or of a genetic inducer), whose level is quantified by the
variable u, and an “output” that is time dependent, and whose magnitude at time t is represented by
y(t). The input u will be assumed to be constant, and we write yu(t) to highlight the dependence of
the output on both the input and time. Figure 1 shows three typical responses that one might observe
experimentally (in the figure, we write yi(t) instead of yui(t), in order to simplify notations).

Figure 1: Response functions y(t) plotted against time. As an illustration, three outputs y1(t), y2(t),
y3(t) are shown, corresponding to three inputs u1, u2, u3 respectively, and their values at a specified
time T are shown on the vertical axis. In an adaptive system, the values of all the yi(t)’s converge to
the same value ŷ when t → ∞. For each yi(t), solid curves are used for behaviors until the specified
time t = T , and dashed lines for the continuation to t = ∞. The area of the shaded region represents
the integral

∫ T
0 y1(t) dt.

The dependence on the initial state will not be indicated explicitly; the initial values of all the species
will be fixed at values to be discussed.

One defines (“perfect”) adaptation to constant inputs as the property that, no matter what is the actual
value of the input, the numerical value of yu(t) for large t is the same, that is, limt→∞ yu(t) = ŷ for
some fixed value ŷ which does not depend on the particular input u (see an illustration in Figure 1).
This value represents a habituated or no-response state, as one achieves when presented with a constant
background noise or level of light. In engineering terms, an adapting system is a “high pass filter”
that essentially acts on a derivative of the input. Adaptation, by definition, is an asymptotic property,
since it ignores finite-time behavior. On the other hand, transient behaviors, particularly how yu(T )
varies with u at a fixed time T , are often of interest. (What is be the concentration of a drug in a tumor
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microenvironment, after 1hr, as a function of the drug dose? What is the size of a tumor after 60 days
of the start of therapy, as function of the drug dose? What is the size of the pool of infected individuals
in an epidemic population model, as a function of transmission parameters?)

We will call yu(T ), viewed as a function of u the dose response of the given system, and denote it as
DR(u, T ). One may perform experiments, exciting a system with different input values u, and measure
yu(T ) as the final output value, thus obtaining a plot of y(T ) versus u. The left panel of Figure 2 shows
several dose responses obtained from time-resolved data such as presented in Figure 1.

Figure 2: Left: Dose response (DR) at time T , obtained from time-resolved data as in Figure 1. Again,
the vertical axis represents the evaluation of responses y(t) at a specific time t = T , but now these
values are plotted against the respective input u, instead of against time. In this instance, DR is not
a monotonic function; for example, u1 < u2 but y1(T ) > y2(T ). Right: Cumulative dose response
(cDR) at time T ; now the vertical axis shows the integral (area under the curve) z(t) =

∫ T
0 y(t) dt of

the response, again plotted against the input u. For example, z1(t) is the area shaded in blue in Figure
1. This particular cDR is monotonic. For example, u1 < u2 < u3 and z1(T ) < z2(T ) < z3(t), because
in Figure 1 the area under the red curve y2(t) is larger than the area under the blue curve y1(t), even
though the final value y2(T ) is smaller than y1(T ).

If the turnover of y(t) is slow, the molecules or other objects represented by yu(t) may accumulate, for
instance, in a particular tissue or the bloodstream. It is often the case that one can only measure exper-
imentally, and that a phenotypical response only depends on, the accumulated value “or integral under
the curve” (AUC)

∫ T
0 yu(t)dt, which we call the cumulative dose response and denote by cDR(u, T ).

The right panel of Figure 2 shows several cumulative dose responses obtained from simulation data as in
Figure 1. Section 1.9 briefly reviews several areas of biology where cDR’s appear naturally. Specifically,
however, this paper was motivated by our previous research in immunology that measured cDR’s [6].
We discuss that motivation next.

1.2 Motivation for this work: T cell recognition

Adaptation is central to immunity. In particular, T cells must react to stimulation by pathogens and
cancers, yet limit their response in order to maintain self-tolerance and avoid autoimmune reactions. T
cell activation is triggered by the binding to T cell receptors (TCRs) to peptide major-histocompatibility
complex (pMHC) antigens. Activation results in the production of signaling molecules (cytokines)
which in turn may recruit other immune components.

The study in [6] examined the response of immune CD8+ T cells to external antigen inputs, demonstrat-
ing perfect adaptation across a wide range of antigen affinities. Specifically, in the experiments in [6]
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involved stimulating primary human CD8+ T cells (with the c58c61 TCR) with recombinant pMHC
antigen 9V immobilized on plates, which served as the input u at various constant concentrations. This
antigen is a cancer peptide routinely used in studies of T-cell binding and antigen discrimination. The
cumulative amount of cytokine TNF-α (the output y(t)) secreted into the culture medium was measured.
Figure 3 shows the cDR when one averages the results of three biological replicates. It shows the aver-
age cumulative TNF-α abundance (z(t) =

∫ t
0 y(s) ds) plotted against several constant concentrations u,

measured at various times (t = 1 to 8 hours). Note the non-monotonic, and even somewhat oscillatory,
behavior.

Figure 3: Cumulative dose response based on average of three experiments. Plot uses experimental data
from [6] (see also panel B of Figure 2 in that paper). Horizontal axis denotes concentrations of the input
(in units of ligand in ng/well).

The work in [6] thus raises the question of what network motifs are capable, at least for suitable param-
eters, to exhibit perfect adaptation as well as non-monotonic cDR as seen in these experiments. It was
speculated, on the basis of numerical exploration, that incoherent feedforward loops cannot result in
non-monotonic cDR and thus cannot explain T cell adaptation as measured by accumulated cytokines,
unless a thresholding mechanism is imposed.

Our main results in this paper confirm in a mathematically rigorous way that, indeed, the main two com-
mon types feedforward loops (called “IFFL1” and “IFFL2” below) can never exhibit such behaviors,
because their cDR’s are always monotonic. This is especially surprising for one of them (“IFFL1”) be-
cause for such systems the DR itself can be non-monotonic, yet the cDR is monotonic, as in the cartoon
illustrations in Figure 2. To see this with an example, consider the following system of two differential
equations, which is a particular example of the general equations (5)-(6) discussed later,

ẋ = −x+ u (1)

ẏ = −10xy + u . (2)

This is an adapting system: for any given constant input u > 0, the steady states are x̄ = u and
ȳ = 1/10, which is independent of u, so that the steady state output ŷ = 1/10 is independent of u.
Figure 4 shows plots of the DR (non-monotonic) and the cDR (monotonic).

We complement the result for feedforward loops with the new finding that, on the other hand, the
standard nonlinear integral feedback for adaptation (“IFB” below) is indeed capable of showing non-
monotonic cDR, and thus is potentially a mechanism that is consistent with the experimentally observed
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Figure 4: Plots of DR (y(t)) and cDR (
∫ T
0 y(t)dt) for the example in Equations (1-2). The initial

conditions are x(0) = 0, y(0) = 1/10, and the time horizon is T = 1.5. Using logarithmic scale on
inputs, for comparison with experimental plots. Observe that the DR is non-monotonic, yet, surprisingly,
the cDR is monotonic. Our main theorem proves monotonicity of the cDR in general, for all IFFL1 and
IFFL2 systems.

non-monotonic cDR. To see this with an example, consider the following system of two differential
equations, which is a particular example of the general equations (9)-(10) discussed later,

ẋ = x(y − 6) (3)

ẏ =
u

x
− y (4)

This is also an adapting system: for any given constant input u > 0, the steady states are x̄ = u/6
and ȳ = 6, so that the steady state output ŷ = 6 is independent of u. Figure 5 shows plots of the
(non-monotonic) cDR.

Figure 5: Plot of cDR (
∫ T
0 y(t)dt) for the integral feedback example in Equations (3-4). The initial

conditions are x(0) = 0.1, y(0) = 6, and time horizons shown are T = 3, 4, 5, 6. Observe that, just
as with the experimental data plotted in Figure 3, the cDR is more monotonic (on the shown ranges, at
least) for smaller time horizons T . Using logarithmic scale on inputs, for comparison with experimental
plots.
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Back to the experimental data, one may ask whether the T cell experiments point to adaptation, that is, if
yu(t) is independent of u for large t. Since only z(t) =

∫ t
0 y(s) ds is experimentally available, we need

to estimate the output y(t) by taking time-derivatives of z(t). To obtain a more meaningful estimate
than would be obtained from the averages shown in Figure 3, we consider instead the separate plots of
z(t) from each experiment. The top panel in Figure 6 shows again the cumulative dose responses for
various times (t = 1 to 8 hours), but now with separate plots from each experiment, starting from the
data that was used to generate Figure 1 in the SI of [6].

Figure 6: Top: cDR plots of individual experiments, and measured at different times. Bottom: Adapta-
tion behavior in individual experiments. Output y(t) is estimated from individual cumulative z(t) plots
in respective top panels.

Using first-order differences, and imposing a zero value at the start of the experiment: y(0) = 0, we
then derived estimates of y(t) for the various input values and the three experimental replicates shown
in Figure 6. See the bottom panel of Figure 6. These estimates are very rough, because the time steps
are large (1 hour), and in any event experimental data is subject to noise. Nonetheless, this data strongly
suggests that adaptation, in the sense that the output y(t) approaches as time increases a value (in this
case y = 0) which is the same no matter what the input (drug dose). The estimated negative values of
y(t) at certain time points are likely due to numerical errors or to the fact that there is some cytokine
present in the experimental wells which does not arise from the stimulation, so that the values shown
are relative to this baseline. In addition to adaptation, the data strongly suggests that the system, or at
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least its integrated output, is scale-invariant (performs “fold change detection”) in the sense of [7, 8], at
last for large enough input values: the transient outputs are roughly the same (for inputs 3-8), which is
a property of systems IFFL2 and the integral feedback system as discussed below.

1.3 Review: network motifs for adaptation

As discussed, (“perfect”) adaptation to constant inputs means that, no matter the value of an input,
the value of yu(t) for large t will be the same. Generally speaking, adaptation requires one of two
mechanisms for adaptation: incoherent feedforward or negative feedback [9, 10, 11].

Incoherent feedforward loops (IFFL) are a type of network motifs that are capable of adaptation [12, 13].
In an IFFL, the input u induces formation of the reporter y but also acts as a delayed inhibitor, through
one or more intermediary control variables. Feedforward motifs are statistically overrepresented in bio-
logical systems from bacterial to mammcoian cells [14, 15]. IFFL’s have been argued to underlie mech-
anisms involved in such varied contexts as microRNA-mediated loops [16], MAPK pathways [17, 18],
insulin release [19, 20], intracellular calcium release [21, 22], Dictyostelium and neutrophil chemo-
taxis [23, 24], NF-κB activation [25], and microRNA regulation [26], as well as metabolic regulation of
bacterial carbohydrate uptake and other substrates [27, 28]. IFFL’s may also play a role in immunology,
enabling the recognition of dynamic changes in antigen presentation [29], and have been employed in
synthetic biology in order to control protein expression under DNA copy variability [30, 31]. The pa-
per [32] provided a large number of additional references, and carried out a computational exploration
of IFFLs that lead to non-monotonic dose responses and/or adaptation.

In integral feedback loops (IFB), the intermediate variable or variables provide a type of memory that
integrates the “error” between y(t) and a steady-state value y0. IFB’s arise in biological systems ranging
from E. coli chemotaxis [33] and regulation of tryptophan [34] to human physiological control such as
blood calcium homeostasis [35] or neuronal control of the prefrontal cortex [36] to synthetic circuits for
adaptation [37, 38, 39]. We remark that integral feedback is in a sense universal for adaptation, because
nonlinear changes of coordinates can recast IFFLs that adapt into integral feedback form [40], but these
coordinate changes may have no physical interpretation and hence lack interpretability. Moreover, IFBs
are known to provide extra degrees of robustness to the adaptation property because, unlike the IFFL, the
underlying mechanism can sense and correct for perturbations to the output variable y(t). This theme is
explored in greater detail in recent papers, where it is shown that IFBs arise naturally when one considers
adapting circuits that exhibit a maximal form of robustness [41] or robustness that is independent of the
reaction kinetics [42]. The results in these papers apply to arbitrarily-sized networks, and they explicitly
identify the network species that create the integral feedback required for adaptation.

Three paradigmatic circuits with two variables, two types of incoherent loops and one type of integral
feedback, have been much studied, in particular in the context of the “fold change” or “scale invariance”
property in biology [43, 7, 8], and these systems, discussed next, are the focus of our study. (Observe
that nonlinearity is essential for non-monotonic cDR’s to be possible, since for linear systems, such as
the IFFL ẋ = −x+ u, ẏ = x− u− y or the integral feedback ẋ = y, ẏ = −x− y + u, dose responses
and cumulative dose responses will be linear in u.) Although the concepts introduced here are broadly
applicable, we focus our work in these three motifs, but we expect that our results will encourage further
work in the direction of characterizing cDR properties for more complex systems.
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1.4 Three paradigmatic examples of adapting systems

In this paper, we will consider three types of two-species systems, shown schematically in Figure 7.
These are the systems studied in [7, 8]. In all these examples, u refers to a positive constant input,
x is the concentration of a “controller” species, and the output variable y is the concentration of the
“regulated” or output species.

(a) IFFL1 (b) IFFL2 (c) (d) IFB
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ẏ = βu− γxy
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ẋ = x(αy − δ)

ẏ = β
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Figure 7: Three examples of systems: (a) is an IFFL with degradation enhancement, (b) is an IFFL
with production inhibition, and (d) is an integral feedback system. The input u is assumed to be a
positive constant, and x, y are abundances of a quantity of interest such as concentration of a protein
or mRNA. Arrows “→” indicate positive effect (activation) and blunt edges “⊣” denote negative effects
(inhibition). Both (a) and (b) have the same qualitative relation, schematically represented by diagram in
(c), between activation of x and y by the input u, and inhibition of y by x, but their dynamical properties
are very different. Dynamics can be described by pairs of differential equations for the abundances x(t)
and y(t) as a function of time, as shown below the diagrams. State variables x(t) and y(t) are taken to
be nonnegative. When K = 0, it is assumed that x(t) > 0 for all t. In these equations, α, β, γ, δ, and
K are all positive constants.

1.5 Steady states and perfect adaptation

Let us compute the steady states, obtained by setting the right-hand sides of the differential equations to
zero, for the systems shown in Figure 7. For the IFFL1 system (a) we have:

x̄ =
α

δ
u , ȳ =

β

γx̄
u =

β

γ

δ

αu
u =

βδ

γα
.

For the IFFL2 system (b) we have:

x̄ =
α

δ
u , ȳ =

β

γ(K + x̄)
u =

β

γ

δ

(δK + αu)
u =

βδ

γα
when K = 0 .

Finally, for the IFB system (c) we have that there are two types of steady states:

(x̄, ȳ) =

(
0,

βu

γK

)
and, for nonzero x̄ and assuming K < βδ

γαu (for example, if K = 0):

(x̄, ȳ) =

(
βα

δγ
u−K,

δ

α

)
In all three cases, if K = 0, the system is perfectly adapting.
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1.6 Scale-invariance

In addition, when K = 0 both systems IFFL2 and IFB have the scale-invariance (or “fold-change
detection”, FCD) property [7, 8]. This means that the output variable y(t) satisfies the same differential
equation, independently of rescalings of the input u by any constant factor p, as shown by the following
simple calculation:

ẋ = αu− δx

ẏ = β
u

x
− γy

⇒ ˙(px) = α(pu)− δ(px)

ẏ = β
/pu
/px

− γy

ẋ = αxy − δx

ẏ = β
u

x
− γy

⇒ ˙(px) = α(px)y − δ(px)

ẏ = β
/pu
/px

− γy

System IFFL1, in contrast, admits no such symmetries.

1.7 Stability

For both systems IFFL1 (a) and IFFL2 (b) in Figure 7, the respective steady states (x̄, ȳ) are globally
asymptotically stable with respect to initial conditions in the positive quadrant x > 0, y > 0. This is
very simple to show. The variable x(t) is the solution of a one-dimensional stable linear system, hence
converges exponentially to α

δ u. The variable y is the solution of a time-dependent linear system, with
a constant negative rate −γ for IFFL2, and a rate for IFFL1 which converges to the strictly negative
number −αγ

δ u, and hence also exponentially converges to its steady state value. (See [13] for details, as
well as similar results for other IFFL configurations.)

The proof of stability for the feedback system IFB (d) in Figure 7 requires more work. We proceed by
extending the proof from [8], which covered only the case K = 0. We will assume that K < βδ

γαu, which
holds in particular if K = 0. We want to global asymptotic stability with respect to initial conditions
with x(0) positive and y(0) non-negative (or even arbitrary), when u is a positive constant, for the
two-dimensional system IFB evolving on R>0 × R with equations ẋ = x(αy − δ), ẏ = β u

K+x − γy.

It is convenient to change coordinates x̃ := lnx and ỹ = αy − δ, so that we reduce to the study of the
system in R2 with equations (dropping tildes):

ẋ = y

ẏ =
αβu

K + ex
− γ(y + δ)

and we wish to prove the global asymptotic stability of the unique steady state

x̄ = ln

(
αβu

γδ
−K

)
, ȳ = 0 .

Introducing c := γδ = αβu
K+ex̄ , f(x) = − αβu

K+ex + c, and k(y) = γ(y + δ) − c = γy, we can write our
system as

ẋ = y

ẏ = −f(x)− k(y)

with f(x̄) = 0 and k(ȳ) = 0. In other words, we have a mass-spring system ẍ + k(ẋ) + f(x) = 0
with nonlinear damping k(ẋ) and nonlinear spring constant f(x). This suggests the use of energy as a
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Lyapunov function. The map f is strictly increasing, positive for x > x̄ and negative otherwise, and
similarly for k with respect to ȳ = 0. Let us define

V (x, y) :=

∫ x

x̄
f(r) dr +

y2

2
.

By definition, V (x̄, 0) = 0 and V (x, y) > 0 for all (x, y) ̸= (x̄, 0). We also have that ∂2V
∂2x

= f ′(x) > 0,
and ∂2V

∂2y
= 1 > 0, (and mixed partial derivatives are zero), V is a strictly convex, and thus a proper (also

called radially unbounded or coercive) function, thus a Lyapunov function candidate. The derivative of
V along trajectories is

f(x) y + y [−f(x)− k(y)] = γy2 ≤ 0

for all (x, y), and if this derivative only vanishes identically along a trajectory, then y(t) ≡ 0, which
in turn implies, when substituted into 0 = ẏ = −f(x) − 0 that f(x(t)) ≡ 0, i.e. that x(t) ≡ x̄. The
LaSalle Invariance Principle (see e.g. [44]) then allows us to conclude global asymptotic stability.

1.8 Outline of paper

Denoting the input-dependent dynamics as (xu(t), yu(t)) for t ≥ 0, we define the dose response (DR)
and the cumulative dose response (cDR) at time T as

DR(u, T ) = yu(T ) and cDR(u, T ) =
∫ T

0
yu(t)dt.

In each example, our aim is to determine whether the mapping u 7→ cDR(u, T ) is monotonically in-
creasing. If this monotonicity does not hold universally, we seek to identify sufficient conditions under
which it does. It is straightforward to note that if the map u 7→ DR(u, T ) is monotonically increasing,
then the same holds for the map u 7→ cDR(u, T ). Observe that if the system is linear, both DR(u, T )
and cDR(u, T ) will be linear (and therefore monotonic) functions of u. Hence, non-monotonicity is
exclusively a property of nonlinear systems.

Let us review the specific examples that we consider. The first is the IFFL1 system shown in Figure 7(a)
with equations given by

ẋ = αu− δx (5)

ẏ = βu− γxy, (6)

with initial state x(0) = x0 and y(0) = βδ
αγ . The initial state for x is arbitrary nonnegative, while the

initial state for y is its steady-state value which is independent of u > 0.

The second example is the IFFL2 system (see Figure 7(b)) given by

ẋ = αu− δx (7)

ẏ = β
u

K + x
− γy (8)

where the initial states xu(0) = x0 > 0 and yu(0) = y0 > 0 are arbitrary.

As the final example we have the IFB system (see Figure 7(c)) given by

ẋ = x(αy − δ) (9)

ẏ = β
u

K + x
− γy (10)
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with initial states x(0) = x0 > 0 (arbitrary) and y(0) = δ
α , which is the steady-state for y which is

independent of u.

We remark that for all of these examples, u 7→ DR(u, T ) (and therefore also u 7→ cDR(u, T )) is mono-
tonically increasing for small T . This is because ∂uẏu(0) = β for IFFL1, and ∂uẏu(0) = β/(K + x0)
for IFFL2 and IFB. From yu(t) = y0 + ẏu(0)t + o(t), it follows that ∂uyu(T ) ≈ βT and ∂uyu(T ) ≈
(βT )/(K + x0) respectively, and both are positive. The situation is far less trivial for larger times T .

The rest of this paper is organized as follows. In the rest of this introduction, we review some other areas
of application of cDR’s. In Section 2 we prove that for IFFL1, even though the map u 7→ DR(u, T )
may not be monotonic, the map u 7→ cDR(u, T ) is always monotonically increasing, irrespective of
the values of T , x0, δ and γ. In Section 3 we show that the situation is much simpler for IFFL2, in
the sense that both DR(u, T ) and cDR(u, T ) are monotonically increasing functions of u, regardless of
the choice of T , initial states and the model parameters. Lastly, in Section 4 we show that for the IFB
system the map u 7→ cDR(u, T ) is not monotonic in general and find a sufficient condition under which
monotonicity holds.

1.9 Further motivations for the study of cDR’s

In pharmacology and biomedical research, measuring the cumulative amount or “area under the curve”
(AUC) of the concentration or abundance of a substance (such as an antibody, cytokine, hormone, or
metabolite) secreted over a time period, which we termed the cDR, is essential for understanding drug
efficacy, toxicity, and biological responses. To illustrate the potential wide interest of cDR theory, we
briefly discuss here a few examples of such measurements.

Cytokine release assays are laboratory techniques that typically measure the cumulative secretion of
cytokines, which are small signaling proteins produced by immune cells in response to stimuli such as
drugs, pathogens, or immune activators. Cytokines regulate immune and inflammatory responses as well
as cell growth, differentiation, survival, and tissue repair. Examples are pro-inflammatory (IL-6, IL-1β,
TNF-α, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, and growth factors (GM-CSF, VEGF).
Typical techniques used for measuring cumulative release of cytokines are ELISA (enzyme-linked im-
munosorbent assay) and multiplex immunoassays such as Luminex®. For example, [45] describes means
of measuring proinflammatory cytokines in the central nervous system as a way to monitor neuroinflam-
matory responses to trauma, infection, and neurodegenerative diseases. That paper describes an in vivo
immunosensing device in which an optical fiber is implanted for a period in the brain of a rodent to
capture (by binding to a specific antibody) the cumulative release of a specific cytokine within a region
of interest; ELISA is then conducted, in order to determine the cumulative amount of cytokine bound
to the fiber. As another example, one of the most common adverse events associated with T-cell bispe-
cific antibody therapies (which are themselves an interesting subject for mathematical modeling [46]) is
cytokine release syndrome (CRS), whose symptoms include fever, hypotension, respiratory deficiency,
and possible multi-organ failure. The paper [47] highlighted the use of Luminex® and AUC plots of
cytokine release in order to evaluate different therapeutic approaches to the mitigation of CRS.

The metabolic clearance of drugs is often assessed by measuring the cumulative amount of a metabolite
over time in biological fluids. Typically, after a drug or prodrug is administered, plasma concentrations
are measured as a function of time, and the area under the concentration-time curve is computed [48],
thus providing critical insights into drug metabolism, pharmacokinetics, and hepatic or renal clearance
mechanisms, hence helping to understand drug efficacy and safety. The paper [49] provided a systematic
evaluation of cumulative drug excretion in clinical pharmacokinetics, emphasizing its role in dosing
regimens and safety evaluations. It described various measures of drug accumulation, including the
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AUC on a graph plotting plasma concentration against time.

As one last example, consider the routine A1c blood test (also known as glycated hemoglobin or HbA1c
test), which is key to diabetes diagnosis and management. A1c measures average blood glucose levels
over a period of about 2-3 months before testing, and one could therefore think of it as being propor-
tional to the integral of glucose concentration over that period. The integration effect, compared to
measuring of short-term fluctuations in blood glucose, is due to the long lifespan of red blood cells,
whose hemoglobin binds glucose to form HbA1c.

2 Unconditional monotonicity of the cDR for IFFL1

We shall prove the monotonicity of the map u 7→ cDR(u, T ) in multiple steps. As the first step, we
simplify the system (5)-(6) in Section 2.1 to obtain a parameter-free form that is more amenable to
analysis. In Section 2.2, we then derive explicit expressions for the cDR and its partial derivative with
respect to u. This partial derivative is given by an integral expression, and in Section 2.3, we establish a
couple of properties of the integrand and the asymptotic value of the integral expression. These results
enable us to prove the monotonicity of the cDR in Section 2.3 by demonstrating that its partial derivative
with respect to the input u is always nonnegative.

2.1 Simplifying the system

Let (xu(t), yu(t)) be the solution of (5)-(6) for t ≥ 0. We scale time by δ−1 and the state values by a
suitable ratio to define

x̂(t) =
γ

δ
x(δ−1t) and ŷ(t) =

γ

δ

α

β
y(δ−1t).

Then the dynamics of this rescaled system are given by

˙̂x(t) =
γ

δ2
ẋ(δ−1t) =

γ

δ2
(
−δx(δ−1t) + αu

)
= −γ

δ
x(δ−1t) +

γ

δ2
αu

= −x̂(t) +
γ

δ2
αu

˙̂y(t) =
γ

δ2
α

β
ẏ(δ−1t) =

γ

δ2
α

β

(
−γx(δ−1t)y(δ−1t) + βu

)
= −γ2

δ2
x(δ−1t)

α

β
y(δ−1t) +

γ

δ2
αu

= −x̂(t)ŷ(t) +
γ

δ2
αu.

Therefore if we define
û =

γ

δ2
αu

then (x̂(t), ŷ(t)) satisfies the ODEs

˙̂x(t) = −x̂(t) + û

˙̂y(t) = −x̂(t)ŷ(t) + û.

with initial states x̂(0) = γ
δ x0 and ŷ(0) = 1. Let (x̂û(t), ŷû(t)) be the solution of this system. To prove

the result it suffices to show that the map

û 7→
∫ T

0
ŷû(t)dt

12



is monotonically increasing for any T > 0.

Henceforth we shall drop the hats for notational convenience and suppose that the dynamics is given by

ẋ(t) = −x(t) + u (11)

ẏ(t) = −x(t)y(t) + u (12)

with initial state x(0) = x0 (arbitrary) and y(0) = 1. Letting (xu(t), yu(t)) be the solution of this
system, we shall show that the cDR map

u 7→
∫ T

0
yu(t)dt

is monotonically increasing for any T > 0. In order to prove this we will prove that for any T and u∫ T

0
∂uyu(t)dt ≥ 0 (13)

where ∂u denotes the partial derivative with respect to u.

2.2 Derivation of explicit expressions

We now develop explicit expressions for xu(t), yu(t),
∫ T
0 yu(t)dt, and

∫ T
0 ∂uyu(t)dt. It is easy to see

that

xu(t) = x0e
−t + (1− e−t)u = u− (u− x0)e

−t, (14)

which also implies that

∂uxu(t) = 1− e−t. (15)

Note that ODE (12) can be written as

ẏu + xuyu = u.

Multiplying with the integrating factor e
∫ t
0 xu(s)ds on both sides we obtain

d

dt
e
∫ t
0 xu(s)dsyu(t) = ue

∫ t
0 xu(s)ds.

Integrating both sides and using yu(0) = 1 we get the usual variation of parameters formula:

yu(t) = e−
∫ t
0 xu(s)ds + u

∫ t

0
e−

∫ t
s xu(w)dwds.

From (11) we know that∫ t

s
xu(w)dw = u(t− s)− (xu(t)− xu(s)) = u(t− s)− (u− x0)e

−t(et−s − 1),

where the second relation follows from (14). Plugging this in the previous expression for yu(t) we get

yu(t) = e(u−x0)(1−e−t)−ut + u

∫ t

0
e(u−x0)e−t(et−s−1)−u(t−s)ds

= e(u−x0)(1−e−t)−ut + u

∫ t

0
e(u−x0)e−t(es−1)−usds, (16)

13



where to derive the last expression we have made a change of variable from (t− s) to s.

Note that by changing the order to integration in the second term in the r.h.s. below we obtain∫ T

0
yu(t)dt =

∫ T

0
e(u−x0)(1−e−t)−utdt+ u

∫ T

0

∫ t

0
e(u−x0)e−t(es−1)−usdsdt

=

∫ T

0
e(u−x0)(1−e−t)−utdt+ u

∫ T

0
e−us

(∫ T

s
e(u−x0)e−t(es−1)dt

)
ds.

Making the change of variable t 7→ (u− x0)e
−t(es − 1) we see that∫ T

s
e(u−x0)e−t(es−1)dt =

∫ (u−x0)(1−e−s)

(u−x0)(es−T−e−T )

et

t
dt

= Ei
(
(u− x0)(1− e−s)

)
− Ei

(
(u− x0)(e

s−T − e−T )
)

where Ei(t) is the special Exponential Integral function defined as

Ei(t) =
∫ t

−∞

ew

w
dw. (17)

Plugging this in we obtain∫ T

0
yu(t)dt =

∫ T

0
e(u−x0)(1−e−t)−utdt+ u

∫ T

0
e−usI(s, T )ds. (18)

where
I(s, T ) = Ei

(
(u− x0)(1− e−s)

)
− Ei

(
(u− x0)(e

s−T − e−T )
)
.

Observe that at s → T− we have I(s, T ) → I(T, T ) = 0 and we claim that as s → 0+, we have
I(s, T ) → T . To see this note that as s → 0+, both (1− e−s) and (es−T − e−T ) approach 0 and close
to 0 we have

Ei
(
(u− x0)(1− e−s)

)
− Ei

(
(u− x0)(e

s−T − e−T )
)

=

∫ (u−x0)(1−e−s)

(u−x0)(es−T−e−T )

et

t
dt

≈
∫ (u−x0)(1−e−s)

(u−x0)(es−T−e−T )

1

t
dt

= log((u− x0)(1− e−s))− log((u− x0)(e
s−T − e−T ))

= log

(
(u− x0)(1− e−s)

(u− x0)es−T (1− e−s)

)
= T − s

which is just T as s → 0+. By the definition of the Exponential Integral function (17)

d

ds
Ei(s) =

es

s

and hence by the chain rule

d

ds
Ei
(
(u− x0)(1− e−s)

)
=

e(u−x0)(1−e−s)

(u− x0)(1− e−s)
(u− x0)e

−s = e(u−x0)(1−e−s) e−s

1− e−s
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and

d

ds
Ei
(
(u− x0)(e

s−T − e−T )
)
=

e(u−x0)(es−T−e−T )

(u− x0)(es−T − e−T )
(u− x0)e

s−T

= e(u−x0)(es−T−e−T ) es−T

es−T − e−T

= e(u−x0)(es−T−e−T ) 1

1− e−s
.

Using these expressions we can write the derivative of I(s, T ) as

d

ds
I(s, T ) = d

ds
Ei
(
(u− x0)(1− e−s)

)
− d

ds
Ei
(
(u− x0)(e

s−T − e−T )
)

= e(u−x0)(1−e−s) e−s

1− e−s
− e(u−x0)(es−T−e−T ) 1

1− e−s
.

Therefore applying integration by parts to the second term in the r.h.s of (18) we get

u

∫ T

0
e−usI(s, T )ds = lim

s→0+
I(s, T )− lim

s→T−
I(s, T ) +

∫ T

0
e−us d

ds
I(s, T )ds

= T +

∫ T

0
e−us

(
e(u−x0)(1−e−s) e−s

1− e−s
− e(u−x0)(es−T−e−T ) 1

1− e−s

)
ds.

Upon substituting this term in the r.h.s. of (18) we obtain

∫ T

0
yu(t)dt =

∫ T

0
e(u−x0)(1−e−t)−utdt+ T

+

∫ T

0
e−us

(
e(u−x0)(1−e−s) e−s

1− e−s
− e(u−x0)(es−T−e−T ) 1

1− e−s

)
ds. (19)

Note that by rearranging and simplifying, (19) can be expressed as∫ T

0
yu(t)dt = T +

∫ T

0

e−us

1− e−s

(
e(u−x0)(1−e−s) − e(u−x0)(es−T−e−T )

)
ds. (20)

Differentiating (20) with respect to u we obtain∫ T

0
∂uyu(t)dt = −

∫ T

0
s

e−us

1− e−s

(
e(u−x0)(1−e−s) − e(u−x0)(es−T−e−T )

)
ds

+

∫ T

0
e−us

(
e(u−x0)(1−e−s) − e(u−x0)(es−T−e−T )es−T

)
ds

which can be rewritten as∫ T

0
∂uyu(t)dt =

∫ T

0
e−us

(
e(u−x0)(1−e−s)

(
1− s

1− e−s

)
+e(u−x0)(es−T−e−T )

(
s

1− e−s
− es−T

))
ds. (21)
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2.3 Two useful results

We now establish a couple of useful results that will help us in proving the monotonicity property of the
cDR.

Lemma 1. Fix any positive T and κ, and for s ∈ [0, T ] define functions

ρ(s) = (1− e−s)(1− es−T )

and

fκ(s) = e−κρ(s)

(
s

1− e−s
− es−T

)
−
(

s

1− e−s
− 1

)
. (22)

Then the function fκ(s) can cross the x-axis only once in the interval [0, T ].

Proof. Note that ρ(s) = (1− e−s)(1− es−T ) = 1 + e−T − e−s − es−T . Setting fκ(s) = 0 we get

s+ e−s − 1 = e−κρ(s)(s− es−T + e−T ) = e−κρ(s)(s+ e−s − 1 + ρ(s)),

which upon re-arranging yields

s+ e−s − 1 =
ρ(s)

eκρ(s) − 1
.

Let gκ(s) be the function

gκ(s) = (s+ e−s − 1)− ρ(s)

eκρ(s) − 1
.

To prove the lemma it suffices to show that the function gκ(s) is monotonically increasing, which we
shall show by proving that g′κ(s) ≥ 0 for all s ∈ [0, T ]. For convenience let us define a function

ϕ(z) =
z

ez − 1
.

Then we can write gκ(s) as

gκ(s) = (s+ e−s − 1)− 1

κ
ϕ(κρ(s))

which shows that

g′κ(s) = 1− e−s − ϕ′(κρ(s))ρ′(s) = 1− e−s − ϕ′(κρ(s))(e−s − es−T ).

Suppose we can show that

−1 ≤ ϕ′(z) ≤ 0 for all z ≥ 0. (23)

Then for s ∈ [0, T2 ] we have (e−s − es−T ) > 0 and so g′κ(s) ≥ 1 − e−s ≥ 0. On the other hand for
s ∈ [T2 , T ], (e

−s − es−T ) < 0 and using ϕ′(z) ≥ −1, we obtain

g′κ(s) ≥ 1− e−s + (e−s − es−T ) = 1− es−T ≥ 0.
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Hence to prove the lemma we just need to prove the inequality (23) to which we come to now. Note that

ϕ′(z) =
1

ez − 1
− zez

(ez − 1)2
=

ez − 1− zez

(ez − 1)2
= −ez(z + e−z − 1)

(ez − 1)2
.

Since z + e−z − 1 ≥ 0 for any z ≥ 0, we would have that ϕ′(z) ≤ 0. Since the function ϕ(z) is
monotonically decreasing for z ≥ 0 we must have

sup
z>0

ϕ(z) = lim
z→0+

ϕ(z) = 1. (24)

Observe that we can write ϕ′(z) as

ϕ′(z) =
ez − 1− z

(ez − 1)2
− ϕ(z)

As the first term is always positive, we have ϕ′(z) ≥ −ϕ(z), which along with (24) shows that

inf
z>0

ϕ′(z) ≥ − sup
z>0

ϕ(z) = −1.

This completes the proof of the inequality (23) and concludes the proof of this lemma.

Proposition 1. For any u > 0, the integral∫ ∞

0
e−us

(
s

1− e−s
− eu(1−e−s)

(
s

1− e−s
− 1

))
ds (25)

has a positive value.

Proof. Define a function
w(s) = s+ e−s − 1.

Note that the integral (25) can be rewritten as

I(u) =

∫ ∞

0

(
se−us − w(s)e−uw(s)

1− e−s

)
ds =

d

du
G(u)

where

G(u) =

∫ ∞

0

(
e−uw(s) − e−us

1− e−s

)
ds.

Hence in order to prove that I(u) is positive, we just need to prove that the function G(u) is monotoni-
cally increasing. This is what we show next.

Using the fact that
ex − 1

x
=

∞∑
n=0

xn

(n+ 1)!
,

we obtain

G(u) =

∫ ∞

0
e−us

(
eu(1−e−s) − 1

1− e−s

)
ds

=
∞∑
n=0

un+1

(n+ 1)!

∫ ∞

0
e−us(1− e−s)nds.
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Applying the change of variable t = 1− e−s, we get

G(u) =

∞∑
n=0

un+1

(n+ 1)!

∫ 1

0
(1− t)u−1tndt.

The integral on the right can be expressed in terms of the Gamma function Γ(x) as∫ 1

0
(1− t)u−1tndt =

Γ(n+ 1)Γ(u)

Γ(n+ 1 + u)
=

n!Γ(u)

Γ(n+ 1 + u)
.

Substituting this we obtain

G(u) =

∞∑
n=0

un+1

(n+ 1)

Γ(u)

Γ(n+ 1 + u)
.

Since Γ(x+ 1) = xΓ(x) we can express G(u) as

G(u) =

∞∑
n=0

1

(n+ 1)
Ln(u).

where

Ln(u) =

n∏
i=1

(
u

u+ j

)
.

As each Ln(u) is a product of positive monotonically increasing functions, the function G(u) is also
monotonically increasing. This completes the proof of this proposition.

2.4 Proving monotonicity of the cDR

Finally we now prove the monotonicity of the cDR by proving (13). For this we shall use the integral
expression (21).

Let us first deal with the case u ≤ x0. In this scenario (u− x0) ≤ 0 and since es−T ≤ 1 we have

e(u−x0)(es−T−e−T ) = e(u−x0)es−T (1−e−s) ≥ e(u−x0)(1−e−s).

Therefore the integrand on the r.h.s. of (21) can be bounded below

e(u−x0)(1−e−s)

(
1− s

1− e−s

)
+ e(u−x0)(es−T−e−T )

(
s

1− e−s
− es−T

)
≥ e(u−x0)(1−e−s)

(
1− es−T

)
≥ 0.

Hence the integrand in (21) is always non-negative which establishes the monotonicity of cDR for
u ≤ x0.

We now consider the case u > x0. Note that in this case xu(t) (see (14)) is monotonically increasing
from x0 to u. Hence yu(0) = 1 and

ẏu(t) = −xu(t)yu(t) + u ≥ −uyu(t) + u

which allows us to conclude that yu(t) ≥ 1 for all t ≥ 0, by a simple comparison argument we now
provide. Suppose that x0 ≤ 1. In this case we prove that for any positive u, the trajectory t 7→
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∂uyu(t) can only change its sign once, to go from positive to negative, and then it will stay negative and
asymptotically approach 0. To see this define

zu(t) = (1− e−t)yu(t)− 1

and then

żu(t) = e−tyu(t) + (1− e−t)ẏu(t)

= e−tyu(t) + (1− e−t)(−xu(t)yu(t) + u)

= e−tyu(t) + (1− e−t)u− xu(t)(1− e−t)yu(t)

= e−tyu(t) + (1− e−t)u− xu(t)− xu(t)zu(t)

= e−t(yu(t)− x0)− xu(t)zu(t).

Since we have assumed x0 ≤ 1 we have the differential inequality

żu(t) ≥ −xu(t)zu(t).

Hence, by the comparison argument, if there exists a t1 such that zu(t1) ≥ 0, then for all t ≥ t1 we have
zu(t) ≥ 0 which also implies that

yu(t) ≥
1

1− e−t
.

Now let t1 be the first zero of the trajectory ∂uyu(t). Observe that

∂uẏu(t) = −yu(t)∂uxu(t)− xu(t)∂uyu(t) + 1

= −(1− e−t)yu(t)− xu(t)∂uyu(t) + 1

= −zu(t)− xu(t)∂uyu(t).

As t1 is the first zero of the trajectory ∂uyu(t) we have ∂uyu(t) > 0 for t < t1, and ∂uẏu(t1) ≤ 0 and
∂uyu(t1) = 0. Hence we must have zu(t1) ≥ 0 and by previous arguments zu(t) ≥ 0 for all t ≥ t1.
Therefore in this interval t ∈ (t1,∞) we have the inequality

∂uẏu(t) ≤ −xu(t)∂uyu(t) = −(1− e−t)∂uyu(t)

and since ∂uyu(t1) = 0, the comparison argument shows that ∂uyu(t) ≤ 0 for all t ≥ t1. Hence the
trajectory t 7→ ∂uyu(t) can only change its sign once, to go from positive to negative. Therefore in order
to prove

∫ T
0 ∂uyu(t)dt ≥ 0 for any T , it suffices to prove that this holds in the limit T → ∞. Letting

T → ∞ in (21) we arrive at∫ ∞

0
∂uyu(t)dt =

∫ ∞

0
e−us

(
s

1− e−s
− e(u−x0)(1−e−s)

(
s

1− e−s
− 1

))
ds.

Since s
1−e−s ≥ 1 for all s > 0, in order to prove the positivity of this integral it suffices to prove its

positivity for x0 = 0, i.e.∫ ∞

0
∂uyu(t)dt =

∫ ∞

0
e−us

(
s

1− e−s
− eu(1−e−s)

(
s

1− e−s
− 1

))
ds > 0, (26)

which holds due to Proposition 1.

19



We now come to the case where 1 < x0 < u. Set κ = (u− x0) and let ρ(s) and fκ(s) be the functions
defined in the statement of Lemma 1. Note that (21) can be written in terms of this function as∫ T

0
∂uyu(t)dt =

∫ T

0
e−useκ(1−e−s)fκ(s)ds. (27)

Moreover

lim
s→0+

fκ(s) = 1− e−T > 0 and fκ(T ) = 0.

Lemma 1 proves that the function fκ(s) can only cross the x-axis at most once in the interval [0, T ]. If
it does cross then it goes from positive to negative and it stays negative till it becomes 0 at s = T . The
same holds for the function e−κseκ(1−e−s)fκ(s). Hence if we can prove that∫ T

0
e−κseκ(1−e−s)fκ(s)ds > 0 (28)

then, as κ < u, it automatically implies that∫ T

0
∂uyu(t)dt =

∫ T

0
e−useκ(1−e−s)fκ(s)ds > 0. (29)

To see this let s∗ be the time in [0, T ] where the function fκ(s) crosses the x-axis. Then (28) implies
that ∫ T

0
e−κseκ(1−e−s)fκ(s)ds

=

∫ s∗

0
e−κseκ(1−e−s)fκ(s)ds+

∫ T

s∗
e−κseκ(1−e−s)fκ(s)ds

=

∫ s∗

0
e−κseκ(1−e−s)|fκ(s)|ds−

∫ T

s∗
e−κseκ(1−e−s)|fκ(s)|ds

> 0.

Therefore, using that e−us ≥ e−(u−κ)s∗e−κs for s ≤ s∗ and e−us ≤ e−(u−κ)s∗e−κs for s ≥ s∗, we get∫ T

0
e−useκ(1−e−s)fκ(s)ds

=

∫ s∗

0
e−useκ(1−e−s)|fκ(s)|ds−

∫ T

s∗
e−useκ(1−e−s)|fκ(s)|ds

≥ e−(u−κ)s∗

(∫ s∗

0
e−κseκ(1−e−s)|fκ(s)|ds−

∫ T

s∗
e−κseκ(1−e−s)|fκ(s)|ds

)
> 0.

This shows that to prove the monotonicity result it suffices to prove (28), which is of course equivalent
to proving the positivity of (21) for u = κ and x0 = 0. As mentioned above, this positivity follows
from (26) which is shown in Proposition 1. This completes the proof of the cDR monotonicity result for
IFFL1.
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3 Unconditional monotonicity of both DR and cDR for IFFL2

We now consider the IFFL2 system described by equations (7)-(8). For this system, we can prove that
the DR map, u 7→ yu(t), is a monotonically increasing function of the input u, and hence, the same
holds for the cDR map. A direct proof of this is provided in Section 3.1, while a more conceptual
argument, based on the theory of monotone systems, is presented in Section 3.2. Although the former
approach is simpler for this particular example, the latter is more generalizable to other examples.

3.1 Direct Proof

In order to prove the monotonicity of the map u 7→ DR(u, T ) it suffices to show that the partial derivative
∂uyu(t) is nonnegative for any u and t. Since xu(t) satisfies the linear ODE (7) we can solve for it
explicitly to obtain

xu(t) = x0e
−δt +

uα

δ
(1− e−δt)

which also implies that

∂uxu(t) =
α

δ
(1− e−δt) =

xu(t)− x0e
−δt

u
. (30)

As yu(t) satisfies the ODE (8) we can differentiate it with respect to u to obtain an ODE for ∂uyu(t) as

∂uẏu =
β

K + xu(t)
− βu

(K + xu(t))2
∂uxu(t)− γ ∂uyu(t).

Substituting ∂uxu(t) from (30) and re-arranging we get

∂uẏu =
β

K + xu(t)
− βu

(K + xu(t))2

(
xu(t)− x0e

−δt

u

)
− γ ∂uyu(t)

=
β

K + xu(t)

(
1− xu(t)

K + xu(t)
+

x0e
−δt

K + xu(t)

)
− γ ∂uyu(t).

Since K ≥ 0, it is immediate that xu(t)
K+xu(t)

≤ 1, and so we have the differential inequality

∂uẏu(t) ≥ −γ ∂uyu(t).

As ∂uyu(0) = 0, by the comparison argument it follows that ∂uyu(t) ≥ 0 for all t and u. This concludes
the proof of the monotonicity result for IFFL2.

3.2 Monotone systems: an approach to show DR monotonicity of IFFL2

Monotone systems were introduced in the pioneering work of Smale, Smith, Hirsch, Mallet-Paret, Sell,
and others [50, 51, 52, 53]. They have the property that larger initial conditions give rise to larger state
trajectories, where “larger” is interpreted according to a specified order in the state variables. Special
cases of monotone systems are obtained when the order is a coordinatewise order. For example in
two dimensions, the “NorthEast” (NE) is defined by saying that a point (x2, y2) is larger than a point
(x1, y1) if both x2 > x1 and y2 > y1, that is, if it is to the “north” and “east” (higher, to the right) of the
second point; similarly the “NorthWest” order would be defined by asking that x2 < x1 and y2 > y1.
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(Note that these are “partial orders” in the sense that two vectors may not be comparable: for example
neither (0, 1) nor (1, 0) is larger than the other in the NE order.) The generalization to external inputs
and outputs [54] enabled the development of a network interconnection theory as well as leading to
conclusions regarding the effect of inputs: for example, monotonic inputs result in monotonic transient
behavior [55]. This means that the DR (and thus also the cDR) will always be monotonic, for monotone
systems.

These developments led to monotone systems playing a key role in analyzing the global behavior of
dynamical systems in various areas of engineering as well as biology [56]. What makes monotone
system theory so useful is that there are ways to check monotonicity without solving a set of differential
equations ẋ = f(x). For example, for the n-dimensional analog of the NE order one requires that
the off-diagonal terms of the Jacobian matrix of f should all be nonnegative, and a similar condition
holds if there are inputs. More generally, monotonicity with respect to some (not necessarily the NE)
coordinatewise order requires that all loops in the interaction graph obtained from the off-diagonal terms
of the Jacobian should have a net positive sign. See e.g. [57] for more discussion and examples.

When trying to apply monotone systems theory to our three paradigmatic examples IFFL1, IFFL2, and
NFL, an obvious problem arises: these systems are not monotone with respect to any possible coor-
dinatewise order, as incoherent feedforward loops and negative feedback loops contradict the positive
loop condition. However, in the case of the IFFL2 system, which we reproduce here for convenience:

ẋ = αu− δx

ẏ = β
u

K + x
− γy

there is a Lie group of symmetries or “equivariances” that preserve the output. These equivariances
were the main object of study in the work in [8] on scale invariance, and where key to the analysis of
an immunology model in [29]. Specifically, when K = 0 the discussion in Section 1.6 showed that the
equations do not change under the one-parameter Lie group of transformations (u, x, y) 7→ (pu, px, y),
and in particular scaling u and x by the same constant does not alter the dynamics of y. This suggests
introducing the new variable p := u/x. Using the variables p and y, the equations become:

ṗ = p(δ − αp)

ẏ = βp− γy .

This is a monotone system, because the only off-diagonal term in the Jacobian is β > 0. Therefore
the trajectories depend monotonically on p(0) = u/x0, and hence also depend monotonically on u. A
similar argument works for K > 0, but now the FCD property fails and the equivariance will provide
merely an embedding into a monotone system rather than an equivalence. Indeed, let p := u/(K + x).
Now the p equation is no longer decoupled from x. However, we can look at the following extended
system (we add an equation u̇ = 0 to convert the external input into a state variable):

u̇ = 0

ẋ = αu− δx

ṗ = p

(
δx

K + x
− αp

)
ẏ = βp− γy .

The off-diagonal elements of the Jacobian are α, β, and Kδp/(K +x)2, all positive. Thus the extended
system is monotone, and therefore all variables, and in particular y, depend monotonically on u. This
shows monotonicity of the DR, as claimed.
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4 Conditional monotonicity of the cDR for IFB

As our final example, we examine the IFB system defined by equations (9)–(10). Our objective is to
show that, unlike the previously discussed incoherent feedforward loop systems, this negative feedback
system can exhibit non-monotonic behavior in the mapping u 7→ cDR(u, T ). We also identify a con-
dition under which this mapping remains monotonic. To simplify the analysis, we restrict our attention
to the case K = 0. If the property of monotonicity or non-monotonicity arises in this case, it will also
persist for small positive values of K due to the parametric continuity of solutions.

We begin our analysis by simplifying the equations for the IFB system using scaling arguments in
Section 4.1. Here, we also reformulate the dynamics in terms of the “error”, which is obtained by sub-
tracting the input-independent steady-state from y. Notably, the monotonicity properties of the original
cDR map can be equivalently studied using the error cDR map. In Section 4.2, we prove that the partial
derivative of the error cDR map, with respect to the input value u, is always positive at steady-state,
confirming that the steady-state cDR map is monotonic. For finite-time analysis, we establish a con-
nection between the dynamics of the error and a “damped” harmonic oscillator in Section 4.3. This
connection allows us to derive a conditional monotonicity result for the error cDR map in Section 4.4.
Furthermore, this result enables us to identify a finite range of time values for each input value u, within
which the error cDR map may become non-monotonic. We leverage this insight to numerically illustrate
this non-monotonicity in Section 4.5.

4.1 Simplifying the system

Recall the IFB equations (9)-(10). We scale time by γ−1 and the state values by a ratio to define

x̂(t) = x(γ−1t) and ŷ(t) =
α

γ
y(γ−1t).

Then we can write this system as

˙̂x(t) = γ−1ẋ(γ−1t) = γ−1x(γ−1t)(αy(γ−1t)− δ) = x̂(t)

(
ŷ(t)− δ

γ

)
˙̂y(t) =

α

γ2

(
βu

x(γ−1t)
− γy(γ−1t)

)
=

αβu

γ2x̂(t)
− ŷ(t)

Therefore if we define
û =

αβ

γ2
u and p =

δ

γ

then (x̂(t), ŷ(t)) satisfies the ODEs

˙̂x(t) = x̂(t)(ŷ − p)

˙̂y(t) =
û

x̂
− ŷ.

with initial values x̂(0) = x(0) = x0 and ŷ(0) = α
γ y(0) =

α
γ

δ
α = δ

γ = p. Henceforth we shall drop the
hats for notational convenience and suppose that the dynamics is given by

ẋ = x(y − p) (31)

ẏ =
u

x
− y (32)
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with initial values x(0) = x0 and y(0) = p. Let (xu(t), yu(t)) be the solution of this initial value
problem for t ≥ 0.

Note that p is both the initial state and the steady-state value of the output variable yu(t). We shall
reformulate the dynamics in terms of the “error”

ỹu(t) = yu(t)− p

and variable zu(t) defined as
zu(t) =

u

xu(t)
.

Then dynamics of zu(t) is given by

żu(t) = − u

x2u(t)
ẋu(t) = − u

xu(t)
(yu(t)− p) = −zu(t)ỹu(t).

Hence we can solve for zu(t) as

zu(t) =
u

x0
e−

∫ t
0 ỹu(s)ds (33)

and the dynamics of the error is given by

˙̃yu(t) = ẏu(t) = zu(t)− yu(t) = zu(t)− p− ỹu(t). (34)

Henceforth, instead of examining the monotonicity of the original cDR map, we shall equivalently
examine the monotonicity of the error cDR map given by

u 7→
∫ T

0
ỹu(t)dt.

4.2 Steady-state analysis

We proved earlier that the steady state is stable. Thus limt→∞ ỹu(t) = 0 and so limt→∞ zu(t) = p.
Therefore expression (33) implies that∫ ∞

0
ỹu(t)dt = log(u)− log(px0) (35)

which is a monotonically increasing function of u. In particular, by differentiating with respect to u we
obtain ∫ ∞

0
∂uỹu(t)dt =

1

u
> 0. (36)

If this positivity holds for any finite time-interval then we shall have the monotonicity of the error cDR
map. We shall show that this monotonicity does not always hold and identify a sufficient condition
under which it does. For this we shall connect this problem to a harmonic oscillator with a time-varying
frequency.
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4.3 Connection to a harmonic oscillator

Differentiating the error equation (34) with respect to t and using that żu(t) = −zu(t)ỹu(t) we get

¨̃yu(t) = żu(t)− ˙̃yu(t) = −zu(t)ỹu(t)− ˙̃yu(t)

which means that the error ỹu(t) satisfies the equation for a ‘damped’ harmonic oscillator with a non-
constant frequency

¨̃yu(t) + ˙̃yu(t) + zu(t)ỹu(t) = 0, (37)

with initial conditions ỹu(0) = 0 and ˙̃yu(0) = zu(0) − p = u
x0

− p. Let us define the ‘frequency’ and
Hamiltonian for this oscillator as

ω(t) =
√

zu(t) and H(t) = (ỹu(t))
2 +

( ˙̃yu(t)

ω(t)

)2

respectively. Then their dynamics can be derived as

ω̇(t) =
1

2ω(t)
żu(t) = − 1

2ω(t)
zu(t)ỹu(t) = − ỹu(t)

2
ω(t). (38)

Using (37) we obtain

Ḣ(t) = 2ỹu(t) ˙̃yu(t) + 2
˙̃yu(t)¨̃yu(t)

zu(t)
−
( ˙̃yu(t)

zu(t)

)2

żu(t)

= 2ỹu(t) ˙̃yu(t)− 2
˙̃yu(t)

zu(t)
( ˙̃yu(t) + zu(t)ỹu(t)) +

( ˙̃yu(t))
2

zu(t)
ỹu(t)

= −2

( ˙̃yu(t)

ω(t)

)2(
1− ỹu(t)

2

)
. (39)

Observe that the error ỹu(t) = yu(t) − p in our adapting circuit goes to 0 as t → ∞. Equation (39)
shows that when this error is below 2, the Hamiltonian is decreasing. Note that the initial value of this
Hamiltonian is

H(0) =
(u− px0)

2

ux0
.

This brings us to a proposition that shows that if this value is less than 4, then the error ỹu(t) remains
below 2 at all times.

Proposition 2. Suppose that the following holds

(u− px0)
2 ≤ 4ux0. (40)

Then we must have that ỹu(t) ≤ 2 for all t ≥ 0.

Proof. Condition (40) implies that H(0) ≤ 4. Recall that ỹu(0) = 0. Let t1 be the first time ỹu(t)
reaches 2, i.e. ỹu(t1) = 2 and ỹu(t) < 2 for all t < t1. Then due to (39) the Hamiltonian must be
decreasing in the interval [0, t1], and so H(t1) < H(0) ≤ 4. But this is a contradiction since ỹu(t1) = 2
and so by definition H(t1) ≥ 4. Hence t1 = ∞ which means that ỹu(t) ≤ 2 for all t ≥ 0.
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4.4 Conditional monotonicity result

Now let us substitute zu(t) from (33) into eqn. (34) to obtain

˙̃yu(t) =
u

x0
e−

∫ t
0 ỹu(s)ds − p− ỹu(t). (41)

Differentiating this with respect to u we get

∂u ˙̃yu(t) =
1

x0
e−

∫ t
0 ỹu(s)ds − u

x0
e−

∫ t
0 ỹu(s)ds

∫ t

0
∂uỹu(s)ds− ∂uỹu(t)

=
u

x0
e−

∫ t
0 ỹu(s)ds

(
1

u
−
∫ t

0
∂uỹu(s)ds

)
− ∂uỹu(t)

= zu(t)

(
1

u
−
∫ t

0
∂uỹu(s)ds

)
− ∂uỹu(t).

This shows that if we define β(t) as

β(t) = 1− u

∫ t

0
∂uỹu(s)ds,

then β(t) also satisfies the following second-order ODE for the damped harmonic oscillator (37) with
initial conditions β(0) = 1 and β̇(0) = 0. To prove the monotonicity we need to show that∫ t

0
∂uỹu(s)ds ≥ 0

which is equivalent to proving that

β(t) ≤ 1 for all t ≥ 0. (42)

Again we can definite the Hamiltonian as

Hβ(t) = (β(t))2 +

(
β̇(t)

ω(t)

)2

(43)

and it will have the same dynamics as before

Ḣβ(t) = −2

(
β̇(t)

ω(t)

)2(
1− ỹu(t)

2

)
(44)

which we can also write as

Ḣβ(t) = −Hβ(t)(2− ỹu(t)) + (β(t))2(2− ỹu(t)). (45)

We now come to our main result for the IFB example, which proves monotonicity of the error cDR
under condition (40).

Proposition 3. Suppose that condition (40) holds. Then the map

u 7→
∫ T

0
ỹu(t)dt

is monotonically increasing for any T > 0.

Proof. When (40) holds, we have that the error ỹu(t) ≤ 2 for all t ≥ 0 due to Proposition 2. This fact
along with (44) implies that Hβ(t) ≤ Hβ(0) = 1 for t ≥ 0. Therefore (42) holds which proves the
required monotonicity property.
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4.5 Numerical illustration of non-monotonicity

When condition (40) does not hold, we do not have any analytical approach for checking the monotonic-
ity property. Therefore we need to rely on numerical simulations. For any given u, the monotonicity
condition (42) can fail at any t ≥ 0. However as we cannot check this condition for all t ≥ 0, we
first show that if this monotonicity fails then it has to fail in the finite time-interval [0, Tu] where Tu is
defined by

Tu = inf{t ≥ 0 : H(t) ≤ 4 and Hβ(t) ≤ 1}. (46)

Note that Tu is finite because both H(t) and Hβ(t) are nonnegative quantities converging to zero as
t → ∞. This is due to stability and the fact that (36) implies that β(t) → 0 as t → ∞.

Proposition 4. Let Tu be the finite time defined by (46). Then we must have β(t) ≤ 1 for all t ≥ Tu

which is the same as saying that u
∫ t
0 ∂uy(s)ds ≥ 0 for all t ≥ Tu.

Proof. Pick a small ϵ > 0 and define

T ϵ
u = inf{t ≥ 0 : H(t) ≤ 4− ϵ and Hβ(t) ≤ 1− ϵ}.

Note that for the same reason that Tu is finite, T ϵ
u must also be finite. Moreover as ϵ decreases the set

{t ≥ 0 : H(t) ≤ 4 − ϵ and Hβ(t) ≤ 1 − ϵ} gets bigger and consequently its infimum, which is
T ϵ
u, gets smaller. Therefore T ϵ

u decreases monotonically as ϵ decreases and since H(t) and Hβ(t) are
continuous functions of time we must have

lim
ϵ↘0

T ϵ
u = Tu. (47)

By the definition of T ϵ
u we have that H(T ϵ

u) < 4 which implies that ỹu(T ϵ
u) < 2. Let tϵ1 be the first time

after T ϵ
u such that ỹu(tϵ1) = 2 and consequently H(tϵ1) ≥ 4. On the open interval (T ϵ

u, t
ϵ
1), H(t) must be

decreasing due to (39) and so we should have H(tϵ1) ≤ H(T ϵ
u). However this leads to a contradiction

because H(T ϵ
u) < 4 ≤ H(tϵ1). Therefore tϵ1 = ∞ which means that ỹu(t) < 2 for all t ≥ T ϵ

u. This also
means that Hβ(t) in decreasing in the interval [T ϵ

u,∞] due to (44). Since Hβ(T
ϵ
u) < 1 this implies that

β(t) < 1 for all t ≥ T ϵ
u. Using the continuity of β and the limit (47) we can conclude that β(t) ≤ 1 for

all t ≥ Tu. This completes the proof of this proposition.

Figure 8 illustrates this proposition for three values of u. One can observe that u
∫ t
0 ∂uy(s)ds ≥ 0 holds

for all t ≥ Tu for each u-value.

Figure 8: Plot of the map t 7→ u
∫ t
0 ∂uy(s)ds for three values of u. Note that for each u, we have

u
∫ t
0 ∂uy(s)ds ≥ 0 for all t ≥ Tu.
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We can now numerically solve the system (zu(t), yu(t), β(t)) in the interval [0, Tu] and check if β(t)
exceeds 1 or not. For any t such that β(t) > 1 we would have

∫ t
0 ∂uỹu(s)ds < 0 which would imply

non-monotonicity. For any given u we define the non-monotonicity score as

S(u) =
∫ Tu

0
(β(t)− 1)+ dt = u

∫ Tu

0

(∫ t

0
∂uỹu(s)ds

)−
dt, (48)

where a+ (resp. a−) denotes the positive (resp. negative) part of a. In Figure 9 we plot the non-
monotonicity score S(u) and the time Tu for a range of u-values for x0 = p = 1. Notice that Tu is
monotonically increasing with u, while the non-monotonicity score S(u) stays at zero till u ≈ 220 and
then it gradually starts increasing. This shows that for higher values of u the map

u 7→
∫ T

0
ỹu(t)dt

is always non-monotonic for some T which will increase as u increases. Figure 10 illustrates this non-
monotonicity for some values of p and T .

Figure 9: Plot of the maps u 7→ S(u) and u 7→ T (u) with x0 = p = 1.0.
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Figure 10: Plot of the map u 7→
∫ T
0 ỹu(t)dt for some values of p and T . Note that this map exhibits

non-monotonicity in these cases.
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5 Conclusions

We introduced the notion of cumulative does response (cDR), and went on to show mathematically that
both the incoherent feedback loop IFFL1 and IFFL2 motifs can only produce monotonic cumulative
dose responses, even if (for IFFL1) the dose response itself may be non-monotonic. On the other hand,
we also established conditions under which the integral feedback mechanism IFB can produce a non-
monotonic cDR.

Leaving aside linear systems, which can never lead to non-monotonic (or, for that matter, any nonlin-
ear) cDR, the motifs that we analyzed are considered the simplest paradigms for adaptation in biology
[43, 7, 8]. The concepts introduced here are broadly applicable, even if results were established for
idealized two-variable systems that adapt perfectly. They provide a foundation for developing a more
comprehensive mathematical theory that can qualitatively characterize cDR maps in more complex,
multi-variable systems. One particularly interesting direction would be to study how network intercon-
nections (such as cascades) of these motifs can preserve the qualitative properties of cDR’s. Another is
to include scenarios with non-ideal behaviors, such as species dilution, saturation in reaction rates, and
resource competition, as well as imperfect adaptation.

One may view our study of the cDR properties as an addition to the toolkit of mathematical methods
for model discrimination and invalidation, in a spirit similar to the work in [58] that infers the existence
of IFFLs or negative feedback loops when time responses are non-monotonic, or to the work in [10]
on using periodic inputs in order to rule out IFFLs as the basis of adaptation. In such a role, one
can perform dose-dependent experiments and on the basis of plotted cDR’s, eliminate systems whose
structure is not consistent with an observed non-monotonic cDR. Conversely, one could ask how to
introduce new variables or otherwise modify a model in order to match such qualitative behaviors.
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