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Abstract
T Cell Engager (TCE)s are an exciting therapeutic modality in immuno-oncology that
acts to bypass antigen presentation and forms a direct link between cancer and immune
cells in the TumorMicroenvironment (TME). TCEs are efficacious onlywhen the drug
is bound to both immune and cancer cell targets. Therefore, approaches that maximize
the formation of the drug-target trimer in the TME are expected to increase the drug’s
efficacy. In this study, we quantitatively investigate how the concentration of ternary
complex and its biodistribution depend on both the targets’ specific properties and the
design characteristics of the TCE, and specifically on the binding kinetics of the drug to
its targets. A simplified mathematical model of drug-target interactions is considered
here, with insights from the “three-body" problem applied to the model. Parameter
identifiability analysis performed on the model demonstrates that steady state data,
which is often available at the early pre-clinical stages, is sufficient to estimate the
binding affinity of the TCE molecule to both targets. We used the model to analyze
several existing antibodies, both clinically approved and under development, to explore
their common kinetic features. The manuscript concludes with an assessment of a full
quantitative pharmacologymodel that accounts for drug disposition into the peripheral
compartment.
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1 Introduction

Cancer immunotherapy has revolutionized the field of cancer treatment, highlight-
ing that the immune system can eliminate tumors in many cases if given assistance
Mellman et al. (2011). Immunotherapy approaches include reactivating immune cells
through checkpoint inhibition Goleva (2021), as well as through exogenous immune
cell therapies such as using Chimeric Antigen Receptor T (CAR-T) cells Feins (2019).
Despite these advances, only a subset of cancers responds to these therapies (“hot"
tumors), with some tumors remaining “cold", possibly because of reduced immune
infiltration or lack of effective antigen presentation in the TME Bonaventura (2019);
Liu and Sun (2021).

One approach to circumvent this issue is to bypass antigen presentation altogether,
connecting a therapeutic agent directly with a tumor cell, a strategy implemented using
bispecific T cell engagers, or TCEs Stieglmaier et al. (2015); Yuraszeck et al. (2017);
Betts and van der Graaf (2020); Tian (2021). This therapeutic modality has been
proposed for treating acute myeloid leukemia Laszlo (2014), multiple myeloma Hipp
(2017), lymphoblastic leukemia Topp (2014), and refractory solid tumors Kebenko
(2018). TCE is a promising platform for targeted therapy across different tumor types
Einsele (2020). A list of TCEmolecules that were considered in this study is presented
in Table 1. A more detailed review of the existing TCEs can be found in Tian (2021);
Morcos (2021).

In this study, the first objective is to evaluate the design characteristics of existing
TCEs based on the simple model presented in Figure 1. The TCE drug, X , targets
receptors on immune cells, T1, which for TCEs is often CD3 or CD28 Drake (2020);
Zhang (2021), and receptors on cancer cells, T2. The drug can bind reversibly to
either target, forming X -T1 dimer D1 at a rate constant kon1 and dissociating at a rate
constant koff1 , or forming the X -T2 dimer D2 at a rate constant kon2 and dissociating
at a rate constant koff2 . Finally, when either of the dimers bind to the remaining free
target, they can form a trimer Y , which is the T1-X -T2 ternary complex. We call this
system, involving immune cells, drug, and cancer cells, a “three-body" system.The key
objective of this study is to find binding properties for the drug X on either arm given
the properties of the other two targets, in such a way as to maximize concentration of
Y . A schematic diagram of this process is given in Figure 1(a).

One particular challenge with these types of drugs is that the efficacy curve for
TCEs is bell-shaped, rather than the standard Emax curve. By “bell shape", we mean
a nonmonotonic function with a single maximum at some intermediate concentration,
whereas the Emax curve is a typical pharmacology model that is monotonic and
saturable Lee (2010). A TCE drug efficacy is maximized only when the drug is bound
to both targets (Figure 1(b), where Y exhibits a bell-shaped curve); dimers in this drug
construct ( Figure 1(b), where D1 and D2 exhibit an Emax curve) are not expected to
exhibit efficacy. This creates an important challenge, since, while for a typical Emax
curve, higher drug concentrationmay result in an efficacy plateau, and increase in dose
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Fig. 1 A schematic of the “three-body" model and the nominal bell-shape pattern. On the left side (a), the
three-body model described in terms of TCE, where X is the drug concentration, T1 is the target receptor
expressed on immune cells, and T2 is the target receptors expressed on cancer cells. The drug can reversibly
bind to either target to form dimers D1 and D2 or bind to both to form trimer complex Y . Maximizing Y
is expected to maximize drug efficacy. On the right side (b), a nominal bell-shape pattern of the ternary
complex Y normalized to Maximum Fluorescent Intensity (MFI) at steady state is visualized as a function
of initial TCE drug concentration (X = X(0) in nM). Binding kinetics and initial conditions are adopted
from Betts (2019). The chemical reactions are visualized in a simple form in order to provide an intuitive
idea of the reactions, and the diagram does not follow the conventions of a chemical reaction network:
specifically, T2 (T1) is not involved in the dimerization reaction between X and T1(T2).

is mostly likely to just increase toxicity. For a bell-shaped efficacy curve (Figure 1(b),
yellow thick line), increase in drug concentration will result not only in higher toxicity
but also in loss of efficacy. As such, estimating maximally efficacious concentration
for a TCE is significantly more challenging than for a compound with a typical Emax
efficacy curve.

One of the key steps during the early stages of drug development is lead compound
selection,which is basedonmanycriteria, includingdrug affinity for the target, denoted
as an inverse of dissociation constant KD and defined as KD = koff

kon
, where kon is the

rate constant at which the drug reversibly binds to its target, and koff is the dissociation
rate constant. The question of affinity optimization to maximize the drug’s efficacy
is particularly challenging for TCEs, even those targeting similar or even the same
targets. For instance, REGN5458 and REGN5459 are both targeting CD3 and BCMA
receptors but with different affinities for CD3 Jordan (2020). While tighter binding
(lower KD) can be associated with achieving greater target engagement with lower
drug concentration (higher potency), for TCEs and other drugs, whose efficacy is
predicated on maximizing trimer concentration Y , this is not necessarily the case.
Specifically, as was reported in Betts (2019); Douglass (2013), very tight binding on
each arm can “take up"most of the drug, leaving less drug available to bind to the other
arm, thereby decreasing the probability of trimer complex formation. Therefore, there
likely exists an interplay of “optimal affinities" for both arms of themolecule, resulting
in different variations of the bell-shaped relationship between the drug concentration
and trimer complex Betts (2019).
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Four parameters are critical to characterize such a bell-shape curve at the site of
action: 1) initial concentration of T1, 2) initial concentration of T2, 3) binding affin-
ity/dissociation constant of the TCE to target 1 KD1, and 4) dissociation constant KD2.
The initial concentration of T1 depends on the number of T cells in the body. Most of
the existing TCEs bind to CD3 (see Table 1), and the average turnover parameters for
this particular target are relatively well understood De Boer and Perelson (2013). The
initial concentration of T2 depends on the tumor and can vary dramatically. A review
of existing CD3-based TCEs, summarized in Table 1, showed that the initial concen-
tration of tumor-specific targets is generally considered to be less than 5 × 103/cell;
this however can vary across different cancer types.

The most desirable targets on cancer cells are minimally expressed in normal cells,
so as to minimize off-target effects.

The affinity of the TCE molecule to T1 (CD3 on the T cells) can be significantly
smaller, comparable, or significantly larger than the binding affinity to T2 (targeted
receptor protein on the cancer cells). For example, the binding affinity of Blinatu-
momab Dreier (2002), PF-06671008 Root (2016), and 7370 Yeung (2020) to T1 is
lower than their affinity to T2. The affinity of Acapatamab Deegen (2021), Solitomab
Brischwein (2006), and PF-07062119Mathur (2020) to their targets are in a compara-
ble range. On the other hand, TCE molecules such as BAY2010112 Friedrich (2012),
Taralatamab Giffin (2021), and REGN5458 Smith (2020) have a significantly higher
affinity (lower dissociation constant) to T1.

The binding kinetics of the TCE molecules with respect to each of the targets may
also affect the distribution of this type of antibody in different tissues. For instance,
the biodistribution of CD3/HER2 TCE, also known as T-cell-Dependent Bispecific
(TDB), has been measured for different ranges of affinities to CD3 for solid tumors
in mouse models Mandikian (2018), confirming the intuition that higher affinities to
CD3 (lower dissociation constant KD1) increase drug uptake in the peripheral tissues
including lymph nodes, thereby decreasing their availability in the TME. Therefore,
TCE molecules with lower affinities for CD3 are less toxic in treatments designed for
solid tumors.

The characterization of the bell-shape was analytically investigated by Douglass
(2013). The integration of the three-body model with the pharmacokinetics and effi-
cacy of PF-06671008 TCE molecule was presented in Betts (2019). Here, we build
on these results to create a framework to allow quantitative comparison between dif-
ferent TCE molecules based on their bell-shape response. We anchor the analysis
to the affinity values of several existing TCE molecules, and showcase the resulting
bell-shape response and its sensitivity to different parameters. We further explore the
identifiability of affinity values from the experimental data, and made the connection
between pharmacokinetics, efficacy and biodistribution of the TCE based on an exam-
ple, where TCE molecules that target HER2 were designed to have different affinities
to CD3 receptor Mandikian (2018).

In what follows, the general properties of the two targets are assumed to be known,
and the focus is on approaches to identify KD values from preclinical experiments,
and on characterizing their effect on the bell-shape pattern of the concentration trimer
Y at the site of action. A quantitative comparison is presented for the TCE molecules
that were available in the literature at the time of this writing. The computational
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analysis was performed for different scenarios, including varying ratios between target
concentrations to quantify the sensitivity of projected efficacy (here correlated with
maximizing the concentration of trimer Y ) to initial conditions. The paper concludes
with the formulation of a full quantitative pharmacology model that should facilitate
a broader discussion of biodistribution of TCE molecules.

2 Methods

2.1 Three-bodymodel

The initial process of lead compound selection is based on in vitro experiments, where
cells are co-incubated with the drug in order to evaluate their relative affinities and
where drug clearance does not affect the dynamics. Consequently, one can initially
focus on just the nearly instantaneous formation of drug-target dimers and trimers,
which can be interpreted as a three-body model. In recent investigations such as Betts
(2019) it has been emphasized that the efficacy of the TCE drug trimer concentration
at the site of action is a bell-shaped function. A too low or too high concentration
of a TCE does not lead to formation of a sufficient number of trimer complexes:
at low concentrations, too few trimers are formed, while at high concentrations the
equilibrium shifts towards increased formation of dimers D1 and D2 and away from
trimers. There exist, therefore, a “sweed spot" that maximizes trimer formation and
consequently the expected efficacy.

A “three-body model" in the terminology of Douglass (2013) is what all bispecific
antibodies have in common. In the three-body model, a bispecific antibody (binding
species) connects to two different target molecules (terminal species) to form a ternary
complex. After the formation of dimers between the first target and the antibody, the
binding kinetics can be changed based on a cooperativity factor to increase/decrease
the binding affinity of the antibody molecule of the formed dimer to the second target.
A positive cooperativity can be interpreted as avidity Rhoden et al. (2016); Sengers
(2016); Harms (2014); Kaufman and Jain (1992), where the apparent affinity to the
second target is greater once the drug has been bound to the first target, given that
both targets are expressed on the same cell surface. The cooperativity factor can be
neglected in models of bispecific antibodies that target receptors on two different cell
types, such as TCEs.

As mentioned above, the model described in Figure 1 includes six state variables to
describe the concentrations of the TCE X(t), the target receptor on the surface of the
immune cells T1(t), the target receptor on the surface of cancer cells T2(t), the dimer
complex of immune cell-antibody D1(t), the dimer complex of antibody-immune cell
D2(t), and the ternary complex of immune cell-antibody-cancer cell Y (t). The initial
concentration of the dimer and trimer complexes are assumed to be zero at the starting
point D1(0) = D2(0) = Y (0) = 0. The initial concentration of the TCE X(0) is
the concentration that is going to be assessed in subsequent analysis. The system of
OrdinaryDifferential Equations (ODEs) describing the dynamics of these six variables
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Fig. 2 Model-based steady state simulations of the three-body model (1). The vertical axis is normalized
to % MFI, which represents relative fluorescence intensity normalized to the maximum observed value in
a hypothetical experiment. This figure does not represent experimental data, but rather simulations using
the model under two different TCE concentration ranges. These simulations illustrate that if one were to
conduct experiments using different concentration ranges, they might observe distinctive patterns such as
those shown here, even if the underlying biological processes are consistent. The variables in the simulations
have different ranges of initial concentration of the TCE. The initial TCE concentration range and the range
of horizontal axis values in (a) are larger than in (b). The plots on the left show the concentrations of the
trimer and the targets, and the plots on the right side show the drug-target dimer concentrations.

is as follows:

Ẋ = −kon1T1X − kon2T2X + koff1D1 + koff2D2, (1a)

Ṫ1 = −kon1T1X + koff1D1 − kon1T1D2 + koff1Y , (1b)

Ṫ2 = −kon2T2X + koff2D2 − kon2T2D1 + koff2Y , (1c)

Ḋ1 = kon1T1X − koff1D1 − kon2T2D1 + koff2Y , (1d)

Ḋ2 = kon2T2X − koff2D2 − kon1T1D2 + koff1Y , (1e)

Ẏ = kon1T1D2 + kon2T2D1 − (koff1 + koff2)Y . (1f)

Note that the time dependence of the state variables is dropped for writing simplicity.
The dot sign on top of each state variable on the left side represents the time derivative.

Model 1 contains four parameters: kon1 , koff1 , kon2 , and koff2 . However, in preclinical
measurements, using for example surface resonance experiments, one only estimates
the dissociation constants of the two binding sites:

KD1 = koff1/kon1 , (2a)

KD2 = koff2/kon2 . (2b)

The dissociation constants KD are sufficient to estimate the equilibrium concentration

of each species in a dimerization reaction (for example a + b
kon�
koff

ab), and different

values of (kon, koff) that result in the samedissociation constant can change the reaction
rate but do not affect the equilibrium concentrations.

The steady state reached when performing a long-time simulation of the three-body
model (1) will predict the actual equilibrium concentrations, which can be thought of
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as an in silico equivalent of an in vitro dose-response experiment used to estimate
projected target occupancy as a function of drug concentration. Figure 2 shows a
numerical simulation of the system, with corresponding parameter values listed in
Table 2, representing the PF-006671008 molecule Betts (2019), and a total simula-
tion duration of 1000 hours. The y-axis in Figures 2aand 2bis normalized to capture
% of Maximum Fluorescence Intensity (MFI), where MFI represents fluorescence
intensity normalized to the maximum observed value in a given experiment. Because
the normalization depends on the tested concentration range, MFI-based results may
appear different across experiments even if the underlying biological response is sim-
ilar. The relative concentrations are measured based on the relative strength of the
fluorescent signal. Analyzing the factors that affect the characteristic bell shape of the
projected trimer concentration is the focus of this section. Picking the “right" range of
molecule concentrations is critical in visualization of the bell shape. For example, note
when comparing Figure 2aand Figure 2b, how different experimental results might
look when reported in MFI format with different ranges of drug concentration on the
x-axis.

2.2 The bell-shaped response

We have investigated the sensitivity of the bell-shaped response peak, to the binding
kinetics of the TCE molecule at the site of action, here in the TME, and the initial
concentration of each target. Themaximumconcentration (peak) of the trimer complex
Y and the corresponding initial TCE concentration that results in maximum trimer
concentration (optimal TCE) are the main outputs of interest in this analysis. We used
the three-body portion of the quantitative model published for PF-06671008 TCE
molecule Betts (2019), as an example, to assess the sensitivity of the peak of the
bell-shape by changing each of the parameters in model (1), while keeping the other
parameters of the model constant.

2.3 Comparison between TCEs

The three-body model (1) was used as a tool to quantitatively compare existing CD3-
based TCEs summarized in Table 1 based on their published binding kinetics to their
targets. The molecules included in this study are divided into two general categories:
targeting solid tumors and targeting liquid tumors. Although each of the molecules
might have different structures, biodistribution, metabolism, or pharmacokinetic char-
acteristics, the three-body model captures the general structure of the interactions of
these compounds with their targets at the site of action.

Numerical simulations were conducted assuming initial target concentrations of
0.108 nM and 166 nM (based on Betts (2019)). Due to the lack of reported association
(kon) and dissociation (koff ) rate constants for all molecules, kon was fixed to 1 nM−1

h−1, and koff was inferred from the published equilibrium dissociation constant (KD

× 1 nM−1 h−1) values listed in Table 1.
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2.4 Biodistribution

A full dynamic model for biodistribution of the TCE molecules in humans with IV
dosing is shown in Equations (3). This is a modified version of the model presented
in Betts (2019), where the number of tumor-related compartments is reduced to two
for simplicity, and all the immune system tissues such as lymph nodes are lumped
into a single additional compartment. We use this model to obtain a better mechanistic
understanding of the relationship between dissociation kinetics and biodistribution.

The differences between model (3) and the model presented in Betts (2019) are as
follows: 1) an extra compartment is included in order to represent tissues with a higher
concentration of immune cells, e.g. lymph nodes, 2) intermediate compartments are
integrated into the main tumor compartment, and 3) biodistribution depends on the
affinity of the TCEmolecule to different targets, which could be explained by the flow
of the immune cells between lymph nodes and the central compartment. The additional
parameters included in this model are not fit to data, and the presented parameters
are chosen arbitrarily based on numerical simulations to demonstrate the quantitative
approach for explaining the biodistribution of theTCEmolecules.Molecule and target-
specific parameters can be used as needed provided data availability.

The relative change of the target concentration is assumed to be negligible in com-
parison with the distribution rate constants of the TCE in the present model. Moreover,
the rate constant of target 1 is assumed to be faster between the central compartment
and the lymph nodes (klcT and kclT ) relative to the rate constant of the target 1 between
the central compartment and the TME (kctT and ktcT ). The rate constants of the TCE
between the central compartment and the lymph nodes (klc and kcl ) are assumed to be
slower than the rate constants of target 1 (klcT and kclT ). The reason is the increased
flow rate of immune cells between lymph nodes and the central compartment.

Ẋc = ρu(t) − kelX Xc − kcpXc + kpcX p
Vp

Vc
− kcl Xc − klcXl

Vl
Vc

− kon1XcT 1c + koff1D1c − kon2CcT 2c

+ koff2D2c − ktd(Xc − Xt

kε

)
M1 + M2

wVc
, (3a)

Ẋ p = kcpXc
Vc
Vp

− kpcX p, (3b)

Ẋl = kcl
Xc

αKD1 + β

Vc
Vl

− klcXl , (3c)

˙T 1l = ksynT − kclT T 1c
Vc
Vl

+ klcT T 1l − kon1XlT 1l + koff1D1l , (3d)

Ḋ1l = kon1XlT 1l − koff1D1l , (3e)

˙T 1c = −kctT T 1c + ktcT T 1t
M1 + M2

wVc
− kon1XcT 1c + koff1D1c − kelT T 1c, (3f)

˙D1c = kon1XcT 1c − koff1D1c, (3g)

˙T 2c = ksyn − kdegT 2c − kon2XcT 2c + koff2D2c, (3h)
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˙D2c = −kelDD2c + kon2XcT 2c − koff2D2c, (3i)

Ẋt = ktd(Xc − Xt

kε

) − kon1T 1t Xt − kon2T 2t Xt + koff1D1t + koff2D2t , (3j)

˙T 1t = kctT T 1c
wVc

M1 + M2
− ktcT T 1t − kon1T 1tCt + koff1D1t

− kon1T 1t D2t + koff1Y , (3k)

˙T 2t = −kon2T 2tCt + koff2D2t − kon2T 2t D1t + koff2Y , (3l)

Ḋ1t = kon1T 1tCt − koff1D1t − kon2T 2t D1t + koff2Y , (3m)

Ḋ2t = kon2T 2tCt − koff2D2t − kon1T 1t D2t + koff1Y , (3n)

Ẏ = kon1T 1t D2t + kon2T 2t D1t − (koff1 + koff2)Y , (3o)

Ṁ1 = kgeM1(1 − M1+M2
kv

)

(1 + (
kge
kgl

(M1 + M2))
kψ )1/kψ

− kmax × Y

kc50 + Y
M1, (3p)

Ṁ2 = kmax × Y

kc50 + Y
M1 − M2/kτ . (3q)

In these equations, X is the concentration of drug, T is the concentration of targets,
D is the drug-target dimer concentration, Y is the trimer concentration, and M is the
tumor volume intermediate compartment. All parameters and variables are defined
in detail in Tables 2 and 3. The dot sign on top of the variables is a time derivative
ḟ (t) = d f (t)

dt .

2.5 Identifiability

The goal of performing identifiability analysis is to assess whether model parameters
could be uniquely recovered from experiments. In this paper we will discuss two
different setups for identifiability: 1) identification of the KD values from time course
data, and 2) identification of KD values from steady state data. Time course data plays
a major role in the drug development process for in vivo studies, and steady state data
is often used for in vitro studies to assess potential drug efficacy. Notably, this analysis
is based on deterministic data and should be treated as a proof-of-concept approach
to recover KD values from specific experiments.

The standard context for performing identifiability analysis is for the case when the
parameter values are to be inferred from time course data for somemeasured quantities
Miao (2011). In this case, one typically considers an ODE model in the state-space
form

ẋ = f(k,x) and y = g(k,x), (4)

where x and y are the vectors of states and observed quantities, respectively, and
k is a vector of scalar parameters. For the three-body model (1), we would have
x = [X , T1, T2, D1, D2,Y ]T , the observed quantities would be y1 = X , y2 =
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Table 2 Parameters used in model (3), are based on previously published parameters Betts (2019); param-
eters different from Betts (2019) are marked by asterisk.

Value Unit Definition

Vc 40.2 mL/kg Volume of distribution in the central
compartment

Vp 211 mL/kg Volume of distribution in the
peripheral compartment

V ∗
l 92 mL/kg Volume of distribution in the lymph

compartment

kelX 1.16 × 10−1 1/h Clearance in the central compartment

kelT 2.51 1/day Elimination rate of immune cells
(Target 1)

kcp 6.27 × 10−1 1/h Redistribution rate constant to the
peripheral compartment

kpc 1.19 × 10−1 1/h Redistribution rate constant to the
central compartment

k∗
clT

1 × 10−1 1/day Target 1 redistribution to the lymph
nodes

α 1 1/nM Empirical parameter

β 5 1 Empirical parameter

k∗
lcT

5 × 10−1 1/day Target 1 redistribution to the central
from lymph

k∗
cl 5 × 10−2 1/day Redistribution rate constant to the

lymph compartment

kon1 1.72 1/nM/h Binding of the antibody and target 1

koff1 19.66 1/h Unbinding rate of the antibody-target
2 dimer

kon2 1.57 1/nM/h Binding rate of the antibody and
target 2

koff2 0.74 1/h Unbinding rate of the antibody-target
2 dimer

kdeg 1.5 × 10−1 1/h Tumor T 2c degradation rate constant

ksyn kdeg × T 2c(0) nM/h Tumor synthesis rate constant

ksynT kelT × T 1c(0)Vl
Vc

nM/h Synthesis rate of the immune cells
(no proliferation)

ktd 1.082 1/h Disposition rate to the TME (depends
on tumor physiology Thurber and
Wittrup (2012))

kctT 2 × 10−3 1/day T cell redistribution from the central
to the TME

ktcT 5 × 10−4 1/day T cell redistribution from the TME.

kmax 1.32 1/day Maximum killing rate

kc50 6.9 × 10−5 nM Concentration at half maximum

kge 1.9 × 10−1 1/day Exponential tumor growth rate
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Table 2 continued

Value Unit Definition

kgl 1.23 × 10−1 mL/day Linear tumor growth rate

kv 6.0 mL Maximum tumor volume

kτ 3.99 day Transduction time between tumor
compartments.

kψ 20 1 Exponential to linear transition rate
of the tumor

w 80 kg Weight of a patient.

ρ 9.52 nM/(μg/kg) Concentration unit conversion for in
the central compartment

Table 3 Variables used in model (3).

Variable Unit Initial value Definition

u mg/kg/day - Input: drug dose.

Xc nM 0.0 Antibody concentration in central
compartment.

Xl nM 0.0 Antibody concentration in immune
system tissue.

X p nM 0.0 Antibody concentrations in
peripheral compartment.

Xt nM 0.0 Antibody concentrations in the TME.

T 1l nM 5.0 Target 1 concentration in the immune
system tissue.

T 1c nM 0.83 Target 1 concentration in the central
compartment.

T 1t nM 1.08 × 10−1 Target 1 concentration in the TME.

T 2c nM 1.1 Target 2 concentration in the central
compartment.

T 2t nM 1.66 × 102 Target 2 concentration in the TME.

D1l nM 0.0 Dimer drug-target 1 in the immune
system tissue.

D1c nM 0.0 Dimer drug-target 1 in the central
compartment.

D1t nM 0.0 Dimer drug-target 1 in the TME.

D2c nM 0.0 Dimer drug-target 2 in the central
compartment.

D2t nM 0.0 Dimer drug-target 2 in the TME.

Y nM 0.0 Trimer concentration in the TME.

M1 mL 1.0 Tumor volume in growth
compartment.

M2 mL 0.0 Tumor transduction compartment.

123



Quantitative Pharmacology Methods for Bispecific T Cell Engagers Page 13 of 34    85 

T1, y3 = T2 (free drug, first target, and second target, respectively), and k =
[kon1 , kon2 , koff1 , koff2 ]T .

For a model (4), a function h(k) of parameters (could be just a parameter) can be

• globally identifiable if, for almost every solution of (4), any other solution of (4)
with the same trajectory for y must have the same value of h(k).

• locally identifiable if, for almost every solution of (4), there are finitely many
possible values of h(k) for any other solution of (4) with the same trajectory for y;

• nonidentifiable if, for almost every solution of (4), there are infinitely many pos-
sible values of h(k) for other solutions of (4) with the same trajectory for y.

Let us elaborate on the notion of “almost every” in the above definitions. Every tra-
jectory of (4) is uniquely determined by a pair (k, x(0)) of the parameter vectors
and initial conditions. Then “almost every” means that that there exists a manifold of
codimension at least one (and, thus, of Lebesque measure zero) in this (k, x(0))-space
such that the stated property may fail only for the trajectories from this manifold. For
a more precise formalization of this notion and related discussions, we refer to (Hong
(2020), Section 2). Note that a globally identifiable parameter is locally identifiable
as well. The term “generic” (global or local) identifiability is sometimes used in order
to emphasize that there is a possible exceptional set in which identifiability does not
hold. We will give two simple examples to illustrate these notions.

Example 1 Consider a model ẋ = k1k2x with the observable y = x . Then the
trajectories are of the form x(t) = x0ek1k2t . We can see that neither k1 nor k2 is
identifiable because the same trajectory can be produced by infinitely many triples
(k1/c, k2c, x(0)), where c ranges over nonzero numbers. On the other hand, take the
function h(k) = k1k2. Consider the manifold consisting of all pairs of the form
(k, 0), that is, pairs of parameter vectors and the special initial state x(0) = 0.
For every solution not starting from this manifold, we have identifiability. Indeed,
if x0ek1k2t = x0ek

′
1k

′
2t for all t , and x0 �= 0, then k1k2 = k′

1k
′
2. Thus, h(k) is globally

identifiable.

Example 2 Consider a model ẋ = −kx with the observable y = x . Then the trajecto-
ries are of the form x(t) = x0e−kt . If x(0) �= 0, the growth rate k is uniquely defined
by the function y(t) via, for example, a formula k = ẏ(0)

y(0) . If x(0) = 0, then all values
of k yield the same y(t) = 0.

We claim that in this model k is globally identifiable. Indeed, the trajectories not
allowing for unique reconstruction of k (namely, the trajectories with x(t) = 0) cor-
respond to a codimension one subvariety (k, 0) in the (k, x(0))-space parametrizing
all the trajectories.

There are a number of software tools for assessing identifiability Barreiro and
Villaverde (2023) using the time course data. We have chosen to use the web-based
Structural IdentifiabilityAnalyzer Ilmer et al. (2021) , which is based on the algorithms
from Hong (2019); Ovchinnikov (2021). This algorithm takes as input a model in the
format (4)1. For the three-bodymodel (1), the software showed that all four parameters
kon1 , kon2 , koff1 , koff2 are globally identifiable from the time course data.

1 The three-body model (1) in the required format can be found in the github repository at https://github.
com/mahdiarsadeghi/tce/blob/main/identifiability/00_time_course.md
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While the time course identifiability results presented above are of mathemati-
cal interest, they are not the most useful in our context, because most experimental
measurements are typically done at steady state Dreier (2002); Brischwein (2006);
Friedrich (2012); Root (2016); Yeung (2020); Mathur (2020); Giffin (2021); Deegen
(2021). Thus, we next turn our attention to the more interesting question of identifi-
cation on the basis of steady state data alone.

In this setup, we fix a subset T in the (k, x(0))-space of the considered trajectories
(e.g., trajectories with positive parameter values and nonnegative initial conditions).
For the problem to be well-posed, it is necessary that every trajectory in T converges
to a steady state. For (k, x(0)) ∈ T , we will denote the corresponding steady state
by S(k, x(0)). Then we will call a function h(k) globally identifiable from the steady
state data if there exists a subset T0 ⊂ T of Lebesque measure zero such that

∀(ĥ, x̂(0)) ∈ T \ T0, (h̃, x̃(0)) ∈ T : y(S(k̂, x̂(0)))

= y(S(k̃, x̃(0))) 	⇒ h(k̂) = h(k̃).

Weperform a detailed analysis of the three-bodymodel in this setup in Section 3.4, and
herewe give illustrative examples explaining the steady state setting and its differences
from the time course identifiability.

Example 3 We revisit Example 2 with the model ẋ = −kx , and set T to be trajectories
with positive k. Then, for any initial condition, there is a unique attracting steady state
S(k, x(0)) = 0. Assume that what is measured is precisely this steady state. Since
the steady state is zero regardless of the value of k, the parameter k is not identifiable
from the steady state data (unlike the time course setting of Example 2).

Example 4 Consider the model of logistic growth ẋ = x(k − x) with y = x and
T being the set of (k, x(0)) with k > 0 and x(0) � 0. It is well-known that, if
x(0) > 0, there is a unique attracting steady state S(k, x(0)) = k. Furthermore, we
have S(k, 0) = 0. Therefore, the knowledge of the steady state is sufficient to find the
value of k if x(0) > 0. Thus, by setting T0 = {(k, x(0)) ∈ T | x(0) = 0}, we see that
k is globally identifiable.

The next example can serve as a toymodel for the analysis of the three-bodyproblem
we will perform in Section 3.4.

Example 5 Consider the following chemical reaction network with three species
X1, X2, X3:

X1 + X2
k2−⇀↽−
k1

X3,

which, under the lawofmass-action kinetics, is governed by the followingODEsystem
(xi denotes the concentration of Xi for i = 1, 2, 3):

ẋ1 = k1x3 − k2x1x2, ẋ2 = k1x3 − k2x1x2, ẋ3 = −k1x3 + k2x1x2. (5)
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We will consider the set T of trajectories with positive parameter values and x1(0) =
c1 > 0, x2(0) = c2 > 0, x3(0) = 0. It is known Sontag (2001) that every such
trajectory converges to a steady state. We assume that the measured quantities are the
values of x2 and x3 at the steady state, that is, y = [x2, x3]T , and we are interested in
identifiability of K = k1

k2
.

If (x∗
1 , x

∗
2 , x

∗
3 ) are the coordinates of the steady state, then they satisfy the equation

0 = Kx∗
3 − x∗

1 x
∗
2 = Kx∗

3 − (c1 − x∗
3 )x

∗
2 .

The equation contains two unknown values, K and c1, so we cannot find the value of
K using only this information.

Assume now that we can perform two independent experiments with the same (but
still unknown) value of c1 and different values of c2, we will denote them c[1]

2 and c[2]
2 .

Formally, we have model consisting of two copies of (5) and the set of trajectories

T = {(k, x[1](0), x[2](0)) | k, x [1]
2 (0), x [2]

2 (0) > 0, x [1]
1 (0)

= x [2]
1 (0) > 0, x [1]

3 (0) = x [2]
3 (0) = 0}.

We denote the coordinates of the steady states by (x [i]
1 , x [i]

2 , x [i]
3 ) for i = 1, 2. In this

case we get a system of two equations:

0 = Kx [i]
3 − c1x

[i]
2 + x [i]

2 x [i]
3 , for i = 1, 2.

Regarding this system as a linear system in the unknowns c1 and K , we can use
Cramer’s rule to eliminate c1 and get a formula for K (this elimination task becomes
more tedious in higher dimensions, so we will employ Gröbner bases to do this in
Section 3.4):

K = x [1]
2 x [2]

2 (x [1]
3 − x [2]

3 )

x [1]
3 x [2]

2 − x [2]
3 x [1]

2

. (6)

The formula above is well-defined as long as
x [1]
3

x [1]
2

�= x [2]
3

x [2]
2

. The value of
x∗
3
x∗
2
is completely

determined by K , c1, c2. Furthermore, it is an algebraic function in these variables (see
Sontag (2001), p. 1036). We observe that this function is nonconstant with respect to
c2 when c1 and K are fixed. Indeed, since x∗

3 � c1 and x∗
2 = c2 − x∗

3 � c2 − c1, the
value of the function can be made arbitrarily close to zero by taking c2 sufficiently
large. Therefore, for every K , c1, c

[1]
2 , there are only finitely many values of c[2]

2

with
x [1]
3

x [1]
2

= x [2]
3

x [2]
2

. Therefore, a subset T0 of pairs trajectories for which
x [1]
3

x [1]
2

= x [2]
3

x [2]
2

is of measure zero inside T . Together with (6), this proves identifiability of K . So
we conclude that the value of K is identifiable from the steady state data of two
experiments.
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2.6 Computational resources

SIANHong (2019)was used for structural identifiability analysis and analytical deriva-
tions. Numerical simulations and figures are produced with the Julia programming
language Bezanson (2017). The DifferentialEquations package was used for numer-
ical calculations Rackauckas and Nie (2017), with Tsit5() numerical algorithm that
is suitable for non-stiff problems. The numerical software for reproducing the figures
presented in themanuscript alongwithmore examples are publicly available onGithub
[48].

3 Results

3.1 Results regarding the bell-shaped response

We examined the bell-shape response using the molecule PF-06671008 TCE from
Betts (2019) as an example to assess the sensitivity of the peak of the bell-shape to
the KD values between the drug and either of its two targets (see Figure 3). As one
can see in the two left subfigures of Figure 3aan increase in the values of KD1, and
KD2 results in a significant decrease of the maximal value of Y . On the other hand, by
looking at the right side of Figure 3a, it can be observed that the optimal concentration
of TCE (the corresponding initial concentration of the TCE at the peak of the trimer
concentration) will be decreased by only reducing KD1, and increased by increasing
either KD1 or KD2.

The sensitivity of the maximum trimer concentration, and optimal TCE initial con-
centration to the initial concentration of the targets on the immune cells T1(0), and
cancer cells T2(0) are visualized in one-dimensional plots of Figure 3b. From the left
side, it can be observed that the maximum trimer concentration is sensitive to T1(0)
and insensitive to T2(0), which is physiologically reasonable, since the initial concen-
tration of the first target, CD3 receptors on immune cells, is much smaller relative to
the second target, P-cad protein on the tumor cells. This result is consistent with the
sensitivity analysis presented in Betts (2019). Surprisingly, any change above 0.01x, or
below 100x in the initial concentration of the target T1(0) does not affect the predicted
optimal TCE concentration but significantly changes the peak of trimer concentration
Y .

The dissociation constants KD1 and KD2 depend on the TCE design, while T1(0)
and T2(0) depend on the tumor characteristics and variability among cancer patients.
From a design perspective, it would be ideal if the maximum trimer concentration and
the corresponding TCE concentration are less sensitive to the initial concentration of
the targets. From a toxicity perspective, it would be favorable if a lower concentration
of TCE antibody can produce the same amount of trimer in the TME. In the analysis
presented in Figure 3a, it can be observed that the concentration of TCE that results
in the maximum trimer concentration can be decreased by reducing the dissociation
constant of the first target KD1, and also that lower KD1 will result in a slightly higher
trimer concentration.
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Fig. 3 Log-log plots of the bell-shape characteristics: the effects of (a) sweeping dissociation constants,
and (b) sweeping target concentrations at the site of action on the peak of the trimer concentration Y and its
corresponding TCE concentration X . The horizontal axes are the log scale difference between the modified
parameter (marked with a star*) and their original value. Maximum trimer concentration is the peak of the
bell-shape, and Optimal TCE is the corresponding initial antibody concentration, based on model (1).
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Fig. 4 Sensitivity of the bell-shape in two dimensions: Bell-shape characteristics heatmap: the effects of
sweeping the TCE antibody dissociation constants, KD1 and KD2, on (a) maximum of the trimer concen-
tration of the bell-shape, and (b) the corresponding optimal, TCE concentration. The effect of sweeping
initial target concentrations on (c) maximum of the trimer concentration of the bell-shape, and (d) the
corresponding optimal concentration of the drug. The colors are plotted in log scale concentrations in nM.
The horizontal and vertical axes are in log scale difference of the modified parameter (marked with a star*)
and its original value, based on model (1).

Figure 4 extends the visualizations presented in Figure 3. The sensitivity of themax-
imum trimer concentration is on the left, and the sensitivity of the corresponding initial
concentration of the TCE molecule is on the right. The red color represents a higher
value of the nM concentrations in the log scale, and the blue color represents lower
concentrations in the log scale. The vertical pattern in Figure 4a, and the horizontal
pattern in Figure 4dare consistent with conclusions made from Figure 3.Moreover, the
contrasting colors in the top left and the bottom right of Figure 4bsuggest that a simul-
taneous increase in dissociation constants KD1, with a decrease in KD2, is favorable
in reducing the required TCE concentration to achieve the maximum concentration of
the trimer at the site of action.
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3.2 Results on comparison between TCEs

We used the three-body model (1) in order to quantitatively compare the existing
CD3-basedTCEs summarized inTable 1.Wegrouped thesemolecules into twogeneral
categories: those targeting solid tumors and those targeting liquid tumors. In addition to
KD values summarized in Table 1, the initial concentration of the targets is necessary
for a computational study of the three-body model. As the initial concentration of
target receptors is highly dependent on cancer type, the comparison between the main
characteristics of the bell-shape pattern, like the trimer peak, the corresponding TCE
concentration at the peak, and the width of the peak, are done for different initial
concentrations of the targets to capture a variety of scenarios.

A visual comparison between the bell-shapes of the molecules considered in this
study is shown in Figure 5. The ratio of the initial concentration of the targets (T1(0) :
T2(0)) is expected to be in the range of 1:10 to 1:1000 for solid tumors (Figure 5a),
and in the range of 10:1 to 1:10 for liquid tumors (Figure 5b). It can be observed that
in addition to the peak of the bell-shape, and the corresponding concentration of the
TCE, the width of the bell-shape varies for different ratios of the initial concentration
of the targets. For instance, the width of the peak of Tarlatamab is higher for a dense
tumor, where the initial concentration of the target receptors on the cancer cells is
greater than the concentration of target receptors on the immune cells.

The quantitative framework used for comparing bell-shapes of the TCE molecules
at different ratios of initial concentration of the targets can be extended to continu-
ous ratios of the targets. For this purpose, the basic characteristics of bell-shape are
extracted across different ratios between the targets, shown in Figure 6. The peak of
the trimer concentration is the maximum of bell-shape (on top), the corresponding
TCE concentration is the initial concentration of the TCE that results in the maximum
of the bell-shape (in the middle), and the bell-shape width is simply the range of the
TCE concentration that results in at least 50% of the maximum of the bell-shape (on
the bottom).

For a realistic comparison between TCEs for solid tumors (Figure 6a), the left-
hand side of the horizontal axis should be considered, where the initial concentration
of target receptors on cancer cells is much greater than the initial concentration of the
CD3 target receptors on immune T cells. Similarly, for a realistic comparison between
TCEs designed for liquid tumors (Figure 6b), the right middle or right side of the
horizontal should be taken into consideration.

3.3 Results on biodistribution

It is clear that the biodistribution of TCEs is highly dependent on the parameters given
in Table 3. Note that the parameters presented here are for a nominal TCE molecule,
and are not identified from a specific data set.

In addition to dissociation constants, parameters affecting drug distribution can
have a critical impact on trimer maximization. These parameters are essentially the
disposition rate constant of the TCE to the lymph nodes kcl , and the disposition rate
constant of theTCE to theTME.Notably, other parameters, such as the elimination rate
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Fig. 5 Numerical comparison between the bell shapes of TCEs designed for (a) solid tumors, and (b) liquid
tumors based on model (1). The relative concentration of the targets T1(0) : T2(0) is printed on the top of
each plot. The horizontal axes are in log scale, and the vertical axes are in linear scale.

(kelX ) in the model, could also be affected by TCE design. Efforts to extend the TCE
half-life led to the discovery of HLE-TCE molecules like Tarlatamab Giffin (2021),
and Acapatamab Deegen (2021).

From the experimental results presented in Mandikian (2018), it can be observed
that an increase in the affinity of the TCE toward immune cells (CD3, or target 1)
increases its concentration in immune system-related tissues like lymph nodes. The
mechanism of action suggests an inverse relationship between parameters kcl and
KD1. The numerical simulation presented in Figure 7acompares two nominal TCEs
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Fig. 6 Numerical comparison between the basic characteristics of the bell-shape response of different TCEs
designed for (a) solid, and (b) liquid tumors based on model (1). The top figures represent the value of the
peak of bell-shape, the middle figures represent the corresponding TCE antibody concentration at the peak
of the bell-shape, and the bottom figures represent the width of the peak of the bell-shape. The relative
initial concentration of the targets T1(0)/T2(0) is visualized in log scale of the horizontal axes.

with different KD1 values administered at the same dose level. While pharmacokinet-
ics in the central compartment Xc, and the peripheral compartment X p are similar,
the concentrations at the lymph compartment Xl are different. Furthermore, different
affinities of the TCE molecule to different targets lead to a different trimer concentra-
tion in the TME, which is discussed in detail in the previous section. Model 2, with
parameters and initial conditions specified in Tables 2 and 3, was used to simulate
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Fig. 7 Numerical simulations of the biodistribution model (3) for (a) different dissociation constant KD1
between TCE and immune cells and the same dose (labels represent KD1 in nM), and (b) different dose of
TCE and the same dissociation constant (labels represent dosing levels in mg/kg).

123



Quantitative Pharmacology Methods for Bispecific T Cell Engagers Page 23 of 34    85 

these two molecules. The only difference between the two simulations is the value of
koff1 , which was adjusted to reflect a 10-fold difference in KD1.

To better understand how a ten-fold change in the affinity can be compared with
a ten-fold change in the drug dose, Figure 7bis presented. Notably, parameters α

and β, defined as empirical parameters related to the lymph compartment, update the
relationship with the dissociation constant KD1.

3.4 Results on identifiability from steady state data

In this section, it is proved that the dissociation constants KD1 = koff1/kon1 , and
KD2 = koff2/kon2 are identifiable from just three generic steady state measurements
that are different in the initial concentration of the TCE molecule with equal initial
concentrations of the targets. By generic we mean that, for each exeperiment, there are
only finitelymany values of the initial concetrations to avoid; for the precise statement,
see Theorem 1.

Several approaches to analyzing identifiability from steady states have been devel-
oped, see Gross (2016); Srinivasan et al. (2019), but they are not applicable directly
to our specific setup (due to limited observations, multiple experiments with shared
conserved quantities, etc).

Someof the proofs in this section rely on tedious symbolic computationswhichwere
performed on a computer. The corresponding code can be found in the identifiability
folder of the repository [48] with the supplementary code for the paper.

In terms of state variables, consider a steady state X∗, T ∗
1 , T

∗
2 , D

∗
1 , D

∗
2 , Y

∗ of the
system (1). Then the numbers X∗, T ∗

1 , T
∗
2 , D

∗
1 , D

∗
2 , Y

∗, and kon1 , kon2 , koff1 , koff2 are
related by a system of six polynomial equations obtained by setting the left-hand sides
of (1) to zero, that is:

0 = −kon1T
∗
1 X

∗ − kon2T
∗
2 X

∗ + koff1D
∗
1 + koff2D

∗
2 , (7a)

0 = −kon1T
∗
1 X

∗ + koff1D
∗
1 − kon1T

∗
1 D

∗
2 + koff1Y

∗, (7b)

0 = −kon2T
∗
2 X

∗ + koff2D
∗
2 − kon2T

∗
2 D

∗
1 + koff2Y

∗, (7c)

0 = kon1T
∗
1 X

∗ − koff1D
∗
1 − kon2T

∗
2 D

∗
1 + koff2Y

∗, (7d)

0 = kon2T
∗
2 X

∗ − koff2D
∗
2 − kon1T

∗
1 D

∗
2 + koff1Y

∗, (7e)

0 = kon1T
∗
1 D

∗
2 + kon2T

∗
2 D

∗
1 − (koff1 + koff2)Y

∗. (7f)

We will start with establishing several properties of nonnegative steady states of
the system (1).

Lemma 1 Assume that the rate constants kon1 , kon2 , koff1 , koff2 are positive. Then, for
every solution of the system (7) with nonnegative coordinates, the following hold:

D∗
1D

∗
2 = X∗Y ∗, X∗T ∗

1 = kD1D
∗
1 , and X∗T ∗

2 = kD2D
∗
2 . (8)

Proof The projection of the solution set on the coordinates (D∗
1 , D

∗
2 , X

∗, Y ∗, koff1 ,
koff2 )-coordinates (obtained by performing elimination with Gröbner bases (Cox et al.
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(2005), Chapter 2, §1); the Maple code can be found in the supplementary materials
[48]) yields the following equation:

(
D∗
1koff1 + D∗

2koff2 + X∗koff1 + X∗koff2
) (

D∗
1D

∗
2 − X∗Y ∗) = 0. (9)

If the left bracket vanishes, then, by the positivity of the rate constants and nonneg-
ativity of the solution, we deduce D∗

1 = D∗
2 = X∗ = 0, so D∗

1D
∗
2 − X∗Y ∗ = 0.

Otherwise, the right bracket must vanish, so the same equality holds. This gives us
the first equality in (8). Adding this equation to (7) and computing projections (again
with Gröbner bases) to (D∗

1 , D
∗
2 , X

∗, koff2 , kon2 , T ∗
2 )- and (D∗

1 , D
∗
2 , X

∗, koff1 , kon1 ,
T ∗
1 )-coordinates, respectively, we obtain that:

(X∗T ∗
2 kon2 − D∗

2koff2)(D
∗
1 − D∗

2) = 0,

(X∗T ∗
1 kon1 − D∗

1koff1)(D
∗
1 − D∗

2) = 0.

If D∗
1 �= D∗

2 , the above equalities imply the last two equations from (8).
Now we assume that D∗

1 = D∗
2 , and add this equation to the system. By projecting

on (D∗
2 , X

∗, koff2 , kon2 , T ∗
2 )- and (D∗

1 , X
∗, koff1 , kon1 , T ∗

1 )-coordinates, respectively,
we obtain

(X∗ + D∗
2)(X

∗T ∗
2 kon2 − D∗

2koff2) = 0,

(X∗ + D∗
1)(X

∗T ∗
1 kon1 − D∗

1koff1) = 0.

In both equations above, vanishing of the left bracket would imply the vanishing of
the right, so the right one always vanishes. This yields the two remaining equations
of (8) and concludes the proof. ��

The three-body model (1) has three conservation laws:

c1 = T1(t) + D1(t) + Y (t), c2
= T2(t) + D2(t) + Y (t), and c3 = X(t) + D1(t) + D2(t) + Y (t).

The set of nonegative states with the same values of c1, c2, c3 is referred to as stoi-
chiometric class. Based on the initial conditions D1(0) = D2(0) = Y (0) = 0, we
have c1 = T1(0), c2 = T2(0), and c3 = X(0). In the notation of Section 2.5, the
lemma below establishes that, for the set of trajectories T with these initial condi-
tions and satisfying c1, c2, c3 > 0, the question of identifiability from steady states is
well-posed.

Lemma 2 (cf. Ali Al-Radhawi et al. (2020), p. 11) Assume that the rate constants
kon1 , kon2 , koff1 , koff2 are positive. Then, in each stoichiometric class (i.e., for every
positive values of c1, c2, c3), there exists exactly one positive steady statewhich is glob-
ally asymptotically stable. Furthermore, its T ∗

1 - and T ∗
2 -coordinates are the unique

positive roots of

(T ∗
1 )2 + (c3 + KD1 − c1)T

∗
1 − c1KD1 = 0, (10a)
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Fig. 8 Petri-net representation of
the chosen irreversible
subnetwork of (12).

(T ∗
2 )2 + (c3 + KD2 − c2)T

∗
2 − c2KD2 = 0, (10b)

and the X∗-coordinate satisfies

X∗ = koff1(T
∗
2 − c2 + c3) + koff2(T

∗
1 − c1 + c3)

(T ∗
1 kon1 + koff1 + T ∗

2 kon2 + koff2)
. (11)

Proof The existence and uniqueness of globally asymptotically stable equilibriumwas
established in (Ali Al-Radhawi et al. (2020), p. 11). We recall the argument here. The
system (4) can be represented by a chemical reaction network

X + T1
R1−−⇀↽−−
R−1

D1, X + T2
R2−−⇀↽−−
R−2

D2,

D2 + T1
R3−−⇀↽−−
R−3

Y , D1 + T2
R4−−⇀↽−−
R−4

Y ,

(12)

with the rates R1 = kon1T1X , R−1 = koff1D1, R2 = kon2T2X , R−2 = koff2D2,
R3 = kon1D2T1, R−3 = koff1Y , R4 = kon2D1T2, and R−4 = koff2Y .

The subnetwork of (12) consisting of the boldfaced reactions R1, R−2, R−3, R4
forms anM-network (see Ali Al-Radhawi et al. (2020), p. 29) and satisfies the require-
ments of (Ali Al-Radhawi et al. (2020), Theorem 40): each species participates in
exactly one reaction and appears as a product of exactly one reaction, this is easy to
see from the Petri net representation of the subnetwork on Figure 8. Therefore, by (Ali
Al-Radhawi et al. (2020), Theorem 4) the function maxR(x) − minR(x), where

R = {R1 − R−1, R−2 − R2, R−3 − R3, R4 − R−4},

is a convex robust Lyapunov function. The existence of such function implies the
existence, uniqueness, and global stability of an equilibrium in every stoichiometric
class.

We will now establish formulas (10) and (11). We augment the system (7) with the
equations:
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c1 − T ∗
1 − D∗

1 − Y ∗ = c2 − T ∗
2 − D∗

2 − Y ∗ = c3 − X∗ − Y ∗ − D∗
1 − D∗

2 = 0.

(13)

Given the obtained system of nine equations, we next compute the projections (again,
using Gröbner bases; the Maple code can be found in the supplementary materials
[48]) of the solution set onto the (A, c1, c2, c3, kon1 , kon2 , koff1 , koff2)-coordinates,
where A is taken to be T ∗

1 or T ∗
2 . We find that these projections satisfy precisely (10).

Consider (10a) as a quadratic equation in T ∗
1 . The product of the roots is equal to

−c2KD2 < 0, from which we conclude that there exists exactly one positive root, so
it must be the T ∗

1 -coordinate of the unique steady state. The same applies to T ∗
2 .

Now we compute the projection onto the (X∗, T ∗
1 , T ∗

2 , c1, c2, c3, kon1 , kon2 ,
koff1, koff2)-coordinates and find a relation:

X∗(T ∗
1 kon1+koff1+T ∗

2 kon2 +koff2) = koff1(T
∗
2 − c2 + c3) + koff2(T

∗
1 − c1 + c3).

(14)

The positivity of T ∗
1 kon1 + koff1 + T ∗

2 kon2 + koff2 implies that we can express X∗
uniquely and obtain (11). ��

In other words, Lemma 2 shows that T ∗
1 , T

∗
2 , and X∗ can be expressed as algebraic

functions of k = (kon1, koff1 , kon2 , koff2) ∈ R
4
>0 and c1, c2, c3 ∈ R>0. We will denote

these functions by the same letter and write, for example T ∗
1 (k, c1, c2, c3) for the

positive root of (10a).
Next, we will consider several (two or three) experiments with the same c1 =

T1(0) and c2 = T2(0) but varying c3 = X(0) (cf. Example 5). The next proposition
establishes that the vector (KD1 , KD2) is identifiable up to at most two possible values
from the steady state data of two such experiments.

Proposition 1 Consider two vectors (T [i]
1 , T [i]

2 , X [i]) ∈ R
3
>0 for i = 1, 2. Assume

that

(T [1]
1 − T [2]

1 )(T [1]
2 − T [2]

2 )(X [1]T [1]
1 − X [2]T [2]

1 )(X [1]T [1]
2 − X [2]T [2]

2 ) �= 0. (15)

Then, there exists a subset K ⊂ R>0 of cardinality at most two such that, for every
k ∈ R

4
>0, c1, c2, c

[1]
3 , c[2]

3 ∈ R>0 satisfying

A[i] = A∗(k, c1, c2, c
[i]
3 )

for every A ∈ {T ∗
1 , T ∗

2 , X∗} and i = 1, 2, we have (KD1, KD2) =
(
kon1
koff1

,
kon2
koff2

)
∈ K.

Furthermore, for every k ∈ R
4
>0 and c1, c2, c

[1]
3 ∈ R>0, there are only finitely many

values c[2]
3 ∈ R>0 such that (15) does not hold for A[i] = A∗(k, c1, c2, c

[i]
3 ), where

A ∈ {T ∗
1 , T ∗

2 , X∗} and i = 1, 2.

Proof Consider two vectors (T [i]
1 , T [i]

2 , X [i]) ∈ R
3
>0 for i = 1, 2 and k ∈ R

4
>0,

c1, c2, c
[1]
3 , c[2]

3 ∈ R>0 such that A[i] = A∗(k, c1, c2, c
[i]
3 ) for every A ∈ {T ∗

1 , T ∗
2 , X∗}
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and i = 1, 2. We use (8) and equalities D∗
1 = c1 − T ∗

1 − Y ∗ and D∗
2 = c2 − T ∗

2 − Y ∗
to write the following polynomial system:

Y [i]X [i] = (c1 − T [i]
1 − Y [i])(c2 − T [i]

2 − Y [i]),
T [i]
1 X [i] = KD1(c1 − T [i]

1 − Y [i]),
T [i]
2 X [i] = KD2(c2 − T [i]

2 − Y [i]),
for i = 1, 2.

By computing the projection of the solution set of this system to the (KD1, KD2, T
[1]
1 ,

T [2]
1 , T [1]

2 , T [2]
2 , X [1], X [2])-coordinates (using Gröbner bases), we find expressions of

the form:

A1K
2
D1 + A2KD1 + A3 = 0, (16a)

B1KD2 + B2KD1 + B3 = 0, (16b)

where A1, A2, A3, B1, B2, B3 are polynomials from Q[T [i]
1 , T [i]

2 , X [i] | i = 1, 2].
Furthermore, A1 and B1 factor as follows:

A1 = X [1]X [2](T [1]
1 − T [2]

1 )(T [1]
2 X [1] − T [2]

2 X [2]), (17a)

B1 = X [1]X [2](T [1]
2 − T [2]

2 )(T [1]
1 X [1] − T [2]

1 X [2]). (17b)

Therefore, if (15) holds, A1 and B1 do not vanish. Then KD1 must be one of the roots
of (16a) and then KD2 is uniquely determined from (16b). Since the coefficients of
the equations (16a) and (16b) depend only on T [i]

1 , T [i]
2 , X [i] for i = 1, 2, these two

solutions form the set K from the statement of the proposition.
In order to prove the second statement of the proposition, we fix k ∈ R

4
>0 and

c1, c2, c
[1]
3 ∈ R>0 and consider T [2]

1 , T [2]
2 , and X [2] as functions in c3 = c[2]

3 . By
Lemma 2 , these functions are algebraic. We notice that (15) is equivalent to inequal-
ities:

T [1]
1 �= T [2]

1 , T [1]
2 �= T [2]

2 , X [1]T [1]
1 �= X [2]T [2]

1 , X [1]T [1]
2 �= X [2]T [2]

2 .

Since a nonconstant univariate algebraic function takes each value only finitely many
times, it is sufficient to prove that the functions

T [2]
1 (c3), T [2]

2 (c3), X [2](c3)T [2]
1 (c3), X [2](c3)T [2]

2 (c3) (18)

are nonconstant. To this end, we use (10a) and (10b) to write the Taylor series for T [2]
1

and T [2]
2 at c3 = 0:

T [2]
1 (c3) = c1 − c1

c1KD1 + 1
c3 + O(c23) and T [2]

2 (c3)
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= c2 − c2
c2KD2 + 1

c3 + O(c23).

By plugging these to (11), we obtain an expansion for X [2]:

X [2](c3) =
(

koff2
c1KD1+1 + koff1

c2KD2+1

)
c3 + O(c3)2

c1kon1 + c2kon2 + koff1 + koff2 + O(c3)

=
koff2

c1KD1+1 + koff1
c2KD2+1

c1kon1 + c2kon2 + koff1 + koff2
c3 + O(c23).

From these expansions, we see that indeed none of the functions (18) is constant. This
finished the proof of the second claim of the proposition. ��

The following theorem establishes that, using the terminology of Section 2.5, the
vector (KD1 , KD2) is globally identifiable from the steady state data for three generic
experiments with the same values of c1, c2 but varying value of c3.

Theorem 1 (Unique identifiability from three experiments) Consider three vectors
(T [i]

1 , T [i]
2 , X [i]) ∈ R

3
>0 for i = 1, 2, 3. Assume that

R2 �= R3 or R2 < 0 or R3 < 0, (19)

where

Ri := (T [1]
1 − T [i]

1 )(X [1]T [1]
2 − X [i]T [i]

2 )

(X [1]T [1]
1 − X [i]T [i]

1 )(X [1]T [1]
1 T [1]

2 − X [i]T [i]
1 T [i]

2 )
for i = 2, 3.

Then there exists a vectorkD ∈ R
2
>0 such that for everyk ∈ R

4
>0, c1, c2, c

[1]
3 , c[2]

3 , c[3]
3 ∈

R>0 satisfying

A[i] = A∗(k, c1, c2, c
[i]
3 )

for every A ∈ {T ∗
1 , T ∗

2 , X∗} and i = 1, 2, 3, we have
(
kon1
koff1

,
kon2
koff2

)
= kD.

Furthermore, for every k ∈ R
4
>0 and c1, c2, c

[1]
3 , c[2]

3 ∈ R>0, there are only finitely

many values c[3]
3 ∈ R>0 such that (19) does not hold for A[i] = A∗(k, c1, c2, c

[i]
3 ),

where A ∈ {T ∗
1 , T ∗

2 , X∗} and i = 1, 2, 3.

Proof The proof strategy will be similar to the one for Proposition 1. Consider two
vectors (T [i]

1 , T [i]
2 , X [i]) ∈ R

3
>0 for i = 1, 2, 3 and k ∈ R

4
>0, c1, c2, c

[1]
3 , c[2]

3 , c[3]
3 ∈

R>0 such that A[i] = A∗(k, c1, c2, c
[i]
3 ) for every A ∈ {T ∗

1 , T ∗
2 , X∗} and i = 1, 2, 3.

Consider the relations (16a) and (16b) obtained in the proof of Proposition 1. Recall
that (17a):

A1 = X [1]X [2](T [1]
1 − T [2]

1 )(T [1]
2 X [1] − T [2]

2 X [2]).
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Furthermore, we have

A3 = X [1]X [2](X [1]T [1]
1 − X [i]T [i]

1 )(X [1]T [1]
1 T [1]

2 − X [i]T [i]
1 T [i]

2 ).

Therefore, R2 = A1
A3
. If R2 < 0, then (16a) has exactly one positive root. In this

case, kD1 would be uniquely determined, and then kD2 would be uniquely determined
from (16b). The same argument applies to R3 < 0 due to the symmetry between the
second and the third experiment.

In order to take into account the third experiment, we apply the derivation of (16a)
and (16b) from the proof of Proposition 1 to the first and third vectors instead of
the first and the second. This way, T [2]

1 , T [2]
2 , X [2] in (16a) will be replaced with

T [3]
1 , T [3]

2 , X [3], and the resulting relation will also be true. This will yield one more
quadratic equation for KD1, which we will denote by Ã1K 2

D1 + Ã2KD1 + Ã3 = 0.

Since Ã1 and Ã3 are obtained from A1 and A3 by replacing T [2]
1 , T [2]

2 , X [2] with
T [3]
1 , T [3]

2 , X [3], we have R3 = Ã1
Ã3
. If R2 �= R3, then the quadratic equations (16a)

and Ã1K 2
D1+ Ã2KD1+ Ã3 = 0 are not proportional, so they have atmost one common

root thus leaving at most one possible value for kD1 .
In order to prove the second part of the theorem, we fix k ∈ R

4
>0 and c1, c2, c

[1]
3 ∈

R>0, and consider the function

f (c3) := (T [1]
1 − T ∗

1 (c3))(X [1]T [1]
2 − X∗(c3)T ∗

2 (c3))

(X [1]T [1]
1 − X∗(c3)T ∗

1 (c3)))(X [1]T [1]
1 T [1]

2 − X∗(c3)T ∗
1 (c3)T ∗

2 (c3))
.

Then we have R2 = f (c[2]
3 ) and R3 = f (c[3]

3 ). By Lemma 2, f (c3) is an algebraic
function. Therefore, if it is a nonconstant algebraic function, it takes each value only
finitely many times, so the equality R2 = R3 will be true only for finitely many values
of c[3]

3 as desired. Now assume that f (c3) is a constant function. Then R2 = f (c[2]
3 ) =

f (0). Using X∗(0) = 0 and T ∗
1 (0) = c1, we find that

f (0) = (T [1]
1 − c1)

(X [1]T [1]
1 )2

.

Since c1 = T [1]
1 + D[1]

1 +Y [1], we have T [1]
1 < c1, so f (0) < 0. This implies R2 < 0,

so (19) is fulfilled independently of the value of c[3]
3 . ��

We will illustrate the above argument with a numerical example. We will first take
the initial concentrations and parameter values the same as in the example in the
introduction:

X(0) = 1.0, T1(0) = 1.08 · 10−1, T2(0) = 166, D1(0) = D2(0) = Y (0) = 0,

kn1 = 1.72, k f1 = 19.66, kn2 = 1.57, k f2 = 0.74.

Through numerical simulations, we compute the values of X , T1, T2 at the steady
state: X [1] = 2.8 · 10−3, T [1]

1 = 9.9 · 10−2, T [1]
2 = 165. Next, we simulate one more
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experiment with all the initial conditions staying the same except for X(0) = 1.1.
The new steady state is X [2] = 3.1 · 10−3, T [2]

1 = 9.8 · 10−2, T [2]
2 = 164.9. Plugging

these values into equations (16), we find two solutions for (KD1, KD2) one of which
is equal to the true values, and the other one is negative and can therefore be discarded.
So, in this case, two experiments are sufficient to find the unique parameter values.
Even if the second solution of (16) was positive, it could be discarded by performing
one more experiment with different X(0), and choosing the solution of (16) appearing
among the solutions of (16) for the first pair of experiments.

The details of all the symbolic and numeric calculations from this section can be
found in the identifiability folder of the repository [48] with the supplementary code
for the paper.

4 Discussion

Although each of the TCEs presented in this study was designed for a different cancer
cell target, the initial concentration of the targets on cancer cells is assumed to be
equally expressed on the cancer cell surface to visualize the quantitative differences
between the bell-shapes in Figure 5.

From the three-body model perspective, a promising TCE antibody is the one that
creates the largest trimer concentration with the minimal initial concentration of the
antibody at the site of action.Additionally, to overcome natural intra-tumoral and inter-
patient variability, it is favorable to have a TCE antibody with minimal variation for
different ratios of the initial concentrations of the targets. So, a TCE antibodymolecule
is effective at the site of action if it results in: 1) a relatively higher peak of the trimer
concentration at the site of action, 2) a relatively lower exposure in the circulating
compartment to avoid toxicity issues, 3) lower affinity toward CD3 to prevent drug
sing in the non-tumor compartments, and 4) robust characteristics of the bell-shape for
different range of target concentrations, to have the highest predictability for different
initial conditions across patients and tumors.

Among the molecules presented in Figure 6, it can be observed that the 7370, and
PF-06671008 molecules are projected to have the largest concentrations of trimers in
TME with minimal initial target concentrations. On the other hand, Solitomab creates
a stable width of the peak for a wide range of ratios between the initial concentrations
of the targets. It is apparent that stability across different initial concentrations of the
targets increases the consistency of the data in clinical research.

In addition to theTCEmolecules presented inTable 1, othermolecules are discussed
in detail in the literature. PF-06863135 Panowski (2019) (150 kDa), and AMG420
Hipp (2017) (54 kDa) are both designed to target B-Cell Maturation Antigen (BCMA)
for patients diagnosed with multiple myeloma. Both of the molecules have similar dis-
sociation constants to CD3, but different dissociation constants to BCMA, 0.1 and 0.04
nM respectively. The role of binding kinetics to BCMA is discussed as an important
factor in the distribution of the molecule toward different tissues in Hipp (2017). Also,
the authors of Moek (2019) discussed the design and bio-distribution of AMG211 (55
kDa), a CD3/CEA TCE molecule for patients with advanced gastrointestinal adeno-
carcinomas. AMG211 has a significantly high dissociation constant to CD3 310 nM
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in comparison with its dissociation constant toward CEA 5.5 nM. The biodistributions
of these molecules are explained by a computational model in Yoneyama (2021).

A molecule with a bell-shaped efficacy curve will have an important property: its
efficacy will be maximized at the concentrations that correspond to the peak of trimer
formation (Figure 1(b), yellow thick line), and will be low at the concentrations that
are significantly less or significantly higher than that. This provides an opportunity to
assess the predictions in the following way: with the understanding of PK properties
of the desired compound, one can calculate doses (using standard PK-PD modeling
methodology) that will achieve steady state concentrations in the tumor microenvi-
ronment below, at, or beyond the drug concentrations predicted to maximize efficacy.
One can then design a pre-clinical experiment, where animals receive drug doses that
will achieve these concentrations, and assess, whether efficacy is optimized at the
intermediate “optimal" concentration. It should be noted that because it takes time for
a drug to accumulate in the TME, it may take time to see the difference between the
dosing regimens, with the higher-dose regimen achieving higher efficacy short term
(it will reach the “optimal" drug concentration sooner) but will then lose efficacy in
the longer term, since drug will continue accumulating, and therefore will soon move
into the suboptimal range on the right of the efficacy curve.

Interestingly, if one were to evaluate the dosing regimens of some of the approved
TCEs, one would observe that epcrotitamab (anti-CD3/anti-CD20) protocol dictates
increasing spaces between doses, with the drug given weekly during the first three
treatment cycles, then given at 48 mg every 2 weeks between 4th-9th treatment cycles,
and finally every 4 weeks after the 10th treatment cycle. Glofitamab, another highly
efficacious anti-CD3/anti-CD20 antibody, is given at 30 mg every 2 weeks for the
first treatment cycle, and then every 4 weeks for subsequent cycles. Mosunetuzumab
starts with weekly dosing, with 60 mg given every 3 weeks for the second treatment
cycle, and then lowering the dose to 30mg for subsequent treatment cycles. All of
these (increasing spacing between doses or lowering dosing for later treatment cycles)
could be potential mitigation strategies to ensure that the drug concentration remains
in the “optimal” zone.

The simplified three-body model provides valuable initial insights, but it may not
fully capture the complexity of TCE interactions in vivo. Tailored version of thismodel
for each target to incorporate factors such as T cell dynamics, tumor heterogeneity,
and drug disposition would improve the model’s predictive accuracy for clinical appli-
cations for future programs.

A common safety concern for TCEs is cytokine release syndrome (CRS), which
arises fromexcessive immune activation and leads to a surge in inflammatory cytokines
with potentially severe systemic effects. While the present study focuses on charac-
terizing dose-response relationships with respect to efficacy-using maximum trimer
concentration as a key feature-understanding the full therapeutic window will ulti-
mately require integrating both efficacy and safety considerations.

In particular, the bell-shapednature of the dose-response curve suggests that exceed-
ing a certain concentration could result not only in reduced efficacy but also in
heightened toxicity risk. Thus, futuremodeling efforts should aim to incorporate safety
endpoints, such as cytokine profiles or clinical markers of CRS, to better inform dose
selection. A recent review of clinical dose optimization strategies for T-cell-enhanced
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therapies highlights various dosing approaches and emphasizes the importance of
customized dosing regimens via mathematical modeling in the future Ball (2023).

Additionally, while our study emphasizes the peak of the bell-shaped curve as a
marker of maximum efficacy, we recognize that this alone is not sufficient to fully
characterize the dose-response relationship. We complement our peak-focused sensi-
tivity analysis with numerical comparisons of the curve width (e.g., Figure 6), which
offer insight into the robustness and breadth of the therapeutic window. A more com-
prehensive modeling framework-including toxicity metrics and safety thresholds-will
be necessary to support clinical dose optimization, and this remains an important
direction for future work.

The proposed analysis can be used to further assess the optimal properties for the
design of CD3-based bispecific T cell engagers for a variety of scenarios and targets, to
hopefully expand the applicability of this modality to a larger number of indications.
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