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 A B S T R A C T

We give a proof of an extension of the Hartman-Grobman theorem to nonhyperbolic but asymptotically stable 
equilibria of vector fields. Moreover, the linearizing topological conjugacy is (i) defined on the entire basin of 
attraction if the vector field is complete, and (ii) a 𝐶𝑘≥1-diffeomorphism on the complement of the equilibrium 
if the vector field is 𝐶𝑘 and the underlying space is not 5-dimensional. We also show that the 𝐶𝑘 statement 
in the 5-dimensional case is equivalent to the 4-dimensional smooth Poincaré conjecture.
1. Introduction

Consider a nonlinear system of ordinary differential equations 
𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)), (1)

where 𝑓 is a vector field on an 𝑛-dimensional manifold 𝑀 . If 𝑓 ∈
𝐶1 and 𝑥∗ ∈ 𝑀 is a hyperbolic equilibrium for 𝑓 , the Hartman-
Grobman theorem guarantees existence of continuous local coordinates 
on a neighborhood of 𝑥∗ in which the nonlinear dynamics (1) become
linear [1,2].

In this paper, we provide a proof of an extension of the Hartman-
Grobman theorem to nonhyperbolic but asymptotically stable equilib-
ria. We also assume only that 𝑓 is continuous and uniquely integrable 
(e.g. locally Lipschitz). But if additionally 𝑓 ∈ 𝐶𝑘 and 𝑛 ≠ 5, we 
construct continuous linearizing coordinates that are 𝐶𝑘 away from 𝑥∗. 
Finally, if 𝑓 is complete, we prove the existence of globally linearizing 
coordinates on the entire basin of attraction of 𝑥∗. In fact, the linear 
dynamics can be taken to be 𝑦̇ = −𝑦, in which case the coordinates 
transform the nonlinear dynamics into the negative gradient flow of 
the convex function 𝑦↦ ‖𝑦‖2∕2.

To our knowledge, the first trace of these extensions appeared 
in work of Coleman, who proved a theorem equivalent to our local 
result for 𝑘 = 0 assuming 𝑥∗ has a Lyapunov function with level sets 
homeomorphic to spheres [3,4] (see [5, p. 247]). Our proof of the 
global result fills in details of one previously sketched by Grüne, the 
second author, and Wirth for 𝑘 = 0 and 𝑛 ≠ 4, and for general 𝑘
and 𝑛 ≠ 4, 5 [6, remark in p. 133]. Using the same techniques and 
Perelman’s solution to the 3-dimensional Poincaré conjecture [7–9], we 
extend this global result to all 𝑛 for 𝑘 = 0, and to 𝑛 ≠ 5 for general 
𝑘. In fact, we prove that whether the 𝐶𝑘≥1 linearization results hold 
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for 𝑛 = 5 is equivalent to the 4-dimensional smooth Poincaré conjec-
ture (still open). Jongeneel recently proved other interesting stability 
results using Perelman’s solution [10]. We also note connections to 
classical dynamical systems results showing that systems with globally 
asymptotically stable equilibria admit 𝐶0 Lyapunov functions 𝑉  with 
exponential decrease 𝑉 (𝑥(𝑡)) = 𝑒−𝑡𝑉 (𝑥(0))  [11, Chapter V.2]. Further-
more, in the special case of linear systems, it has long been known that 
each linear system is equivalent, under a continuous coordinate change, 
to the system 𝑦̇ = −𝑦 of the same dimension [12].

The local linearization result is Theorem  1, and the global result 
is Theorem  2. While some techniques in the hyperbolic case establish 
global linearizations by extending local ones [13–15], in this paper we 
prove the global result directly (and under no hyperbolicity assump-
tions) and the local result as a consequence. In contrast to the classical 
hyperbolic results, we assume stability, since otherwise there are no 
natural global Lyapunov functions to guide the constructions.

It seems worth noting that Theorems  1, 2 give new existence results 
for targets of algorithms like extended Dynamic Mode Decomposi-
tion [16] studied by applied Koopman operator theorists [17–19]. Such 
algorithms seek to compute 𝑁 ≥ dim𝑀 linearizing ‘‘observables’’ 
through which nonlinear systems appear linear. Theorems  1, 2 (see also 
Remark  2) give existence results in the case 𝑁 = dim𝑀 , a case of ar-
guably practical importance [20] complementing recent (non)existence 
results for the case 𝑁 > dim𝑀 [21–26].

2. Results

We begin with the local linearization result, whose statement refers 
to the initial value problem 
𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)), 𝑥(0) = 𝑥0. (2)
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Theorem 1.  Let 𝑥∗ be an asymptotically stable equilibrium for a uniquely 
integrable continuous vector field 𝑓 on an 𝑛-dimensional 𝐶∞ manifold 𝑀 . 
There is an open neighborhood 𝑈 ⊂ 𝑀 of 𝑥∗ such that, for any Hurwitz 
matrix 𝐴 ∈ R𝑛×𝑛, there is a topological embedding ℎ∶𝑈 → R𝑛 such that, 
for all 𝑥0 ∈ 𝑈 , the maximal solution of (2) satisfies 𝑥(𝑡) ∈ 𝑈 and 

𝑥(𝑡) = ℎ−1(𝑒𝐴𝑡ℎ(𝑥0)) for all 𝑡 ≥ 0. (3)

Moreover, if 𝑛 ≠ 5 and 𝑓 ∈ 𝐶𝑘 with 𝑘 ∈ N≥1 ∪ {∞}, then there exists such 
an ℎ that additionally restricts to a 𝐶𝑘 embedding 𝑈 ⧵ {𝑥∗} → R𝑛 ⧵ {0}.

An advantage of Theorem  1 is that it does not assume completeness 
of 𝑓 . On the other hand, the global linearization result below is formu-
lated more optimally for smoothness, since the vector field generating 
a 𝐶𝑘 flow need only be 𝐶𝑘−1 in general.

Theorem 2.  Let 𝑥∗ be an asymptotically stable equilibrium with basin of 
attraction 𝐵 for the flow 𝛷 of a complete uniquely integrable continuous 
vector field on an 𝑛-dimensional 𝐶∞ manifold 𝑀 . For any Hurwitz matrix 
𝐴 ∈ R𝑛×𝑛 there is a homeomorphism ℎ∶𝐵 → R𝑛 satisfying 
𝛷𝑡

|𝐵 = ℎ−1◦ 𝑒𝐴𝑡 ◦ℎ for all 𝑡 ∈ R. (4)

Moreover, if 𝑛 ≠ 5 and 𝛷 ∈ 𝐶𝑘 with 𝑘 ∈ N≥1 ∪ {∞}, then there exists such 
an ℎ that additionally restricts to a 𝐶𝑘-diffeomorphism 𝐵⧵{𝑥∗} → R𝑛⧵{0}.

Remark 1.  In particular, consider 𝐴 = −𝐼𝑛×𝑛 in the above theorems. 
Then as noted in Section 1, ℎ transforms the nonlinear dynamics into 
the negative gradient flow of the dynamics 𝑦̇ = −𝑦 of the convex 
function 𝑦 ↦ ‖𝑦‖2∕2. This is distinct from the fact that a Riemannian 
metric always exists making the vector field a gradient on the com-
plement of the equilibrium within the basin of attraction [27, Thm 1] 
in all dimensions (but for 𝑛 ≠ 5 this directly follows from the above 
theorems). The same explanation shows that ℎ transforms the nonlinear 
dynamics into a ‘‘contractive system’’ [28]. There are generally no 
explicit expressions for the transformation ℎ, except in very simple 
cases. For example, the one-dimensional system 𝑥̇ = −𝑥3 is transformed 
into 𝑦̇ = −𝑦 by means of the transformation 𝑦 = ℎ(𝑥) = 𝑒−

1
2𝑥2 .

Remark 2.  By choosing 𝐴 to be diagonal, the conclusion of Theorem  2 
furnishes 𝑛-tuples (𝜓1,… , 𝜓𝑛) of continuous real eigenfunctions of the 
Koopman operator such that the mapping (𝜓1,… , 𝜓𝑛)∶ 𝐵 → R𝑛 is a 
homeomorphism. Indeed, we may consider the functions 𝜓𝑖 = ℎ𝑖, where 
ℎ is the homeomorphism from our theorem statement with components 
ℎ1,… , ℎ𝑛.

Remark 3.  If the equilibrium 𝑥∗ is hyperbolic, then the dimensional 
restriction 𝑛 ≠ 5 in Theorems  1, 2 is not needed since then there exists 
a smooth Lyapunov function having nondegenerate quadratic (Morse) 
singularity at 𝑥∗. The nonzero level sets of such a Lyapunov function 
are diffeomorphic to the standard sphere of the appropriate dimension, 
so any such level set can be used instead of 𝐿 in the proof of Theorem 
2.

Remark 4.  The proofs of Theorems  1 and 2 require only that the 
vector field 𝑓 is 𝐶𝑘 on the complement of {𝑥∗} and the flow 𝛷 is 𝐶𝑘
on R × 𝐵 ⧵ {𝑥∗}.

The final result establishes the mentioned relationship to the 4-
dimensional smooth Poincaré conjecture. This conjecture asserts that 
every 4-dimensional 𝐶∞ manifold homotopy equivalent to the 4-sphere 
is diffeomorphic to the 4-sphere.

Proposition 1.  Fix 𝑘 ∈ N≥1 ∪ {∞}. The 4-dimensional smooth Poincaré 
conjecture is true if and only if the 𝐶𝑘 statement of Theorem  1 (or Theorem 
2) is true for 𝑛 = 5.
2 
3. Proofs

We first assume Theorem  2 to give a short proof of Theorem  1.

Proof of Theorem  1.  Fix any Hurwitz matrix 𝐴 ∈ R𝑛×𝑛. Let 𝜓 ∶𝑀 →

[0,∞) be a 𝐶∞ function equal to 1 on a neighborhood 𝑈0 of 𝑥∗ and 
equal to zero outside of a compact subset of 𝑀 . Then 𝜓𝑓 is a complete 
uniquely integrable continuous vector field generating a flow 𝛷, 𝑥∗ is 
asymptotically stable for 𝛷, and 𝛷 ∈ 𝐶𝑘 if 𝑓 ∈ 𝐶𝑘. According to Wilson, 
there is a proper strict 𝐶∞ Lyapunov function 𝑉 ∶ 𝐵 → [0,∞) for 𝑥∗
and 𝛷 [29, Thm 3.2] (see also [30, Sec. 6]). Theorem  2 furnishes a 
homeomorphism ℎ0 ∶𝐵 → R𝑛 that satisfies (4) and, if 𝑛 ≠ 5, restricts to 
a 𝐶𝑘-diffeomorphism 𝐵⧵{𝑥∗} → R𝑛 ⧵{0}. Let 𝑐 > 0 be sufficiently small 
that 𝑈 ∶= 𝑉 −1([0, 𝑐)) is contained in 𝑈0 ∩ 𝐵. Then ℎ ∶= ℎ0|𝑈 ∶𝑈 → R𝑛

is the desired embedding. □

We now prove Theorem  2 (without assuming Theorem  1).

Proof of Theorem  2.  It suffices to find ℎ∶𝐵 → R𝑛 satisfying (4) for 
𝐴 = −𝐼 . Indeed, repeating the proof with 𝐵 and 𝑓 replaced by R𝑛 and 
𝑓 (𝑥) = 𝐴𝑥 then yields a corresponding transformation ℎ̃∶R𝑛 → R𝑛, so 
the composition ℎ̃−1◦ℎ∶𝐵 → R𝑛 satisfies (4) for general 𝐴.

Let 𝑉 ∶ 𝐵 → [0,∞) be a proper strict 𝐶∞ Lyapunov function for 
𝑥∗ and 𝛷 ([29, Thm 3.2], [30, Sec. 6]). Fix any 𝑐 > 0 and note 
that 𝑉 −1([0, 𝑐]) is a contractible compact 𝐶∞ embedded submanifold 
with codimension-1 boundary 𝐿 ∶= 𝑉 −1(𝑐) homotopy equivalent to the 
(𝑛 − 1)-sphere S𝑛−1 ∶= {𝑦 ∈ R𝑛 ∶ ‖𝑦‖ = 1} [31, pp. 326–327]. Thus, if 
𝑛 ≠ 5, there is a 𝐶∞-diffeomorphism 𝑃 ∶𝐿 → S𝑛−1 according to classical 
facts for 𝑛 = 2 [32, Appendix] and 𝑛 = 3 [33, Thm 9.3.11], Perelman 
for 𝑛 = 4 [7–9] (see [34, Cor. 0.2]), and Smale for 𝑛 ≥ 6 [35, Thm 5.1]. 
If 𝑛 = 5 there is still a homeomorphism 𝑃 ∶ 𝐿 → S𝑛−1 according to 
Freedman [36, Thm 1.6].

Since for each 𝑥 ∈ 𝐵 ⧵ {𝑥∗} the trajectory 𝑡 ↦ 𝛷𝑡(𝑥) converges to 𝑥∗
and crosses 𝐿 exactly once and transversely, the map R×𝐿 → 𝐵 ⧵ {𝑥∗}
defined by (𝑡, 𝑥) ↦ 𝛷𝑡(𝑥) is a homeomorphism and 𝐶𝑘-diffeomorphism 
if 𝛷 ∈ 𝐶𝑘, with inverse 𝑔 = (𝜏, 𝜌)∶𝐵⧵{𝑥∗} → R×𝐿 satisfying 𝜏(𝑥) → −∞
as 𝑥→ 𝑥∗ (cf. [31, p. 327]). Thus ℎ∶𝐵 → R𝑛 defined by ℎ(𝑥∗) = 0 and

ℎ(𝑥) = 𝑒𝜏(𝑥)𝑃 (𝜌(𝑥))

is a homeomorphism that, if 𝑛 ≠ 5 and 𝛷 ∈ 𝐶𝑘, restricts to a 𝐶𝑘-
diffeomorphism 𝐵 ⧵ {𝑥∗} → R𝑛 ⧵ {0}. Finally, ℎ satisfies (4) with 
𝐴 = −𝐼𝑛×𝑛 since 𝜌◦𝛷𝑡

|𝐵⧵{𝑥∗} = 𝜌 and 𝜏◦𝛷𝑡
|𝐵⧵{𝑥∗} = 𝜏 − 𝑡. □

Finally, we prove Proposition  1.

Proof of Proposition  1.  Assume that the 4-dimensional smooth 
Poincaré conjecture is true. Then 𝑃 ∶𝐿 → S4 in the proof of Theorem 
2 can be taken to be a diffeomorphism when 𝑛 = 5. With this fact, 
repeating the proofs of Theorem  2 and Theorem  1 verbatim show that 
their 𝐶𝑘 statements are true for 𝑛 = 5.

Conversely, assume that the 𝐶𝑘 statement of Theorem  1 (or Theo-
rem  2) is true for 𝑛 = 5 and 𝐴 = −𝐼𝑛×𝑛. Let 𝐿 be any 4-dimensional 
𝐶∞ homotopy sphere. According to Hirsch [37, Thm 2], there is a 𝐶∞

function 𝑉 ∶S5 → [0, 1] having only two critical points, a maximum 𝑁 =
𝑉 −1(1) and minimum 𝑆 = 𝑉 −1(0), such that there is a diffeomorphism 
𝑃𝑐 ∶𝐿→ 𝑉 −1(𝑐) for any 𝑐 ∈ (0, 1).

Equip S5 with a Riemannian metric and let 𝛷 be the flow of the 
complete 𝐶∞ vector field 𝑓 = −∇𝑉  on S5. Observe that 𝑆 ∈ S5 is 
asymptotically stable with basin of attraction 𝐵 ∶= S5 ⧵ {𝑁} and that 
𝑓 points inward at the boundary 𝑉 −1(𝑐) of 𝑉 −1([0, 𝑐]) for any 𝑐 ∈ (0, 1). 
Thus, Theorem  1 (or Theorem  2) furnishes an open neighborhood 𝑈 ⊂
S5 of 𝑆 and a 𝐶𝑘 embedding ℎ∶𝑈 → R5 such that, for any 𝑐 > 0 small 
enough that 𝑉 −1(𝑐) ⊂ 𝑈 , ℎ diffeomorphically maps 𝑉 −1(𝑐) onto a 𝐶𝑘
embedded submanifold 𝐿𝑐 ⊂ R5 intersecting every line through the 
origin in a single point and transversely. Fixing such a small 𝑐 > 0
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and letting 𝜌∶R5 ⧵ {0} → S4 be the straight line retraction 𝜌(𝑦) = 𝑦
‖𝑦‖ , 

it follows that
𝐿

𝑃𝑐
←←←←←←←←←←→ 𝑉 −1(𝑐)

ℎ
←←←←←←→ 𝐿𝑐

𝜌
←←←←←←→ S4

is a well-defined 𝐶𝑘-diffeomorphism. Since 𝐿 is a 𝐶∞ manifold 𝐶𝑘-
diffeomorphic to S4, 𝐿 is 𝐶∞-diffeomorphic to S4 [33, Thm 2.2.7]. □

Additional comments

The paper [6] dealt, more generally, with systems 𝑥̇ = 𝑓 (𝑥, 𝑢), 
where 𝑢 denotes an input or disturbance. That paper showed that 
the input to state stability property [38] is equivalent, under similar 
global changes of variables, to finiteness of the 𝐿2 norm (‘‘𝐻∞ gain’’) 
of the input/state operator (𝑥(0), 𝑢(⋅)) ↦ 𝑥(⋅). As remarked in [6], 
however, the generalization of linearization constructions to systems 
with disturbances is not immediate. We thus leave open the study of 
such extensions.

We also note the relationship between the work reported here and 
areas of current machine learning research. In [39, Chapter 6] one finds 
a discussion of ‘‘autoencoder’’ deep neural networks for the numerical 
approximation of Hartman-Grobman-like conjugacies for linearizations 
and Koopman eigenvalues. Our results, especially in combination with 
new theoretical results about the existence of such autoencoders [40], 
contributes to the theoretical foundation for such studies.

Finally, the proof of Theorem  2 is closely related to the proof 
of [6, Prop. 1], which can be viewed as a (global) extension of the 
Morse lemma [41] (see [42, Lem. 2.2]) to local minima of non-Morse 
functions. Incorporating Perelman’s result as in the proof of Theorem  2, 
the proof of [6, Prop. 1] can otherwise be repeated verbatim to prove 
Proposition  2 below. It extends the two-part statement [6, Prop. 1] by 
removing the hypothesis ‘‘𝑛 ≠ 4’’ from the first part and relaxing the 
hypothesis ‘‘𝑛 ≠ 4, 5’’ from the second part to ‘‘𝑛 ≠ 5’’, which reflects 
Perelman’s result. (It also contains the superficial extension of replacing 
the domain R𝑛 of 𝑉  with a 𝐶∞ manifold 𝑀 , but the hypotheses imply 
that 𝑀 is diffeomorphic to R𝑛.) Proposition  2 is a global statement, 
but it readily implies a local statement in a manner similar to the 
implication of Theorem  1 by Theorem  2.

For the following statement, a class ∞ function is a strictly increas-
ing and continuous function 𝛾 ∶ [0,∞) → [0,∞) satisfying lim𝑠→∞ 𝛾(𝑠) =
∞.

Proposition 2.  Let 𝑥∗ be the unique critical point of a proper 𝐶1 function 
𝑉 ∶𝑀 → R on a connected 𝑛-dimensional 𝐶∞ manifold 𝑀 . Assume 
furthermore that 𝑉  is 𝐶∞ on 𝑀 ⧵ {𝑥∗}. Then for each class ∞ function 
𝛾 that is 𝐶∞ on (0,∞), there exists a homeomorphism 𝑇 ∶𝑀 → R𝑛 with 
𝑇 (𝑥∗) = 0 such that
𝑉 ◦𝑇 −1(𝑦) = 𝛾(‖𝑦‖).

In particular this holds for 𝛾(‖𝑦‖) = ‖𝑦‖2∕2.
If 𝑛 ≠ 5 then 𝑇  can be chosen to restrict to a 𝐶∞-diffeomorphism 

𝑀 ⧵ {𝑥∗} → R𝑛 ⧵ {0}. Furthermore, in this case there exists a class ∞
function 𝛾 which is 𝐶∞ on (0,∞) and satisfies 𝛾(𝑠)∕𝛾 ′(𝑠) ≥ 𝑠 such that 𝑇  is 
𝐶1 with 𝐷𝑇 (0) = 0.
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