
Modular Machine Learning with Applications to Genetic Circuit
Composition

Jichi Wang1, Eduardo D. Sontag2, and Domitilla Del Vecchio3

Abstract— In several applications, including in synthetic
biology, one often has input/output data on a system composed
of many modules, and although the modules’ input/output
functions and signals may be unknown, knowledge of the
composition architecture can allow to significantly reduce
the amount of training data required to learn the system’s
input/output mapping. Learning the modules’ input/output
functions is also necessary for designing new systems from dif-
ferent composition architectures. Here, we propose a modular
learning framework, which incorporates prior knowledge of the
system’s compositional structure to (a) identify the composing
modules’ input/output functions from the system’s input/output
data and (b) achieve this by using a reduced amount of data
compared to what would be required without knowledge of
the compositional structure. To achieve this, we introduce
the notion of modular identifiability, which allows to recover
modules’ input/output functions from a subset of system’s
input/output data, and provide theoretical guarantees on a
class of systems motivated by genetic circuits. We demonstrate
the theory on computational studies showing that a neural
network (NNET) that accounts for the compositional structure
can learn the composing modules’ input/output functions and
predict the system’s output on inputs outside of the training
set distribution. By reducing the need for experimental data
and allowing modules’ identification, this framework offers the
potential to ease the design of synthetic biological circuits and
of multi-module systems more generally.

I. INTRODUCTION

In synthetic biology, genetic circuits are commonly de-
signed in a modular fashion, with each genetic module
performing specific functions in isolation. However, when
these modules are composed together in the cell, their per-
formance can be significantly impacted by interactions with
other modules, due to loading effects and resource competi-
tion between the modules [1]–[7]. These inter-dependencies
complicate the characterization and prediction of a system’s
behavior. Researchers have been developing physics-based
models to help design larger systems while accounting for
or mitigating these context effects [3], [5], [8]–[12], as
well as software tools [13], [14] to model genetic circuits
with varying complexity of context descriptions. Yet, when
composing genetic modules within the cellular host, there

*This work is supported by AFOSR MURI Award Number FA9550-22-
1-0316

1Department of Mechanical Engineering, Massachusetts Institute of Tech-
nology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Email:
jichi@mit.edu

2Department of Electrical and Computer Engineering and Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115,
USA. Email: sontag@gmail.com

3Department of Mechanical Engineering and Biological Engineering,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cam-
bridge, MA 02139, USA. Email: ddv@mit.edu

remain interactions that are difficult to model through first
principles. Therefore, machine learning (ML) models, such
as (recurrent) neural networks (NNETs) have been proposed
to reduce the uncertainty of physics-based models of genetic
circuits [15], [16], in-line with Physics-Informed Neural
Networks (PINNs) approaches pioneered in [17].

These ML approaches applied to genetic circuit modeling,
however, require large amounts of data. Also, they focus on
identifying a mapping between the inputs and the outputs of
a system composed of many genetic modules. Hence, they
provide little information about the input/output mapping of
the individual genetic modules. This information, in turn,
would be useful for composing the modules in new arrange-
ments to achieve new designs. Additionally, accounting for
the composition architecture in an ML model may allow the
use of substantially less training data to achieve the same
predictive ability. Specifically, in the case of a system with
multiple inputs, one may be able to train the ML model by
activating one input at a time as opposed to requiring to
generate data for all combinations of the inputs. If possible,
this would simplify experiments and make data generation
faster and cheaper.

In this paper, using information on the compositional
structure, we propose a modular learning framework to iden-
tify the modules’ input/output functions from training data,
under certain assumptions on the model architecture. Specifi-
cally, we consider modules with unknown input/output func-
tion, whose outputs are then composed through a partially
known map, called composition map, which has a known
structure but unknown parameters. We investigate condi-
tions under which one can learn the modules’ input/output
functions from data of the output of the composition map,
called the global output, when the modules’ inputs are only
activated one at the time.

We demonstrate that, under modular identifiability con-
ditions, this is possible. We thus show that using a NNET
architecture that preserves the structure of the composition
map, we can learn the modules’ input/output functions and
predict the global output for arbitrary combinations of in-
puts when the training set only considers one input being
activated at the time. When using the same training data, a
“monolithic” NNET that does not leverage the structure of
the composition is unable to generalize the output prediction
on arbitrary input combinations.

Related Work. The idea of training ML models on
input/output data where inputs are turned on one at the time
to then predict the output on a combination of inputs has
been applied before in different synthetic biology settings,

ar
X

iv
:2

50
9.

19
60

1v
1

 [
cs

.L
G

]
 2

3
Se

p
20

25

https://arxiv.org/abs/2509.19601v1

with promising results [18], [19]. However, these works did
not provide conditions under which this is possible, which
is one of the contributions of this paper.

In the context of networked dynamical systems, a related
problem is to estimate local subsystem dynamics when the
network topology is known. Under the assumptions that all
the subsystems’ output signals are linearly summed and some
internal signals are directly measurable, the identifiability of
the subsystems’ LTI transfer functions have been addressed
in [20], [21]. In the static case, closer to our problem
formulation, identifiability conditions have been provided
for subsystems’ input/output nonlinear functions under the
assumption that these are linearly composed [22], [23]. In
our paper, instead, motivated by the composition architecture
found in genetic circuits, we consider nonlinear composition
of static nonlinear functions.

II. PROBLEM FORMULATION

A. General System Formulation

Consider a system Σ composed of n subsystems or
modules. Each module is described by an unknown scalar
input/output function yi = fi(ui), where ui ∈ R denotes
the input to the ith module. The global measured output
Y ∈ Rn is given by a function G : Rn → Rm, according
to Y = G(y1, y2, . . . , yn, θ), in which θ ∈ Rp is a parameter
vector. We call this function the “composition map”. The
system structure is illustrated in Fig. 1.

Fig. 1. Illustration of the system Σ. The system consists of n modules,
each defined by yi = fi(ui) for i ∈ {1, . . . , n}, whose outputs are fed
into a composition map G.

In this paper, we will consider the problem of identifying
the functions fi, i ∈ {1, ..., n}, and parameter θ from mea-
surements of u = (u1, . . . , un) ∈ Rn and Y . Specifically,
we are interested in solving this problem when the inputs
ui are varied one at the time. To this end, let ai < bi be
real numbers, Ui = [ai, bi] ⊂ R, and u∗

i ∈ Ui. Define the
uni-modular input set U ⊂ Rn as

U :=

n⋃
i=1

Ui, (1)

where

Ui :=
{
u ∈ Rn|ui ∈ Ui, uj = u∗

j , ∀ j ̸= i
}
. (2)

Then, we ask when it is possible to identify the functions fi
for all i ∈ {1, ..., n} from measurements of the output Y of
system Σ for u ∈ U .

Definition 1: The system Σ is said to be modularly iden-
tifiable on the uni-modular input set U if all functions
fi(ui) and parameters θ can be uniquely recovered from the
measured output Y , that is:

G(f̂1(u1), . . . , f̂n(un), θ̂) = G(f1(u1), . . . , fn(un), θ),

∀ u ∈ U
=⇒

f̂i(ui) = fi(ui), ∀ui ∈ Ui, i ∈ {1, 2, . . . , n}, and θ̂ = θ.
(3)

III. CASE OF A SINGLE MODULE

We first consider the case of a single module, i.e., n = 1,
and one unknown parameter, θ ∈ R. Here, we consider the
following model for the output Y :

Y = G(f(u), θ) =
θ · f(u)
1 + f(u)

. (4)

Without loss of generality, we let ai = 0 and bi = 1, such
that U = U = [0, 1].

A. Motivation: Regulation of a Gene Expression Module

In this section, we illustrate how the form (4) emerges
from the regulation of gene expression. The process of gene
expression produces protein from DNA through two steps.
In a first step, transcription transforms a DNA sequence into
a messenger RNA (mRNA) sequence, and in a second step,
translation transforms this mRNA sequence into a sequence
of amino acids that then folds into a protein [24]. A protein,
in turn, can be a transcriptional regulator, activating or
repressing the transcription of other genes. These regulators,
called transcription factors, can be regarded as the inputs to a
gene expression module (Fig. 2). Each such module, can be
described by a set of chemical reactions as follows (Chapter
2 of [24]). The process of transcription can be described by

Transcription: DNA
f̄ (u)−−→ mRNA + DNA,

in which f̄(u) is a regulatory function called Hill function
[24], which is increasing with u for an activator or decreasing
with u for a repressor. Translation requires a cellular resource
called the ribosome (Ribo), which is shared with the cellular
translation processes, and can be written as:

Translation: mRNA + Ribo
ā−−⇀↽−−
d̄

Ribo:mRNA

Ribo:mRNA k0−−→ Y + Ribo + mRNA,

in which Y is the protein output of the gene expression
module. Protein and mRNA then decay:

Y
γ−−→ ∅, mRNA δ−−→ ∅.

We lump the rest of the cell mRNA into a single species
mRNAcell which is produced from DNAcell at a constant rate

Fig. 2. Regulation of a single gene expression module.

A′
0, and free ribosomes reversibly bind with mRNAcell to

produce protein Ycell, as done elsewhere [9], [24]:

DNAcell
A

′
0−−→ mRNAcell + DNAcell

mRNAcell + Ribo
a′−−⇀↽−−
d′

Ribo:mRNAcell

Ribo:mRNAcell
k′
0−−→ Ycell + Ribo + mRNAcell

Ycell
γ′

−−→ ∅, mRNAcell
δ′−−→ ∅.

The Reaction Rate Equations (RREs) corresponding to these
chemical reactions can be written using the law of mass
action [24] as follows:

dY

dt
= k0 · [Ribo:mRNA]− γ · Y

d[mRNA]

dt
= f̄(u) · [DNA]

− ā · [mRNA] · [Ribo] + d̄ · [Ribo:mRNA]

+ k0 · [Ribo:mRNA]− δ · [mRNA]

d[Ribo:mRNA]

dt
= ā · [mRNA] · [Ribo]

− d̄ · [Ribo:mRNA]− k0 · [Ribo:mRNA].

Similarly, in the rest of the cell, we have the RREs as follow:

dYcell

dt
= k′0 · [Ribo:mRNAcell]− γ′ · Ycell

d[mRNAcell]

dt
= A′

0 · [DNAcell]

− a′ · [mRNAcell] · [Ribo] + d′ · [Ribo:mRNAcell]

+ k′0 · [Ribo:mRNAcell]− δ′ · [mRNAcell]

d[Ribo:mRNAcell]

dt
= a′ · [mRNAcell] · [Ribo]

− d′ · [Ribo:mRNAcell]− k′0 · [Ribo:mRNAcell].

Let RT be the total concentration of ribosome, then we have
the conservation law:

RT = [Ribo] + [Ribo:mRNA] + [Ribo:mRNAcell].

The binding and unbinding reactions are much faster than
the catalytic reactions and gene expression, i.e., RT · ā, d̄ ≫
k0, γ, δ, f̄(u) and RT ·a′, d′ ≫ k′0, γ

′, δ′, A′
0 [24]. Therefore,

we can use the Quasi-Steady-State Approximation (QSSA)
to set

d[Ribo:mRNA]

dt
= 0 and

d[Ribo:mRNAcell]

dt
= 0.

Therefore, we have

[Ribo:mRNA] =
[mRNA]

K
· [Ribo], K =

d̄+ k0
ā

,

[Ribo:mRNAcell] =
[mRNAcell]

K ′ · [Ribo], K ′ =
d′ + k′0

a′
.

Solving for the free ribosome using the conservation law for
ribosome, we have that

[Ribo] =
RT

1 + [mRNAcell]
K′ + [mRNA]

K

.

Then, we arrive at simplified differential equations for dY
dt ,

d[mRNA]
dt , and d[mRNAcell]

dt :

dY

dt
= k0 ·

[mRNA]

K
· RT

1 + [mRNAcell]
K′ + [mRNA]

K

− γ · Y

d[mRNA]

dt
= f̄(u) · [DNA]− δ · [mRNA]

d[mRNAcell]

dt
= A′

0 · [DNAcell]− δ′ · [mRNAcell],

which is consistent with standard models [5]. At the unique
equilibrium of the system, the Jacobian matrix is upper
triangular with negative diagonal entries. Consequently, all
eigenvalues are negative and the equilibrium is locally ex-
ponentially stable. Since we are interested in the steady
state input/output mapping of the system, we then set the
derivatives to zero to obtain the equilibrium and hence the
global input/output function:

Y =

k0·[DNA]·RT

γ·δ·K · f̄(u)

1 +
A′

0·[DNAcell]
δ′·K′ + [DNA]

δ·K · f̄(u)
.

Dividing both the numerator and denominator by (1 +
A′

0·[DNAcell]
δ′·K′), the protein expression level of a single tran-

scriptional regulation module can be written as:

Y =
θ · f(u)
1 + f(u)

,

in which θ = k0·RT

γ and f(u) = [DNA]
δ·K /(1+

A′
0·[DNAcell]
δ′·K′)·f̄(u).

This coincides with (4).

B. Modular Identifiability when θ = 1

Here, we assume θ = 1. Let f, f̂ : C([0, 1]) → R, and
f(u), f̂(u) ≥ 0 for u ∈ [0, 1], where f̂(u) is used to
approximate f(u). Let

G(f(u)) =
f(u)

1 + f(u)
.

Proposition 1: The model is modularly identifiable, that
is:

G(f(u)) = G(f̂(u)),∀u ∈ [0, 1]

=⇒ f(u) = f̂(u),∀u ∈ [0, 1].
Proof: Since the function G(s) = s

1+s is strictly
increasing for s ≥ 0, it is injective on its domain R+. By
assumption, f(u), f̂(u) are positive for all u ∈ [0, 1]. Thus,
if G(f(u)) = G(f̂(u)) for all u ∈ [0, 1], f(u) = f̂(u) for
all u ∈ [0, 1].

Proposition 2: For any ϵ > 0, there exists a δ > 0, such
that∣∣∣G(f(u))−G(f̂(u))

∣∣∣ < δ

=⇒
∣∣∣f(u)− f̂(u)

∣∣∣ < ϵ, for u ∈ [0, 1].

Proof: Since G(s), f(u), and f̂(u) are continuous, the
sets G(f([0, 1])) and G(f̂([0, 1])) are compact. Hence, their
union K := G(f([0, 1])) ∪G(f̂([0, 1])) is a compact subset
of [0, 1). Additionally, as G(s) is injective, it has an inverse,
given by

G−1(y) =
y

1− y
, y ∈ K.

On the compact set K, the derivative

(G−1)′(y) =
1

(1− y)2

is continuous and thus bounded. This implies that G−1 is
Lipschitz on K with Lipschitz constant L > 0. We thus
have that∣∣∣f(u)− f̂(u)

∣∣∣ = ∣∣∣G−1(G(f(u)))−G−1(G(f̂(u)))
∣∣∣

≤ L
∣∣∣G(f(u))−G(f̂(u))

∣∣∣ .
Thus, given any ϵ > 0, by picking δ = ϵ

L , we prove the
statement.

Proposition 2 implies that if G(f(u)) can be estimated
with sufficiently high accuracy, then f(u) will likewise be
estimated with comparable accuracy. We will illustrate this
point in the next section with an example.

C. Example

Here, we assume to have input/output data (u, Y) for Y =
G(f(u)) and u ∈ [0, 1] as training set, and use a ML model
given by:

G(f̂(u)) =
f̂(u)

1 + f̂(u)
,

in which f̂(u) is a NNET. According to Proposition 2, if we
make the error |G(f̂(u)) − G(f(u))| sufficiently small, we
should also be making the error |f̂(u) − f(u)| sufficiently
small. As an example, we let

f(u) =
0.797 ·

(
u

0.494

)4
1 +

(
u

0.494

)4 + 0.443.

Fig. 3. Define EG := maxk |G(f̂(uk))−G(f(uk))|/maxk G(f(uk))
and Ef := maxk |f̂(uk) − f(uk)|/maxk f(uk), in which uk are the
elements of the training set. (a) The plot shows the error convergence
over 1000 epochs. The training dataset comprises 100 input/output pairs
(uk, Yk), where inputs uk is uniformly sampled from the interval [0, 1].
We choose f̂(u) as a fully connected feedforward NNET with four
hidden layers, each containing 20 ReLU-activated neurons, and initialize
its weights using Kaiming initialization [25]. The NNET f̂(u) is trained
using the Adam optimizer with a learning rate of 0.1 and full-batch
gradient descent, with the cost function given by the mean square error
1

100

∑100
k=1 |G(f̂(uk))−G(f(uk))|2. (b) The plot shows the comparison

between the trained f̂(u) and true f(u) at the final (1000th) epoch.

As shown in Fig. 3(a), |f̂(u) − f(u)| converges to 0, as
|G(f̂(u))−G(f(u))| converges to 0, which verifies Propo-
sition 2. Fig. 3(b) shows trained f̂(u) against the true f(u)
at the end epoch.

D. Modular Identifiability for Unknown θ

If θ is unknown, then we have an additional parameter to
identify. In this case, a similar result as that in Section III-
B can be obtained by restricting f(u) and f̂(u) to be
polynomials with given degree. Consequently, the system is
modularly identifiable over the class of polynomial functions,
which provides a sufficient condition for identifiability. When
f(u), f̂(u) are, for instance, rational functions, we are not
able to identify θ and f(u). As a example, suppose that θ = 5
and f(u) is a Hill function:

f(u) =
u

1 + u
,

then any θ̂ ̸= θ and f̂(u) =
θ
θ̂
·f(u)

1+ θ̂−θ
θ ·f(u)

will give

G(f̂(u), θ̂) = G(f(u), θ) but f̂(u) ̸= f(u).

IV. CASE OF MULTIPLE MODULES

Without loss of generality, we consider two modules to
simplify notation, that is, n = 2. The case of n > 2 modules
can be treated similarly. Let

U1 = {u ∈ R2 | u1 ∈ [0, 1], u2 = 1},
U2 = {u ∈ R2 | u1 = 1, u2 ∈ [0, 1]},

U = U1 ∪ U2.

The measured output Y can be expressed as:

Y = G(f1(u1), f2(u2), θ) =

[
G1(f1(u1), f2(u2), θ)
G2(f1(u1), f2(u2), θ)

]
, (5)

Fig. 4. Illustration showing two transcriptional regulation modules that
share ribosomes.

with θ = (θ1, θ2) ∈ R2 and

Gi(f1(u1), f2(u2), θ) =
θi · fi(ui)

1 + f1(u1) + f2(u2)
, i ∈ {1, 2}.

(6)
We make the following assumptions in the rest of the paper.

Assumption 1: Let f1, f2 : [0, 1] → R be non-constant
continuous functions such that f1(1) ̸= 0 and f2(1) ̸= 0.
Furthermore, suppose θ ∈ Θ, where Θ ⊂ R2 is compact.

A. Motivation: Regulation of Two Gene Expression Modules

In this case, we consider two transcriptional modules that
are coupled due to competition for a shared cellular resource,
the ribosome, illustrated in Fig. 4. The introduction of the
second module gives rise to an additional regulatory function
f̄2(u2). Similar derivations to those in Section III-A, in
which we treat the mRNA of the second module analogously
to the mRNA of the first module and use f̄2(u2) instead of
f̄(u), yield Y in the form of (5)-(6).

B. Modular Identifiability

In this section, we give the main result of the paper,
conditions that ensure we can estimate the functions fi(ui),
i ∈ {1, 2}, from measurements of Y on the input set U which
varies the input for one module at the time.

Theorem 1: The model in (5)-(6) is modularly identifi-
able, that is:

Gi(f̂1(u1), f̂2(u2), θ̂) = Gi(f1(u1), f2(u2), θ),

∀u ∈ U , ∀ i ∈ {1, 2}
=⇒

f̂i(ui) = fi(ui) and θ̂i = θi, ∀ i ∈ {1, 2}, ∀ui ∈ [0, 1].
Proof: Define the following constants:

A1 = f1(1), Â1 = f̂1(1), A2 = f2(1), Â2 = f̂2(1).

Also, define the following functions:
G1(f1(u1), f2(u2), θ) for (u1, u2) ∈ U1 as:

G11(u1) =
θ1 · f1(u1)

1 + f1(u1) +A2
, u1 ∈ [0, 1]

G2(f1(u1), f2(u2), θ) for (u1, u2) ∈ U1 as:

G21(u1) =
θ2 ·A2

1 + f1(u1) +A2
, u1 ∈ [0, 1]

G1(f1(u1), f2(u2), θ) for (u1, u2) ∈ U2 as:

G12(u2) =
θ1 ·A1

1 +A1 + f2(u2)
, u2 ∈ [0, 1]

G2(f1(u1), f2(u2), θ) for (u1, u2) ∈ U2 as:

G22(u2) =
θ2 · f2(u2)

1 +A1 + f2(u2)
, u2 ∈ [0, 1].

Let Ĝij(uj) for i, j ∈ {1, 2} be defined as Gij(uj) by
replacing θi with θ̂i, Ai with Âi, and fj(uj) with f̂j(uj).
We then have

G11(u1)− Ĝ11(u1) = 0 =⇒
θ1 · f1(u1) · (1 + Â2)− θ̂1 · f̂1(u1) · (1 +A2)+

(θ1 − θ̂1) · f1(u1) · f̂1(u1) = 0, (7)

and

G21(u1)− Ĝ21(u1) = 0 =⇒
θ2 ·A2 · (1 + f̂1(u1))− θ̂2 · Â2 · (1 + f1(u1))+

(θ2 − θ̂2) ·A2 · Â2 = 0. (8)

From (7) and (8), we can obtain two expressions for f̂(u1).
Then, by equating these two expressions and rearranging the
terms, we obtain

α · f1(u1)
2 + β · f1(u1) + γ = 0, (9)

where

α = θ̂2Â2
θ2A2

(θ1 − θ̂1),

β = (θ1 − θ̂1)
θ̂2Â2
θ2A2

+ θ1(1 + Â2)

− θ̂1(1 +A2)
θ̂2Â2
θ2A2

− (θ1 − θ̂1)
(

θ2−θ̂2
θ2

Â2 + 1
)
,

γ = −θ̂1(1 +A2)
θ̂2Â2
θ2A2

+ θ̂1(1 +A2)
(

θ2−θ̂2
θ2

Â2 + 1
)
.

Since f1(u1) is continuous and not a constant, its image
f1([0, 1]), by the Intermediate Value Theorem, is an interval
in R. Therefore, the left-hand side of (9) is a polynomial in
f1(u1) that vanishes on a subset of R that has infinitely many
limit points. Then, using the Polynomial Identity Theorem
[26], we have that all the coefficients of f1(u1)

2, f1(u1),
and f1(u1)

0 must be 0. Then, setting α = 0 gives θ̂1 = θ1.
Using the same argument for G12(u2) and G22(u2), we can
obtain that θ̂2 = θ2. Setting β = 0 and γ = 0 with θ̂1 = θ1
and θ̂2 = θ2, we then have

(1 + Â2)− (1 +A2) ·
Â2

A2
= 0 =⇒ Â2 = A2.

Thus, it follows from (8) that f̂1(u1) = f1(u1) for all
u1 ∈ [0, 1]. Again, applying this argument to G12(u2) and
G22(u2), we obtain f̂2(u2) = f2(u2) for all u2 ∈ [0, 1].

In the next theorem, we show that if the approximating
functions G1(f̂1(u1), f̂2(u2), θ̂) and G2(f̂1(u1), f̂2(u2), θ̂)
are arbitrarily close to the true functions on the input set
U , then f̂1(u1), f̂2(u2) will be close to f1(u1), f2(u2).

Theorem 2: For any ϵ > 0, there exists a δ > 0, such that
if ∣∣∣Gi(f̂1(u1), f̂2(u2), θ̂)−Gi(f1(u1), f2(u2), θ)

∣∣∣ < δ,

∀ i ∈ {1, 2}, ∀ u ∈ U ,

then∣∣∣f̂i(ui)− fi(ui)
∣∣∣ < ϵ and

∣∣∣θ̂i − θi

∣∣∣ < ϵ,

∀ i ∈ {1, 2},∀ui ∈ Ui.
Proof: Let (u1

i , u
2
i) ∈ [0, 1]2 for i ∈ {1, 2}. Let

x = (f1(u
1
1), f1(u

2
1), f1(1), f2(u

1
2), f2(u

2
2), f2(1), θ1, θ2) ∈

R8. When u1
i , u

2
i range in [0, 1] and θ1, θ2 range in Θ, from

Assumption 1, x ∈ X with X a compact subset of R8. Define
the map F : X → R8 by F(x) = y, where

y =



θ1f1(u
1
1)

1 + f1(u1
1) + f2(1)

θ2f2(1)

1 + f1(u1
1) + f2(1)

θ1f1(1)

1 + f1(1) + f2(u1
2)

θ2f2(u
1
2)

1 + f1(1) + f2(u1
2)

θ1f1(u
2
1)

1 + f1(u2
1) + f2(1)

θ2f2(1)

1 + f1(u2
1) + f2(1)

θ1f1(1)

1 + f1(1) + f2(u2
2)

θ2f2(u
2
2)

1 + f1(1) + f2(u2
2)



.

Let Y = F(X) be the image of X . Since F is continuous
and X is compact, Y is compact. It can be shown that F is
injective (see Lemma 1 in Appendix), and hence F : X → Y
is a bijection. Thus, by Theorem 26.6 in [27], F : X → Y is
a homeomorphism, that is, F−1 is continuous on Y . Since
Y is a compact set, F−1 : Y → X is uniformly continuous
on Y (Theorem 27.6 in [27]). This implies that for all ϵ > 0,
there exists δ > 0, independent of y1, y2 ∈ Y , such that∥∥y1 − y2

∥∥ < δ =⇒
∥∥x1 − x2

∥∥ < ϵ,

with x1 = F−1(y1) and x2 = F−1(y2).
Hence, for all ϵ > 0, there exists δ > 0, such that if

|Gi(f̂1(u1), f̂2(u2), θ̂) − Gi(f1(u1), f2(u2), θ)| < δ for all
u ∈ U and i ∈ {1, 2}, then for all i ∈ {1, 2} and for all ui ∈
[0, 1], we have that |f̂i(ui) − fi(ui)| < ϵ and |θ̂i − θi| < ϵ.

C. Computational Study

Here, we demonstrate that, by virtue of Theorem 1 and
2, we can learn the subsystems’ functions f1, f2 and the
parameters θ1, θ2 from measurements of the global output
Y on the input set U . In particular, we define the following

functions and parameters. Let f1(u1) be an activating Hill
function and f2(u2) be a repressing Hill function.

f1(u1) =
0.326 ·

(
u1

0.952

)4

1 +
(

u1

0.952

)4 + 0.176,

f2(u2) =
0.261

1 +
(

u2

0.415

)2 + 0.192,

θ1 = 0.703, θ2 = 0.204.

As our ML model, we take f̂1, f̂2 as NNETs and θ̂1, θ̂2
as learnable parameters. Our training dataset consists of
200 pairs (uk, Yk) with uk ∈ U = U1 ∪ U2. The first
100 inputs are of the form (ū1, 1), where ū1 is uniformly
sampled from [0, 1]. Similarly, the second 100 inputs are of
the form (1, ū2), where ū2 is uniformly sampled from [0, 1].
We optimize the following cost function:

1

200

200∑
k=1

∣∣∣G1(f̂(u1k), f̂(u2k), θ̂)−G1(f(u1k), f(u2k), θ)
∣∣∣2

+
∣∣∣G2(f̂(u1k), f̂(u2k), θ̂)−G2(f(u1k), f(u2k), θ)

∣∣∣2 .
(10)

Here, f̂1(u1), f̂2(u2) are chosen as fully connected feedfor-
ward NNETs with four hidden layers, each containing 20
ReLU-activated neurons. The weights of f̂1(u1), f̂2(u2) are
initialized using Kaiming initialization [25], and θ̂1, θ̂2 are
initialized as 3. Training is performed using the Adam op-
timizer with a learning rate of 0.005 and full-batch gradient
descent.

As shown in Fig. 5(a)-(c), for i ∈ {1, 2}, |f̂i(ui)−fi(ui)|
and |θ̂i − θi| converge to 0, as |Gi(f̂1(u1), f̂2(u2), θ̂) −
Gi(f1(u1), f2(u2), θ)|, i ∈ {1, 2}, converge to 0, which
verifies Theorem 2. The comparison between the learned
model f̂1(u1), f̂2(u2) and the true functions f1(u1), f2(u2)
at the final epoch is shown in Fig. 5(d).

Prediction of system’s output on out-of-distribution
test data. Because the estimated modules’ functions and
parameter θ are very close to the true entities, we expect that
our learned model, trained on the input set U in which one
input only is varied at the time, should predict well the output
from arbitrary input combinations. These input combinations
form test data that lie outside the distribution of the training
data. We therefore evaluate the learned model prediction on
this out-of-distribution test data against the predictions of
a monolithic NNET trained on the same input set U . This
is shown in Fig 6. The monolithic ML model is taken to
be a fully connected feedforward NNET with two inputs,
two outputs, and four hidden layers of 50 ReLU-activated
neurons each, with the weights initialized using Kaiming
initialization. We used the Adam optimizer with a learning
rate of 0.001 to minimize the same error in (10), training the
model for 8,000 epochs until the training error converged.

From these plots, we see that while the modular learning
model generalizes well on the entire input set, the monolithic
approach does not generalize well for arbitrary combinations

Fig. 5. Error convergence over 84,000 epochs for the case of two modules.
Define the following errors: EGi := maxk |Gi(f̂1(u1k), f̂2(u2k), θ̂) −
Gi(f1(u1k), f2(u2k), θ)|/maxk Gi(f1(u1k), f2(u2k), θ), Efi :=

maxk |f̂i(uik) − fi(uik)|/maxk fi(uik), and Eθi := |θ̂i − θi|/θi, for
i = {1, 2}. (a) The plot shows the convergence of EG1 and EG2. (b)
The plot shows the convergence of Ef1 and Ef2. (c) The plot shows
the convergence of Eθ1 and Eθ2. (d) The plot shows the comparison
between the true functions f1(u1), f2(u2) and their learned counterparts
f̂1(u1), f̂2(u2) at the final (84,000th) epoch. Also, at the final epoch, the
learned parameters θ̂1 = 0.70325, θ̂2 = 0.20361 vs. the true parameters
θ1 = 0.70340, θ2 = 0.20357.

of inputs, but only for those input combinations that belong
to the distribution of the training set.

V. CONCLUSION

In this paper, we introduced a modular ML framework,
which leverages prior knowledge of the composition struc-
ture of a system to learn the input/output functions of the
composing modules from input/output data of the system.
We have also demonstrated how, by learning the modules,
the modular ML model can generalize on out-of-distribution
data, whereas a monolithic ML model fails to do so.

As a running example, we considered a system architecture
that emerges when composing genetic circuit modules in the
cell, which share resources. In this setup, we have considered
an example involving several input/output genetic modules
operating in the cell and competing for ribosomes. We have
demonstrated that it is sufficient to activate one module at
the time to enable predictions on arbitrary combinations of
modules’ input. From a practical point of view, this allows
to dramatically reduce the data requirement for enabling
prediction of the behavior of many modules operating to-
gether in the cell while accounting for the effects of context-
dependence [1]–[7]. In future work, we seek to extend these
ML models to capture more context effects beyond resource
sharing and to use these for system design.

Our work, at present, idealizes perfect measurement of
global input/output data. In real experimental settings, how-
ever, measurements can be noisy, which may cause the

Fig. 6. We use the same simulation setup as in Fig 5 to com-
pare the generalization ability of our modular learning approach and
a monolithic learning approach. The modular learning model is the
same as in Fig 5. Let Modular-model denote the trained modular
learning model and Mono-model be the trained monolithic learning
model. For M ∈ {Modular-model,Mono-model} and i ∈ {1, 2} ,
the point-wise error is defined as EM

Gi
(u1, u2) := |M(u1, u2)i −

Gi(f1(u1), f2(u2), θ)|/Gi(f1(u1), f2(u2), θ). The loss surfaces are gen-
erated from 10,000 test grid points uniformly sampled over [0, 1]2.

learned functions and parameters to deviate from their true
values. As a direction for future work, it would be interesting
to investigate how the modular learning approach performs
when applied to such real-world data. In addition, while
this paper focuses on the steady-state input/output mapping,
extending the framework to a dynamical systems setting
could provide deeper insights into the system’s behavior over
time-series input/output data.

APPENDIX

Lemma 1: Assume f1(u
1
1) ̸= f1(u

2
1), f2(u

1
2) ̸= f2(u

2
2)

and θ1, θ2 ̸= 0. Define, for j, k ∈ {1, 2},

Gj
11 :=

θ1 f1(u
j
1)

1 + f1(u
j
1) + f2(1)

, Gj
21 :=

θ2 f2(1)

1 + f1(u
j
1) + f2(1)

,

Gk
12 :=

θ1 f1(1)

1 + f1(1) + f2(uk
2)

, Gk
22 :=

θ2 f2(u
k
2)

1 + f1(1) + f2(uk
2)

.

Consider the map

F :
(
f1(u

1
1), f1(u

2
1), f1(1), f2(u

1
2), f2(u

2
2), f2(1), θ1, θ2

)
→

(
G1

11, G
1
21, G

1
12, G

1
22, G

2
11, G

2
21, G

2
12, G

2
22

)
.

Then, F is injective.
Proof: For j, k ∈ {1, 2} we obtain the ratios

Gj
11

Gj
21

=
θ1
θ2

f1(u
j
1)

f2(1)
,

Gk
22

Gk
12

=
θ2
θ1

f2(u
k
2)

f1(1)
. (11)

We also compute

θ2

Gj
21

=
1

f2(1)
+ 1 +

f1(u
j
1)

f2(1)
=

1

f2(1)
+ 1 +

θ2
θ1

Gj
11

Gj
21

, (12)

and

θ1
Gk

12

=
1

f1(1)
+ 1 +

f2(u
k
2)

f1(1)
=

1

f1(1)
+ 1 +

θ1
θ2

Gk
22

Gk
12

. (13)

First, we recover θ1. Subtracting (12) for j = 1 and j = 2
and dividing by θ2 on both sides, we get

θ1 =

G1
11

G1
21

− G2
11

G2
21

1
G1

21
− 1

G2
21

.

Similarly, we obtain θ2 through (13). Then, with θ1, θ2
both known, we can use (12) and (13) to solve for
f2(1), f1(1). Finally, from the ratios in (11) we can derive
f1(u

1
1), f1(u

2
1), f2(u

1
2), f2(u

2
2).

REFERENCES

[1] S. Jayanthi, K. S. Nilgiriwala, and D. D. Vecchio, “Retroactivity
controls the temporal dynamics of gene transcription,” ACS Synthetic
Biology, vol. 2, no. 8, pp. 431–441, 2013.

[2] T. W. Grunberg and D. D. Vecchio, “Modular analysis and design of
biological circuits,” Current Opinion in Biotechnology, vol. 63, pp.
41–47, 2020.

[3] D. Mishra, P. M. Rivera, A. Lin, D. D. Vecchio, and R. Weiss, “A
load driver device for engineering modularity in biological networks,”
Nature Biotechnology, vol. 32, no. 12, pp. 1268–1275, 2014.

[4] D. D. Vecchio, A. J. Ninfa, and E. D. Sontag, “Modular cell biology:
retroactivity and insulation,” Molecular Systems Biology, vol. 4, no. 1,
p. 161, 2008.

[5] Y. Qian, H.-H. Huang, J. I. Jiménez, and D. D. Vecchio, “Resource
competition shapes the response of genetic circuits,” ACS Synthetic
Biology, vol. 6, no. 7, pp. 1263–1272, 2017.

[6] R. D. Blasi, J. Gabrielli, K. Shabestary, I. Ziarti, et al., “Understanding
resource competition to achieve predictable synthetic gene expression
in eukaryotes,” Nature Reviews Bioengineering, vol. 2, no. 9, pp. 721–
732, 2024.

[7] R. D. Blasi, M. Pisani, F. Tedeschi, M. M. Marbiah, K. Polizzi,
S. Furini, V. Siciliano, and F. Ceroni, “Resource-aware construct
design in mammalian cells,” Nature Communications, vol. 14, no. 1,
p. 3576, 2023.

[8] D. D. Vecchio, “Modularity, context-dependence, and insulation in
engineered biological circuits,” Trends in Biotechnology, vol. 33, no. 2,
pp. 111–119, Feb 2015.

[9] A. György, J. I. Jiménez, J. Yazbek, H.-H. Huang, H. Chung, R. Weiss,
and D. D. Vecchio, “Isocost lines describe the cellular economy of
genetic circuits,” Biophysical Journal, vol. 109, no. 3, pp. 639–646,
2015.

[10] H.-H. Huang, Y. Qian, and D. D. Vecchio, “A quasi-integral controller
for adaptation of genetic modules to variable ribosome demand,”
Nature Communications, vol. 9, p. 5415, 2018.

[11] R. D. Jones, Y. Qian, V. Siciliano, B. DiAndreth, J. Huh, R. Weiss, and
D. D. Vecchio, “An endoribonuclease-based feedforward controller
for decoupling resource-limited genetic modules in mammalian cells,”
Nature Communications, vol. 11, p. 5690, 2020.

[12] T. Frei, F. Cella, F. Tedeschi, J. Gutiérrez, G.-B. Stan, M. Khammash,
and V. Siciliano, “Characterization and mitigation of gene expression
burden in mammalian cells,” Nature Communications, vol. 11, p. 4641,
2020.

[13] A. Pandey, W. Poole, A. Swaminathan, V. Hsiao, and R. M. Murray,
“Fast and flexible simulation and parameter estimation for synthetic
biology using bioscrape,” Journal of Open Source Software, vol. 8,
no. 83, p. 5057, 2023.

[14] W. Poole, A. Pandey, A. Shur, Z. A. Tuza, and R. M. Murray, “Biocrn-
pyler: Compiling chemical reaction networks from biomolecular parts
in diverse contexts,” PLoS Computational Biology, vol. 18, no. 4, p.
e1009987, 2022.

[15] A. Darabi, Z. An, M. A. Al-Radhawi, W. Cho, M. Siami, and
E. D. Sontag, “Combining model-based and data-driven models: an
application to synthetic biology resource competition,” bioRxiv, 2025,
preprint, posted March 2025.

[16] S. Palacios, J. J. Collins, and D. Del Vecchio, “Machine learning for
synthetic gene circuit engineering,” Current Opinion in Biotechnology,
vol. 92, p. 103263, 2025.

[17] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang,
and L. Yang, “Physics-informed machine learning,” Nature Reviews
Physics, vol. 3, no. 6, pp. 422–440, 2021.

[18] M. Eslami, A. E. Borujeni, H. Eramian, M. Weston, G. Zheng, J. Ur-
rutia, C. Corbet, D. Becker, K. Maschhoff, A. Clowers, A. Cristofaro,
H. D. Hosseini, D. B. Gordon, Y. Dorfan, J. Singer, M. Vaughn,
N. Gaffney, J. Fonner, C. A. V. Stubbs, and E. Yeung, “Prediction
of whole-cell transcriptional response with machine learning,” Bioin-
formatics, vol. 38, no. 2, pp. 404–409, 2022.

[19] M. A. Alcantar, M. A. English, J. A. Valeri, and J. J. Collins, “A
high-throughput synthetic biology approach for studying combinatorial
chromatin-based transcriptional regulation,” Molecular Cell, vol. 84,
no. 12, pp. 2382–2396.e9, 2024.

[20] P. M. J. van den Hof, A. G. Dankers, P. S. C. Heuberger, and X. J. A.
Bombois, “Identification of dynamic models in complex networks
with prediction error methods: Basic methods for consistent module
estimates,” Automatica, vol. 49, no. 10, pp. 2994–3006, 2013.

[21] A. Dankers, P. M. J. V. den Hof, X. Bombois, and P. S. C. Heuberger,
“Identification of dynamic models in complex networks with predic-
tion error methods: Predictor input selection,” IEEE Transactions on
Automatic Control, vol. 61, no. 4, pp. 937–952, 2016.

[22] R. Vizuete and J. M. Hendrickx, “Nonlinear network identifiability:
The static case,” in 2023 62nd IEEE Conference on Decision and
Control (CDC). IEEE, 2023, pp. 443–448.

[23] ——, “Nonlinear network identifiability with full excitations,” arXiv
preprint arXiv:2405.07636, 2024.

[24] D. Del Vecchio and R. M. Murray, Biomolecular Feedback Systems.
Princeton, NJ, USA: Princeton University Press, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[26] T. W. Hungerford, Algebra, ser. Graduate Texts in Mathematics. New
York: Springer-Verlag, 1974, vol. 73, volume 73 in GTM series.

[27] J. R. Munkres, Topology, 2nd ed. Upper Saddle River, NJ, USA:
Prentice Hall, 2000.

