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Abstract

Metastatic melanoma presents a formidable challenge in oncology due to its high invasiveness and
resistance to current treatments. Central to its ability to metastasize is the Notch signaling pathway,
which, when activated through direct cell—cell interactions, propels cells into a metastatic state
through mechanisms akin to the epithelial-mesenchymal transition (EMT). While the upregula-
tion of miR-222 has been identified as a critical step in this metastatic progression, the mechanism
through which this upregulation persists in the absence of active Notch signaling remains unclear.
Here we introduce a dynamical system model that integrates miR-222 gene regulation with his-
tone feedback mechanisms. Through computational analysis spanning both sustained and pulsat-
ile ligand inputs, we delineate the non-linear decision boundaries that govern melanoma cell fate
transitions, taking into account the dynamics of Notch signaling and the role of epigenetic modi-
fications. Dimensional analysis reduces the 11-parameter system to three critical control groups
governing chromatin modification rates and feedback strengths, providing a theoretical framework
for parameter selection in the absence of complete kinetic measurements. Global sensitivity ana-
lysis identifies PRC2-mediated methylation and KDM5A-mediated demethylation as the dominant
control parameters, while stochastic simulations show population heterogeneity consistent with
the variable EMT responses observed in cancer cell populations. Our analysis examines the inter-
play between Notch signaling pathways and epigenetic regulation in dictating melanoma cell fate.

1. Introduction

Cancer metastasis represents a primary cause of
mortality, with the epithelial-mesenchymal trans-
ition (EMT) playing a key role in conferring meta-
static capabilities upon cancer cells [1-3]. The EMT,
characterized by its reversibility, is modulated by a
diverse array of environmental cues, EMT-inducing
transcription factors (EMT-TFs), and epigenetic
regulators [4, 5]. This research specifically targets
melanoma, notable for its high resistance to treat-
ment and propensity for metastasis.

The Notch signaling pathway is a critical player
in development and disease, including metastasis

© 2025 The Author(s). Published by IOP Publishing Ltd

[6-8]. It regulates cellular differentiation, prolifera-
tion, and fate determination [9]. In melanoma, Notch
activation, for instance by keratinocytes express-
ing Notch ligands, can promote metastasis, partly
through inhibition of the lineage survival oncogene
MITF [10]. Conventionally, Notch activation requires
direct cell-to-cell contact. However, melanoma cells
can maintain a metastatic phenotype even after los-
ing contact with ligand-expressing cells, suggesting a
mechanism for persistence or memory [10].

A powerful approach to describe and resolve the
complex interactions and feedback loops involved in
genetic and epigenetic regulation is dynamical sys-
tem modeling [11-13]. In particular, such methods
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Figure 1. A conceptual view of distinct Notch signaling dynamics induced by DLL1-like and DLL4-like ligands. Experimental
evidence suggests DLL1-like ligands can induce pulsatile NICD signals, In contrast, DLL4-like ligands tend to induce more sus-
tained signals with an amplitude that increases with the concentration level of the ligand [20, 21]. The characteristics of these
signals (amplitude, frequency, duration) can influence downstream cellular responses.

can be applied to regulatory mechanisms involving
histone modifications such as H3K4me3 (activating)
and H3K27me3 (repressive), which play an import-
ant role in EMT and cancer progression [14—16].
We propose that an epigenetic switching mechan-
ism, involving feedback regulation of histone modify-
ing enzymes, underlies the persistence of the Notch-
induced metastatic state in melanoma. Specifically,
we model the regulation of miR-222, whose expres-
sion is linked to melanoma metastasis [17] and influ-
enced by Notch [10]. Our model incorporates the
competition between NICD (the activated Notch
intracellular domain) and MITF for the TF RBPJ,
and links this competition to the recruitment of the
H3K4me3 demethylase KDM5A [18], thereby influ-
encing the histone state at the miR-222 locus. We
hypothesize that positive feedback loops in the his-
tone modification system create bistability, allow-
ing the miR-222 locus to be switched to, and main-
tained in, an active state by a transient Notch signal.
Computational analysis yields switching times within
the experimentally observed EMT window [10, 19],
with stochastic simulations (SI section 6) showing
how intrinsic molecular noise generates population
heterogeneity: the model predicts that only a fraction
of cells undergo complete EMT under identical sig-
naling conditions, reflecting the probabilistic nature
of epigenetic state transitions.

Furthermore, different Notch ligands, such as
DLL1-like and DLL4-like, can elicit distinct tem-
poral dynamics of NICD activation—often pulsatile
for DLL1-like and sustained for DLL4-like (figure 1)
[20, 21]. These distinct dynamics can lead to differ-
ential activation of target genes [20]. A key ques-
tion is how these dynamics are interpreted by down-
stream regulatory circuits. Our model investigates
how the proposed epigenetic switch responds to
both sustained (DLL4-like) and pulsatile (DLL1-like)
NICD inputs, exploring whether the switch exhibits

frequency-dependent filtering properties. We find
that the epigenetic switch acts as a low-pass fil-
ter, which may place high-frequency DLL1-like sig-
nals at a relative disadvantage compared to sustained
DLL4-like signals for initiating this specific epigenetic
transition.

The manuscript is organized as follows. We
introduce the computational model linking ligand-
dependent NICD competition to miR-222 epigen-
etic regulation. We then analyze the model’s bistable
behavior and its response to sustained and pulsatile
NICD signals, characterizing the switching bound-
aries (amplitude—frequency, A—w, with A denot-
ing signal amplitude and w denoting signal fre-
quency) and switching times (ST—w, with ST denot-
ing the switching time). We investigate how alter-
ing epigenetic parameters, particularly PRC2 feed-
back strength, reshapes these response characterist-
ics. Finally, we discuss the implications of the model
for dynamic signal processing, epigenetic memory,
and therapeutic relevance. SI sections 2—6 provide
the extended analyses, including the nondimensional
formulation, sensitivity and Monte Carlo screens,
waveform robustness tests, solver benchmarking, and
stochastic pulse-counting simulations.

2. Methods

2.1. Model description

Our model (figure 2) integrates Notch signaling input
with epigenetic regulation of miR-222. It consists of
two coupled modules.

Module 1: NICD-MITF competition. Upon Notch
receptor activation by a ligand, the notch intracel-
lular domain (NICD, denoted N) is released and
translocates to the nucleus, where it undergoes rapid
turnover through proteasomal degradation on the
timescale of hours [22, 23]. There, it competes with
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Figure 2. Schematic description of the Notch-EMT model with epigenetic regulations. The model comprises two mod-

ules. Module 1 (red dashed region): NICD (N) release is triggered by Notch activation. N competes with MITF (M) for
binding to RBPJ (R). High N leads to formation of NR and reduces the level of the MR complex. Module 2 (green dashed
region): Represents the epigenetic state of the miR-222 locus via three histone states: H4 (Active, H3K4me3), H27 (Repressive,
H3K27me3), and HO (Unmarked/Void). Transitions are mediated by histone modifying enzymes (KMT, KDM6A, PRC2,
KDMS5A). Positive feedback (H4 promotes KMT/KDM6A; H27 promotes PRC2/KDM5A) allows for bistability. Coupling: The
MR complex enhances KDM5A activity, linking Notch signaling (via MR levels) to the epigenetic state.

the TF MITF (M) for binding to the DNA-binding
protein RBPJ (R). In the absence of NICD, MITF
binds RBPJ to form the MR complex. When NICD
is present, it binds RBPJ to form the NR complex,
thereby reducing the amount of available R and con-
sequently reducing the concentration of the MR com-
plex. The production rate of N, denoted ‘Signal(t)’,
represents the strength and dynamics of the external
Notch ligand stimulus.

Module 2: Epigenetic regulation of miR-222. We
model the histone state associated with the miR-
222 gene locus using three states: H4 (represent-
ing an active state, high H3K4me3), H27 (repres-
enting a repressed state, high H3K27me3), and HO.
The HO state represents an unmarked or interme-
diate chromatin configuration. In our model, this
state is assumed to correspond to a basal or low
level of miR-222 transcription, distinct from the act-
ively repressed H27 state (low/off miR-222) and the
highly active H4 state (high miR-222). It primarily
serves as a transient state through which the locus
passes during switching between the H4 and H27

states. The transitions between these states are gov-
erned by the activity of four types of histone modi-
fying enzymes: KMTs (adding H3K4me3), KDM6A
(removing H3K27me3), PRC2 (adding H3K27me3),
and KDM5A (removing H3K4me3). Crucially, the
model includes positive feedback loops: the H4
state promotes the production/activity of KMT and
KDMB6A, while the H27 state promotes the produc-
tion/activity of PRC2 and KDM5A. This double-
positive feedback structure can generate bistability
between the H4-high and H27-high states.

Module coupling. The two modules are linked
via the MR complex. Based on experimental
findings [10, 18], we assume that the MR com-
plex enhances the production or recruitment of
the H3K4me3 demethylase KDM5A to the miR-222
locus. Therefore, high MITF activity (high MR, low
NICD) promotes the H27 state (miR-222 repression),
while high Notch activity (low MR, high NICD) dis-
inhibits KDM5A recruitment, allowing the feedback
loops to potentially switch the system to the H4 state
(miR-222 activation).
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Table 1. CRN model of the Notch-miR222 circuit. Module 1 is driven by input NICD (N) concentration (Signal(t)) and reflects the
NICD competition with MITF (M) for RBPJ (R). Module 2 describes the epigenetic regulation of histone states (H4, HO, H27) via
enzymes (KDM5A, KDM6A, PRC2, KMT), including feedback loops and basal production/degradation. The modules are coupled via

MR-enhanced KDM5A production/recruitment (rate ko).

NICD, MITF competition (R1-R2)

Signal(t)
R = NR
ks
ki
M +R= MR

2

Core histone regulation (Module 2)

H4 + KDM5A % Hy + KDM5A
HO + PRC2 = H27 + PRC2
H27 + KDM6A -5 HO + KDM6A

ml

HO +KMT — H4 + KMT

Epigenetic feedback (Module 2)

MR %5 MR + KDM5A (MR induction of KDM5A)
H27 5 H27 4+ PRC2  (H27 feedback on PRC2)

H4 & H4 + KDM6A (H4 feedback on KDM6A)
H4 % H4 + KMT  (HA4 feedback on KMT)

H27 5 H27 + KDM5A  (H27 feedback on KDM5A)

Enzyme Production (Module 2)

o 24 KDM6A
o 24 KMT
o 24 PRC2

@ =4 KDM5A  (Basal production)

Enzyme Degradation (Module 2)

PRC2 % &
KDM5A > &
KDM6A -5 &
KMT 5 @

Mathematical model

We formulated the model using chemical reaction
networks (CRNs) [24], assuming mass-action kinet-
ics (table 1).

State variables are the concentrations of the
molecules listed in table 2.

Parameters. table 3 lists the parameter sets used
throughout the manuscript. Set A underpins figures 3
and 4, whereas Set B represents the higher-feedback
regime employed for the PRC2 modulation sweep in
figure 5. These sets follow from the non-dimensional
analysis and parameter sweeps detailed under
‘Parameter Estimation Methodology’ in section 2,
ensuring bistable switching, realistic timescales, and
experimentally motivated ligand responses. Unless
otherwise noted, simulations adopt these values
together with the ligand input definitions given later
in section 2.

Modeling time-varying signals

To simplify our analysis, we model time-varying
pulsatile signals by square waves. On the other hand,
it has been observed experimentally that Notch sig-
naling often exhibits exponential NICD decay with

measured half-lives of 2—4 h following ligand binding
[20,22,23]. Thus, in order to assess model robustness
to waveform shape, we implemented exponential
decay signals with time constants 7=2, 5, and 10h
and systematically explored the amplitude—frequency
parameter space (SI section 4, figure S4). Exponential
pulses require 4-8 fold higher amplitudes than square
waves to achieve switching (e.g. 7 =2 h pulses need
>400nM versus 50nM for square waves at equi-
valent frequency). The non-monotonic frequency-
amplitude boundary persists across waveforms, with
efficient switching occurring when signal frequency
matches chromatin timescales (w ~ 1/7;). These res-
ults confirm frequency-dependent signal integration
as an intrinsic property of chromatin feedback archi-
tecture. We retain square pulses in the main text for
clarity while demonstrating waveform robustness in
the SIL.

Units and plotting conventions

Time is reported in hours, w in h™!, and kinetic
rates in h~! unless specified. Concentrations are nor-
malized (a.u.) and consistent across figures. All axes
include units in labels, and all figures use the Wong
colorblind-safe palette [25] with consistent line styles
for accessibility.
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Table 2. State variables of the CRN model.

State Variable

Description

R

NR

M

MR

H4

HO

H27
KDM5A
KDM6A
PRC2
KMT

Free RBPJ concentration.

RBPJ bound to NICD complex concentration.

Free MITF concentration.

MITF-RBP] complex concentration.

Concentration of loci in the ‘Active’ histone state (high H3K4me3).
Concentration of loci in the ‘Unmarked/Void’ histone state.
Concentration of loci in the ‘Repressive” histone state (high H3K27me3).
H3K4me3 demethylase concentration.

H3K27me3 demethylase concentration.

H3K27me3 methyltransferase concentration.

H3K4me3 methyltransferase concentration.

Table 3. Parameters of the CRN model and default values used. Total amounts of M, R, and histone sites (HO-+H4+H?27) are conserved
or implicitly set. Set A drives the sustained/pulsatile trajectories and A—w sweeps; Set B underlies the PRC2 modulation sweep. Entries
marked with * were varied in the Sobol global sensitivity analysis (SI section 3). The parameter values emerge from systematic
dimensional analysis (SI section 2) that reduces the 11-parameter model to three control groups governing bistable switching:

I, =d- 7. - E./H, (H3K4me3 demethylation timescale), II3 = m - 7 - E./H, (H3K27me3 methylation timescale), and I14 = pp/kk
(feedback strength ratio). Set A yields IT, ~ 1.0, II3 ~ 2.0, II4 = 6.0, positioning the system on the mesenchymal-favoring side of the
bistable manifold; Set B yields II, ~ 3.9, IT3 ~ 2.0, I1; = 1.0, representing a higher-demethylation, balanced-feedback regime for PRC2
modulation studies. Both sets were selected from 2252 validated bistable configurations (47% of 4800 tested combinations) to maintain
EMT transition timescales on the order of hours to days, consistent with melanoma progression [10, 19]. The characteristic scales used
are 7. = 24 h (representative day-scale EMT timescale) and E./H. = 0.2 (typical enzyme-to-histone stoichiometry).

Value (Set A:

Value (Set B:

Parameter  figures 3 and 4) figure 5) Description

A Varies Varies NICD signal amplitude

w Varies Varies NICD pulse frequency

o} Varies Varies NICD pulse phase

ks 1.0 1.0 NR dissociation rate (normalized)

ki 1.0 1.0 M-R binding rate

k> 1.0 1.0 MR unbinding rate

ko 1.0 1.0 MR-driven KDM5A recruitment

d 0.21 0.81 KDM5A-mediated H4 demethylation
dy 1.0 1.0 KDM6A-mediated H27 demethylation
m* 0.41 0.41 PRC2-mediated HO — H27 methylation
m 1.0 1.0 KMT-mediated HO — H4 methylation
p 6.0 16.0 H27-enhanced PRC2 production

k 0.0 0.0 H27-enhanced KDM5A production
pp? 6.0 11.0 H4-enhanced KMT production

kk* 1.0 11.0 H4-enhanced KDM6A production

o 1.0 1.0 Basal enzyme production rate

é 1.0 1.0 Enzyme degradation rate

2 Parameters varied in the Sobol global sensitivity analysis (SI section 3).

Ordinary differential equations (ODEs)

The corresponding ODEs derived from table 1 d [H4] = —d[H4] [KDM5A] + m; [HO] [KMT], (6)
assuming mass-action kinetics are: dt
@ — Signal (1) - [R] + ks [NR] d[go] — d[H4] [KDM5A] — m[HO] [PRC2)]
t
d[NR .
[dt } = Signal (¢) - [R] — k3 [NR], (2) d[PRC2]
aiu g = ot plH27] —5[PRCY, (8)
T = *kl [M] [R] + k2 [MR] ) (3) d [H27]
4 MR 4 = mHOJ[PRC2] — dy [H27] [KDM6A]
ok [M] [R] — ky [MR], (4) )
d[KDM6A]
————— =« + kk[H4] — § [KDM6A], 10
@ = a1 + ko [MR] + k[H27] — § [KDM5A], ngMT o+ k{4 =51 | 1o
(5) %:al—ﬁ—pp[Hﬂ—é[KMT}‘ (11)
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(a) Sustained DLL4-like signal (b) Pulsatile DLL1-like signal

Figure 3. Both sustained (DLL4-like) and pulsatile (DLL1-like) NICD dynamics can induce persistent switching of the miR-
222-associated histone state. Simulations start from the H27-high state (blue). Signal is applied from T=0to T =100 (AT =
100). Panel (a) uses a sustained input (Signal(t) = A = 50) that triggers a switch to the H4-high state (red), which persists after
signal removal; panel (b) shows a pulsatile input (SLignal(t) = 50 X [1 + sign(cos(0.43¢t))]/2, ¢ = 0) that also drives persistent

switching. Units: time (h), concentration (a.u.).

Conservation laws hold for total RBP] (Riot =
[R] + [NR] + [MR]), total M (Mo = [M] + [MR]),
and all possible Histone modifications (Hy, = [HO] +
[H4] + [H27)).

Region of bistability

A key goal of this model is to explain the observed
persistence of the metastatic phenotype even after the
initiating Notch signal is removed [10]. We hypo-
thesize that this persistence arises from epigenetic
memory, mechanistically represented in the model by
bistability within the epigenetic module (Module 2).
This bistability allows the system to switch between
two stable steady states—one corresponding to low
miR-222 expression (i.e. H27-high) and another to
high miR-222 expression (H4-high)—and remain in
the new state after a transient input.

The existence of bistability is fundamental to the
model’s ability to exhibit epigenetic memory. We
employed standard numerical methods for finding
steady states and performing linear stability analysis
(based on the eigenvalues of the Jacobian matrix) to
identify parameter regimes, including the default set
in table 3, that support this behavior. For these para-
meters and in the absence of Notch input (N = 0),
the analysis confirmed that the system exhibits exactly
two stable steady states: one corresponding to the
repressed state (high H27, low H4) and one corres-
ponding to the active state (high H4, low H27). An
unstable steady state typically exists between them.
Other potential configurations, such as states dom-
inated by HO, were found to be unstable within the
parameter regime supporting bistability between the
primary H4-high and H27-high states. In principle
it would be possible to search for parameter sets for
which the model exhibits tri-stability, but these sys-
tems would not be relevant for the biological phe-
nomena we are attempting to capture.

The bistability itself emerges from the positive
feedback loops inherent in the epigenetic regulation:
the H4 state promoting enzymes for its own mainten-
ance (KMT, KDM6A) and the H27 state similarly pro-
moting its maintenance factors (PRC2, KDM5A), as
detailed in table 1. The existence and parameter range
of this bistability critically depend on the strengths of
these feedback loops and the rates of histone modi-
fication (ko,d, m, p, k, pp, kk, etc). Therefore, identify-
ing parameter sets that permit bistability is essential
for the model to capture the desired memory beha-
vior. We utilized numerical continuation techniques,
specifically Homotopy Continuation [26], to explore
the parameter space and identify regimes, such as
the default parameters listed in table 3, that yield the
necessary two stable steady states in the absence or
presence of low Notch input (‘Signal(¢)’ close to 0).

Numerical verification of bistability

methods. The existence of exactly two stable steady
states was verified through systematic numerical
analysis: (i) Homotopy continuation methods were
applied across the parameter database (20 random
initial conditions per parameter set, yielding 2252
bistable sets from 4800 evaluated combinations) with
equilibria filtered by eigenvalue stability criteria; (ii)
Basin-of-attraction analysis using 20x 20 grids of ini-
tial conditions confirmed that trajectories converge
exclusively to one of two stable equilibria (integra-
tion performed using Rosenbrock23, absolute tol-
erance = 1077, relative tolerance = 107%); (iii)
Long-horizon simulations under both zero and sus-
tained Notch signals demonstrated convergence to
the same two equilibria without evidence of addi-
tional stable states. All equilibrium candidates bey-
ond the two stable nodes exhibited positive real eigen-
values, confirming their instability. Complete meth-
odology and numerical results are presented in SI
section SI.
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ODEs were solved numerically using standard
solvers available in Julia programming language pack-
ages. Simulations typically started from the H27-high
steady state (representing the non-metastatic state).
Notch input signals (‘Signal(t)’) were applied for a
duration AT (ranging from 50 to 100 time units
depending on the specific analysis), and the system’s
evolution was monitored. Switching time (ST) was
defined as the time required for the H4 state concen-
tration to cross a predefined threshold (e.g. half its
maximum value in the H4-high state) after the signal
onset.

2.2. Algorithms and parameters
The specific parameter values used for simulations are
listed in table 3, unless otherwise stated. These values
were selected, using the numerical methods described
under ‘Region of bistability] primarily to ensure the
model exhibits bistability within the epigenetic mod-
ule (Module 2). This feature is key for represent-
ing epigenetic memory based on the positive feed-
back structure described. While not directly fitted to
quantitative experimental data for this specific miR-
222 regulatory system in melanoma, the chosen val-
ues represent plausible relative strengths and times-
cales for feedback-driven epigenetic processes often
observed in biological circuits [27-30].
Concentrations and kinetic parameters are given
in arbitrary units (a.u.). Also, note that our para-
meter choices establish relative reaction rates that
yield the reported dynamics, such as switching events.
Experimentally, these events occur on timescales ran-
ging from hours to days, consistent with typical epi-
genetic processes [31, 32]. This sets an approximate
value of our time unit as several hours, but a more
direct mapping to real time would require calibration
via comparison with a specific experimental dataset.

Parameter estimation methodology

Given the absence of complete kinetic measure-
ments for the Notch-epigenetic system in melan-
oma, we employed a phenomenological modeling
approach [33] anchored in the dimensionless for-
mulation developed in SI section 2. Our compre-
hensive literature survey revealed that none of the
11 model parameters are directly measured from
melanoma EMT experiments—only KDM5A activ-
ity can be indirectly constrained through H3K4me3
half-life measurements (#,/, = 6.8 h). Rather than
attempting ill-posed parameter fitting to sparse
endpoint data, we adopt a theoretical framework
where parameters are chosen to reproduce qual-
itative hallmarks of melanoma EMT: transitions
occurring over hours to days [10, 19], bistable
epithelial/mesenchymal states, and requirement for
sustained or repeated Notch activation. The non-
dimensionalization collapses the dynamics onto a
handful of II-groups (e.g. I, =d7.(E./H,), II; =

7

T Chen et al

mt.(E./H.), Il4 = pp/kk) that highlight the domin-
ant ratios of histone modification rates and feedback
strengths. We therefore selected dimensional para-
meters by: (i) fixing the characteristic time-scale 7, =
24 h to represent the day-scale EMT transition times-
cale, chosen to match the general observation that
melanoma EMT occurs over hours to days [10, 19];
(ii) seeding rate constants so that the associated II-
groups fall near O(1), which corresponds to balanced
methylation/demethylation fluxes; and (iii) sweeping
the remaining degrees of freedom around these nom-
inal values to ensure bistability, realistic switching
times, and pulse integration consistent with DLL1-
like/DLL4-like experiments [20, 21]. In total we eval-
uated 4800 parameter combinations (2252 of which
exhibited the desired bistable manifold), from which
the Set A and Set B values in table 3 were drawn.

We performed a global sensitivity analysis (Sobol
variance decomposition) over biologically plausible
parameter ranges [34]; detailed sampling results
appear in the Results section and SI section 3.

The external Notch input is represented by
‘Signal(#)’ in the ODEs (equations 1-2), modeling the
effective concentration of NICD generated. To simu-
late different ligand inputs observed experimentally
[20, 21], we consider the following two scenarios:

e Sustained (DLL4-like) input: we use a con-
stant signal, Signal(t) = A, during the stimulation
period.

e Pulsatile (DLL1-like) input: we use a square wave
oscillating between 0 and amplitude A, represented
as Signal(t) = A x [1 + sign(cos(wt + ¢))]/2, dur-
ing stimulation. Here, A is the amplitude, w is the
frequency, and ¢ is the initial phase. This form
captures the essential on/off nature of pulsatile
signaling.

Numerical integration. Simulations were performed
in Julia (v1.8+) usingDifferentialEquations. j1.
The reaction network—encoded with Catalyst. j1—
was integrated by the stiff solver Rosenbrock23
(abs./rel. tolerances 107°). Trajectories were initial-
ized in the H27-high steady state, followed by a stim-
ulus of duration AT (50-100 a.u.). The total runtime
was tnax = 1.5AT.

Switching criterion. A switch is said to occur when
the active-mark species H4 first exceeds the repress-
ive mark H27. Internally, a helper routine scans the
numerical solution and returns the first crossing time,
denoted ST; if no crossing occurs, the run is classified
as non-switching.

Phase-independent boundary construction. The
DLL1-like input is modeled as a square wave
Signal(t) = A [1+ signcos(wt + ¢)] /2. For every
non-zero driving frequency w we set the initial phase

to ¢* =27, so that Signal(t) =0 for t <0 and the
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first positive half-cycle starts exactly at the simula-
tion onset t = 0. Because any other choice of ¢ shifts
the waveform leftward in time, ¢* produces the latest
possible arrival of the first activating pulse and there-
fore represents the mathematically ‘worst-case’ phase
for switching.

We then sweep the control parameters over A €
[0,300] with unit resolution and w € [0,2] with
step 0.02. For each w we record the smallest amp-
litude that leads to a switch—this is the conservat-
ive threshold A* (w). Connecting the points { (w,A*)}
yields the phase-independent amplitude—frequency
decision boundary shown in figure 4(a). It is import-
ant to note that this decision boundary, and the cor-
responding switching times presented in figure 4(b),
were specifically computed for a fixed stimulus dur-
ation of AT=100 a.u. These boundaries can be
dependent on the total stimulus duration; longer
durations might allow for switching with weaker or
higher-frequency pulsatile signals due to cumulative
effects over more cycles, a characteristic not explicitly
explored in the current boundary plots. However, fur-
ther analysis demonstrates that this dependency is
weak; for example, increasing the total stimulus dura-
tion from AT = 100 a.u. to AT = 200 a.u. resultsin a
slight leftward shift of the A-w boundary. Specifically,
at a driving frequency of w = 1.0, the minimum amp-
litude required for switching decreases from approx-
imately A =185 (for AT =100 a.u.) to A= 180 (for
AT =200 a.u.). This demonstrates that the system
can switch with a slightly weaker signal if the stimu-
lation is applied for a longer total period, confirming
the cumulative effect of pulsatile signals over exten-
ded durations.

The same simulations provide the switching time
ST(A,w, ¢*), defined as the first instant at which the
active mark H4 exceeds the repressive mark H27.
Grouping these values by amplitude produces the ST—
w curves in figure 4(b); each curve is an upper envel-
ope valid for all initial phases, because any ¢ # ¢* can
only advance the first pulse and shorten the observed
switching time.

Validation of phase independence. For representat-
ive (A,w) pairs we repeated the simulations while
sampling ¢ uniformly in [0, 27). The maximal switch-
ing time and the minimal switching amplitude
obtained over the full phase ensemble coincided
(within numerical tolerance) with ST(A,w,¢*) and
A*(w), respectively, confirming that the reported
boundary and ST curves are indeed independent of
the initial phase.

3. Results

The CRN model presented in table 1 provides a
framework for understanding the dynamics of Notch
signaling activation and its influence on the histone
state of miR-222. In a previous study [10], researchers
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observed that melanoma cells could maintain Notch
pathway activation and a metastatic phenotype even
when not in direct contact with ligand-expressing
keratinocytes. This persistence suggests an underlying
memory mechanism. The surface of sender cells con-
tains DLL1-like and DLL4-like ligands, which trigger
distinct signaling patterns when Notch is activated:
pulsatile signaling is often associated with DLLI1-like
inputs, and sustained signaling with DLL4-like [20,
21]. However, the relationship between the dynam-
ics of Notch signaling in melanoma metastasis and its
epigenetic impact on miR-222 remained unexplored.

3.1. Notch ligand dynamics determines melanoma

cell state transition

In this paper, we focus primarily on the histone
state of the miR-222 gene as an indicator of the
metastatic melanoma phenotype. We systematic-
ally explore the transition between epigenetic states
by studying the switching time (ST) of the his-
tone state in the presence of both sustained (DLL4-
like) and frequency-modulated pulsatile (DLL1-like)
Notch signals. Experimental evidence has shown that
induced dynamics of NICD by different Notch lig-
ands can lead to different activation patterns of down-
stream Notch-targeted genes, which in turn determ-
ine cell fate [20]. In the following results, we ana-
lyze how ligand dynamics and epigenetic mechanisms
coordinate epigenetic state transitions in our model.

3.1.1. DLL4-like ligand-induced sustained NICD
triggers persistent melanoma metastasis

While the molecular interactions are believed known,
the precise dynamical mechanism establishing per-
sistent cellular memory via Notch signaling requires
further elucidation. We initially simulated the model
using a sustained DLL4-like Notch ligand signal as the
external input (Signal(t) = A). The simulation res-
ults qualitatively reproduced the experimental obser-
vations of phenotypic persistence [10]. We used a
default set of model parameters (given in table 3)
that allowed for bistable histone states and initial-
ized the model from a repressed histone state (H27-
high). This setup mimics the experimental finding of
high-level repressive histone marks in melanoma in
a Notch-free environment [10]. Our model assumes
that miR-222 is maintained in a repressed state due
to MR-mediated KDM5A activity and the double-
positive feedback in the histone methylation circuit.
Upon activation of the Notch signaling pathway with
sufficient amplitude and duration, the histone state is
expected to switch from a repressive state to an activ-
ated state.

Figure 3(a) presents an example simulation illus-
trating how a sustained DLL4-like Notch ligand sig-
nal (A =50 applied from T=0to T =100, so AT =
100) induces an epigenetic state change for miR-
222, potentially leading to an invasive and meta-
static state. The histone state of miR-222 is initially
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repressed (high H27) and then transitions to the
active state (high H4) while the signal is active. At
T =100, the Notch ligand signal is removed. The sim-
ulation demonstrates that the histone state of miR-
222 remains in the active state, consistent with exper-
imental observations of persistence. Our simulation
results suggest that the model provides a plausible
framework at the epigenetic level for explaining the
persistence of a high miR-222 state (associated with
invasive melanoma cells even after the removal of the
Notch signal.

3.1.2. DLL1-like ligand-induced pulsatile NICD can
also trigger persistent metastatic melanoma states

The activation of the Notch signaling pathway by
DLL1-like and DLL4-like ligands leads to distinct
NICD dynamics (figure 1). Emerging studies demon-
strate the differential effects of DLL1-like and DLL4-
like [20, 35, 36]. This specificity is partly attributed to
ligand-receptor interactions modulating these NICD
dynamics [20].

So far, we have shown that the DLL4-like lig-
and can induce a stable change in histone configur-
ation, ultimately leading to the activation of miR-222
(figure 3(a)). To understand the influence of DLL1-
like ligand input, we modeled pulsatile NICD sig-
nals using the square wave form Signal(f) = A x [1 +
sign(cos(wt+ ¢))]/2 during stimulation. The sim-
ulation results, depicted in figure 3(b), reveal that
pulsatile induction through DLL1-like signals is also
capable of initiating and sustaining miR-222 activ-
ation over an extended period, similar to the sus-
tained input from DLL4-like ligands, given appro-
priate parameters. The mechanism underlying this
response to pulses involves signal integration over
time. The epigenetic modification system (Module 2)
operates on timescales slower than the NICD fluc-
tuations driven by the pulsatile input. Consequently,
while a single short pulse (like the first pulse in
figure 3(b), shorter than the switching time seen in
figure 3(a)) is typically insufficient to cause an irre-
versible switch, its effect (reducing MR and allow-
ing H4 mark accumulation) partially persists through
the ‘off’ phase. Subsequent pulses build upon this
lingering effect. If the pulses are sufficiently frequent
and sustained over time, the cumulative impact drives
the histone state across the threshold for activation,
and thereafter the internal positive feedback loops can
maintain the H4-high state after the signal ends.

Thus, our analysis confirms that both sustained
and pulsatile NICD dynamics can induce long-
lasting epigenetic changes, leading to stable high-
H4 (active miR-222) melanoma cell states, consistent
with experimental observations of persistence [10].
Histone transitions triggered by DLLI-like-induced
pulsatile NICD dynamics ultimately exhibit a per-
sistent final pattern similar to that induced by sus-
tained dynamics. However, as discussed further in the
context of frequency-dependence in the next section,
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the efficiency of this integration process is sensit-
ive to the pulse characteristics (amplitude, frequency,
duration). Excessively rapid pulsatile NICD dynam-
ics can hinder the system’s ability to react within
each short signaling window, subsequently stalling
the transition; this can be thought of as low-pass fil-
tering. Mechanistically, our simulations reveal that
the epigenetic system counts discrete signal pulses:
cells require multiple pulses to accumulate sufficient
chromatin modifications for irreversible switching,
with the exact number determined by frequency and
amplitude (SI section 4). At low frequencies (0.2—
0.3 h™!), fewer but longer pulses enable cumulat-
ive H3K4me3 deposition across each cycle; at high
frequencies (0.8-1.0 h™!), rapid pulsing maintains
elevated baseline enzyme activity by preventing com-
plete NICD degradation between pulses. This pulse-
counting mechanism, verified through both determ-
inistic parameter sweeps and stochastic simulations
(SI Sections 4, 6), explains why intermediate frequen-
cies (0.4-0.6 h~!) are inefficient: they neither allow
sufficient per-pulse modification nor maintain steady
enzyme levels.

3.2. Decision boundary of melanoma cell state
transition

We mapped how sustained (DLL4-like) and pulsatile
(DLLI1-like) Notch ligands define the amplitude—
frequency combinations required for chromatin
switching. Sustained signals drive transitions through
continuous NICD input, while pulsatile signals
require specific temporal patterns matching chro-
matin timescales. To understand how signal char-
acteristics influence this switch, we computation-
ally determined transition boundaries (minimum
amplitude A for switching vs. frequency w) as well
as the switching times ST as a function of (A,w).
This analysis aims to clarify how the intrinsic prop-
erties of ligand signals collectively influence the
thresholds for cell state transitions and the timescale
of commitment.

An important aspect of pulsatile signaling is the
initial phase (¢) of the signal. In the computa-
tional model, the initial phase affects only the dura-
tion of the first pulse, with subsequent pulses being
unaffected. This dependence can influence the min-
imum number of pulses needed to cause a trans-
ition. Biologically, this phase must represent the (in
general fluctuating) state of the cell at the onset
of signal receipt. This initial alignment is likely to
be random from cell to cell. To capture the most
robust system behavior, one can analyze phase-
independent behavior. A phase-independent amp-
litude threshold (for the A—w curve) represents the
minimum amplitude required to guarantee switch-
ing regardless of the phase, determined by the ‘worst-
case’ phase. Similarly, a phase-independent switching
time (for the ST-w curve) represents the maximum
time required to switch across all possible phases.
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Figure 4. Dependence of epigenetic switching on NICD signal dynamics (phase-independent boundaries computed for dura-

tion AT = 50). Panel (a) shows the amplitude—frequency (A-w) switching boundary: minimum amplitude A (a.u.) required to
ensure switching versus frequency w (h~1), regardless of initial phase ¢. Higher frequencies require larger amplitudes, reflecting
low-pass filtering. Panel (b) reports the switching time—frequency (ST—w) relation: maximum switching time ST (h) (over all
phases ¢) versus frequency w (h™!) for fixed amplitudes (A = 50,100, 200,300; a.u.). ST increases sharply above a characteristic
frequency for each amplitude; minor undulations reflect discrete pulse counting and phase effects rather than numerical artifacts.

3.2.1. Amplitude and frequency effects

Figure 4(a) displays the phase-independent A-w
switching boundary curve. This curve maps out the
minimum NICD signaling amplitude (A) required to
ensure that a stable histone switch occurs at a specific
frequency (w) within a fixed duration (AT = 50),
regardless of the initial signal phase ¢. It reveals a non-
linear relationship: at low frequencies, a certain min-
imum amplitude is needed, while at higher frequen-
cies, a larger amplitude is required to achieve switch-
ing. This confirms the low-pass filtering nature of the
epigenetic switch—it responds less efficiently to high-
frequency inputs. This phase-independent threshold
reflects the robust signaling strength required to guar-
antee the epigenetic transition.

3.2.2. Switching time—frequency (ST—w) relation
Building upon the A-w relationship, figure 4(b)
illustrates the phase-independent ST—w relation-
ship, showing the maximum switching time (STp.x)
observed across all initial phases ¢ as a function of fre-
quency (w) for several fixed amplitudes (A). This rep-
resents the ‘worst-case duration’ required for a his-
tone state to shift. Analysis shows that this worst-case
duration increases with frequency (w) above a cer-
tain threshold, reflecting low-pass filtering. For the
canonical parameters (table 3), our simulations pre-
dict switching times of 12—16 h at low signal frequen-
cies (w2 0.2-0.3 h~1) to over 45 h at high frequencies,
timescales on the order of hours to days typical of
EMT processes. Notably, when the frequency is zero
(w=0), the ST aligns with what is expected for a sus-
tained DLL4-like signal as phase is clearly irrelevant
for a constant signal.

More detailed scrutiny of the ST—w data reveals
that while pulsatile signals from DLLI-like ligands
may induce epigenetic changes, they are never faster
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(especially considering the worst-case phase) than
DLL4-like sustained signals in terms of hastening his-
tone state transition times (compare ST,y at w =0
versus w >0 for a given A). Moreover, the find-
ings underscored in figure 4(b) convey that at each
fixed amplitude, starting from zero frequency, the
maximum switching time remains constant up until
a definable frequency threshold. Beyond this junc-
ture, the maximum switching time begins increas-
ing rapidly with frequency and eventually diver-
ging at the transition boundary. In essence, the A—
w and ST-w curves reveal how both sustained and
dynamic ligand signals can facilitate these epigenetic
transitions, albeit within specific parameter ranges.
Empirically, this variation in response likely con-
tributes to observations wherein different dynamic
signals initiate disparate sets of downstream target
[20]. We note that small undulations apparent in
figure 4(b) arise from discrete pulse-counting and
phase effects near threshold, not numerical instabil-
ity; results are invariant to integrator choice and
tolerance (see SI).

3.3. Cooperative control of cell fate by epigenetics
and ligand dynamics

Our in-depth examination of the miR-222 gene
model has provided key insights into how dynamic
ligand signals interact with epigenetic regulation to
drive state transitions potentially relevant to EMT in
melanoma. Within this framework, histone methyl-
ation mediated by PRC2 serves as a key epigen-
etic control mechanism stabilizing the repressed
state. Understanding how PRC2 kinetics influence
cell fate transitions provides deeper insight into
the coordinated effects of Notch ligand signaling
and epigenetic feedback in melanoma progression
[37—-40].



10P Publishing

Phys. Biol. 23 (2026) 016002

3.3.1. Epigenetics and ligand dynamics jointly steer cell
fate determination

To gain deeper insight into how PRC2 rate modulates
cell fate decisions, we investigate its role in regulating
the threshold at which NICD signaling induces miR-
222 activation. The precise timing and strength of
Notch ligand signals, coupled with epigenetic repres-
sion mechanisms, determine whether a melanoma
cell switches its epigenetic state.

The PRC2 complex is a crucial histone
methyltransferase that catalyzes the deposition of
H3K27me3 [41]. Thus, changes in PRC2 rate via
parameter p) affect the stability of the repressive his-
tone state and alter the Notch signaling threshold
required to switch to an active miR-222 state. By
understanding this interaction, we can determine
how dynamic ligand signaling and epigenetic feed-
back mechanisms cooperate to define stable cell states
[42-44].

3.3.2. PRC2 rate as a determinant of cellular decision
boundaries

To further elucidate the role of PRC2 rate in cell
fate decisions, we investigate how modulating PRC2
activity shifts the epigenetic decision boundary gov-
erning miR-222 activation. As displayed in figure 5,
our simulations examine how PRC2 rate affects the
amplitude—frequency (A — w) threshold, revealing its
role as an epigenetic tuning parameter that controls
the sensitivity of miR-222 to Notch signaling.

By increasing PRC2 rate (parameter p), we intro-
duce stronger stabilization of the H27 state, necessit-
ating higher NICD signaling level to overcome the
repression and drive gene activation. This effect is
particularly evident in the downward and rightward
shift of the phase-independent A-w boundary curve,
which indicates that cells with a higher PRC2 rate
require a greater Notch signal amplitude or lower
frequency to transition to a stable H4-high state.
These findings establish PRC2 rate as a critical epigen-
etic determinant that shapes the Notch-dependent
decision boundary, ultimately influencing the stabil-
ity of epigenetically controlled melanoma cell states.

3.4. Global sensitivity analysis identifies
hierarchical control

The demethylation rate d provides the only substan-
tial first-order contribution (S;(d) = 0.226) because
it directly counteracts methylation without feedback
protection. Parameters embedded in feedback (m:
NICD nuclear import, k: KDM5A demethylase, a;:
NICD-driven chromatin activation) exhibit negli-
gible first-order effects but large total-order indices
(Sr(m) =0.557, Sr(k)=0.502, Sr(c)=0.429),
indicating that their influence arises through para-
meter combinations. Feedback coefficients pp and kk
follow the same pattern (S;(pp) = 0.058, S; (kk) ~ 0,
yet Sr(pp) = 0.192, Sr(kk) =0.046) because they

11

T Chen et al

W Decision Boundary Regulated by PRC2 Rate
—~ 1.00

(h~

PRC2 Rate

—0.1

0.2
—0.3
0.4
—0.5

0.6
—0.7
—0.8
—0.9
—_—1.0

w
e
9
w

e
U
(=]

o
N
w

Driving Frequency

s

0 100 200 300 400 500
Driving Amplitude A (a.u.)

e
o
S

Figure 5. Modulation of the switching boundary by PRC2
feedback strength (p). The phase-independent A—w bound-
ary (for AT = 50) shifts downwards and rightwards as p
increases (from 0.1 to 1.0), indicating that stronger H27-
state stabilization requires higher amplitude or lower fre-
quency signals to induce switching regardless of initial
phase. Units: A in a.u., w in h=!. Parameter p corresponds
to PRC2 feedback strength.

enter exclusively through the ratio II; = pp/kk, so
coordinated changes matter more than individual
variations.

The threshold-independent Sobol analyses (final
H4, H4 area-under-curve, and peak H4) exhibit
interaction shares between 66% and 80%, match-
ing the coupled II-group structure where parameters
enter multiple dimensionless ratios simultaneously.
Across these metrics, the same chromatin-control
parameters (m, d, ay, k, p) dominate: a; provides the
largest first-order contribution, m and d maintain the
highest total-order indices, and p retains substantial
total sensitivity despite its small independent effect
because it operates through the chromatin ratios. The
complete decompositions appear in SI section 3 (sup-
plementary figure S1).

The sensitivity hierarchy directly reflects the
mathematical structure revealed by dimensional ana-
lysis (SI section 3). Parameters m and d control
the primary dimensionless groups II; and II, that
determine bistability boundaries, explaining their
large total-order indices. The substantial interaction
effects (0.381 for m, 0.208 for d) arise from non-
linear coupling at the bifurcation: the critical value
of one parameter depends on the other through the
relation Iy o = f(I1,/TI3) as derived in SI section 3.
In contrast, feedback parameters pp and kk exhibit
ratio protection—their individual variations cancel
when both scale proportionally (since only II, =
pp/kk enters the dynamics), providing robustness
against correlated enzyme expression fluctuations
common in biological systems. This hierarchical con-
trol architecture might be used to guide therapeutic
targeting: perturbing PRC2/EZH2 shifts II3, modu-
lating KDM5A alters II, while interventions affect-
ing KMT/KDM6A must be coordinated to displace
I1, rather than merely rescale it.
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3.5. Stochastic simulations capture population
heterogeneity

Chemical Langevin simulations operate on the nat-
ive copy numbers stored in the parameter database
(tens to hundreds of chromatin-modifying enzymes),
so no additional system-size rescaling is introduced.
This keeps the model in a regime where intrinsic fluc-
tuations remain appreciable while trajectories stay
numerically stable.

Under identical pulsatile DLL1-like stimulation
(amplitude 100, frequency 0.5h~!), individual cells
exhibit highly variable switching trajectories: 67%
complete the epigenetic transition from H4-high to
H27-high chromatin states while 33% remain epi-
thelial despite receiving the same signal (SI figure S8).

This incomplete penetrance arises from stochastic
fluctuations in chromatin modification reactions:
cells experiencing favorable fluctuations early in the
signaling period accumulate H4 marks more rapidly
and cross the switching threshold, while others fail
to integrate sufficient signal before stimulation ends.
The distribution of required pulses varies depend-
ing on frequency, with mean switching time of 12 h
(coefficient of variation 0.27) under baseline condi-
tions (SIsection 6). These model predictions are qual-
itatively consistent with the partial EMT penetrance
and heterogeneous timing observed in melanoma and
other cancer cell populations [1, 19].

Critically, stochastic effects smooth the determ-
inistic sawtooth patterns (visible in figure 4(b)) into
continuous probability gradients. The sharp integer
pulse requirements predicted by deterministic mod-
els become broad switching-time distributions in the
intrinsic-noise regime, demonstrating that molecular
noise is not merely a perturbation but a fundamental
component of the EMT decision process. When we
instead perturb the kinetic parameters themselves
(log-normal ¢ =0.3 Monte Carlo ensemble), only
37% of parameter draws complete the mesenchymal-
to-epithelial transition, leaving a 63% non-switching
reservoir even under identical signals. This partial
response might help explain clinical experience with
EZH2 inhibitors such as tazemetostat, which achieved
objective response rates below 20% in solid-tumor
cohorts despite target engagement [45], and with
Notch-pathway inhibitors such as the y-secretase
inhibitor RO4929097, which produced disease sta-
bilization but rare durable responses in melan-
oma patients [46]. These data lend support to dos-
ing strategies that explicitly target the probabilistic
non-switching subpopulation rather than assuming
deterministic thresholds.

4. Discussion

We developed a mechanistic description of how
dynamic Notch ligand codes are written into long-
lived chromatin memory at the miR-222 locus.
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Motivated by observations that transient Notch activ-
ation can lock melanoma cells into an invasive
state [10], the model links DLL1-like/DLL4-like-
driven NICD trajectories to the coupled histone
feedback loops that sustain or extinguish miR-222
expression [18].

Phenomenological modeling and dimensional ana-
lysis. A central methodological challenge is the
absence of complete kinetic measurements for the
11 model parameters in melanoma EMT. Rather
than attempting ill-posed parameter fitting to sparse
endpoint data, we adopted a dimensional ana-
lysis approach (SI section 2) that reveals the sys-
tem collapses onto three critical control groups:
IT, (KDM5A-mediated demethylation), II; (PRC2-
mediated methylation), and Il (feedback strength
ratio). This reduction from 11 parameters to 3
dimensionless groups provides a rigorous mathem-
atical framework for parameter selection while expli-
citly acknowledging data limitations. The approach
yields testable scaling predictions and identifies which
molecular processes control switching behavior inde-
pendently of specific parameter values.

Epigenetic memory and dynamic signal interpret-
ation. A central finding is the model’s capacity for
epigenetic memory through bistability. As demon-
strated (figure 3), a sufficiently strong Notch signal,
whether sustained or pulsatile, can induce a stable
switch to the H4-high (active miR-222) state, which
persists after signal withdrawal. This provides a mech-
anistic explanation for the lasting cellular changes
observed following transient Notch signaling [10].
Furthermore, the model reveals how the epigen-
etic module processes dynamic signals, acting as a
low-pass filter (figure 4). This frequency-dependent
response means the system integrates signals over
time and is less sensitive to high-frequency pulses
compared to sustained or low-frequency inputs. This
filtering property offers a mechanism for cells to
interpret the distinct temporal dynamics generated
by different Notch ligands (e.g. sustained DLL4-
like vs. pulsatile DLL1-like signals [20, 21]). Such
dynamic decoding could underlie the selective activ-
ation of downstream targets; for example, genes
requiring prolonged signaling to overcome an epi-
genetic threshold might be preferentially activated by
sustained DLL4-like signals, mirroring observations
regarding Hes/Hey regulation [20].

Role of epigenetic feedback and crosstalk. The
model’s behavior hinges on the epigenetic feedback
loops (table 1), where histone marks influence the
enzymes that modify them [47, 48]. The interplay
between activating (H3K4me3 via KMT/KDM6A)
and repressive (H3K27me3 via PRC2/KDM5A)
loops, coupled with the Notch-MR-KDMS5A link
[18], creates the bistable switch. The significance
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of epigenetic regulation, including histone methyl-
ation and demethylation, in modulating Notch path-
way output is well-established [41, 49-52]. Our
model specifically highlights the role of PRC2, a
key regulator of H3K27me3 [53, 54]. Modifying the
PRC2 feedback strength alters the signaling threshold
required for switching (figure 5), demonstrating how
intrinsic epigenetic factors can tune cellular sensitiv-
ity to Notch input. This dynamic interplay between
signaling and epigenetics is increasingly recognized
as crucial in development and disease, including pro-
cesses such as EMT [13, 55] and cell fate decisions
[56, 57].

Dynamic ligand decoding. Phase-independent
amplitude—frequency maps (figure 4) demonstrate
that both DLL4-like sustained input and DLLI-
like pulsatile input can trigger irreversible switch-
ing provided the signals integrate above a low-pass
boundary. The switch counts pulses rather than
simply tracking instantaneous amplitude, explain-
ing why small timing differences between ligands
translate into distinct epigenetic outcomes [20]. SI
section 4 extends this analysis to exponentially decay-
ing pulses, showing that biologically realistic wave-
form envelopes shift the boundary modestly (wr ~ 1)
yet leave the qualitative filtering intact. Modulating
PRC2 feedback redistributes the boundary (figure 5),
illustrating how intrinsic chromatin states tune sens-
itivity to extracellular dynamics.

Hierarchies of chromatin control. Global Sobol ana-
lysis spanning 2600 simulations ranks NICD nuclear
import (m) and receptor degradation (d) as the dom-
inant control levers (St > 0.48), whereas the feedback
pair (pp, kk) acts primarily through their ratio. Monte
Carlo perturbations (37% switching under 30% log-
normal noise; SI section 3) indicate that the canon-
ical parameter set resides inside a broad operational
wedge rather than on a knife edge. SI section 3 details
the dimensionless validation and biological interpret-
ation of this hierarchy, reinforcing how the II-group
structure explains both robustness and sensitivity.
Together these results support experimental strategies
that combine EZH2/KDMS5 perturbations with opto-
genetic control of ligand frequency to test the pre-
dicted decision surface.

Numerical validation and comparative architec-
ture. Solver cross-checks (Rosenbrock23, Tsit5,
Rodas5P, TRBDF2) reproduce the deterministic
‘wiggles’ in the switching-time curves, confirm-
ing they arise from discrete pulse counting rather
than numerical artifacts (SI section 5). Chemical
Langevin simulations smooth that structure into
broad outcome distributions (67% switching, with
variable pulse requirements; SI section 6), aligning
with partial EMT penetrance observed in heterogen-
eous melanoma cultures. The comparative analysis
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in SI section 7 demonstrates how the Notch mod-
ule’s bistable chromatin memory diverges from the
NF-xB programme’s graded enhancer priming [58]:
both circuits decode temporal inputs through chro-
matin modifications, but only Notch exhibits bista-
bility with persistent memory states, while NF-xB
employs reversible, graded chromatin remodeling.
This architectural difference reflects their distinct
biological roles—irreversible developmental com-
mitment (Notch) versus reversible adaptive responses
(NF-xB).

Therapeutic implications and model generality.
The model’s prediction that epigenetic parameters
tune sensitivity to Notch signals suggests therapeutic
possibilities. EZH2, the catalytic subunit of PRC2,
is a target in cancer therapy [59—-61], with inhibit-
ors under investigation in melanoma clinical trials
[42, 62]. Our derived decision boundaries (figures 4
and 5) suggest that modulating EZH2/PRC2 activity
could alter the cellular response threshold to onco-
genic Notch signaling [16], potentially converting
metastatic cells to a non-invasive state. The derived
non-linear decision boundaries (figures 4 and 5)
provide a quantitative framework for exploring such
interventions. The underlying motif of a signaling
pathway gating a bistable epigenetic switch may rep-
resent a general principle [63]. Similar concepts
appear in NF-xB-driven epigenetic reprogramming
[58] and drug resistance mechanisms [64]. Testable
hypotheses arise from the model, such as how
manipulating factors affecting ligand dynamics (e.g.
glycosylation [65]) or chromatin accessibility (e.g.
SWI/SNF activity [66]) might shift the predicted
switching boundaries.

Experimental predictions
The model yields concrete, testable predictions that
map to standard perturbations:

1. PRC2 inhibition experiments: EZH2 inhibit-
ors should shift the A—w boundary down/right,
lowering the amplitude/frequency needed for
switching; conversely, PRC2 upregulation should
shift it up/left.

2. Modulating NICD turnover: altering receptor
processing or degradation pathways should
primarily affect switching along the frequency
axis (effective w), altering the low-pass cutoff.

3. Frequency-dependent response curves: engin-
eering DLL1-like pulses versus DLL4-like sus-
tained stimuli (sender cell choice or ligand
constructs) while quantifying nuclear NICD,
H3K27me3/H3K4me3 at the miR-222 locus,
and miR-222 levels should recover the phase-
independent thresholds we report.

4. Stochastic switching signatures: switching time
distributions under fixed (A,w) should be broad
rather than deterministic, with incomplete



10P Publishing

Phys. Biol. 23 (2026) 016002

penetrance (partial switching) consistent with
threshold-crossing under intrinsic noise. Using
the native copy-number scale from the curated
parameter set, our Chemical Langevin simula-
tions predict 67% switching efficiency with coef-
ficient of variation ~0.27 in switching times;
these stochastic signatures can guide calibration
of effective noise levels against single-cell data.

5. Parameter estimation framework: fitting the
model’s A—w boundary and ST-w curves to time-
course datasets (NICD, histone marks, and miR-
222) provides a path to parameter estimation and
prospective validation.

Limitations and future directions

While our model captures frequency-dependent
chromatin switching through Notch signaling, sev-
eral biological complexities remain beyond its current
scope. First, the model focuses on histone modific-
ations at the miR-222 locus without incorporating
downstream targets such as MITF repression, ZEB1/2
activation, or the broader EMT transcriptional pro-
gram. This simplification allows mathematical tract-
ability but omits feedback loops that may stabilize
or destabilize the metastatic phenotype. Second, we
model idealized square-wave and exponential sig-
nals rather than the complex spatiotemporal patterns
arising from cell—cell contact dynamics, lateral inhib-
ition, and microenvironment heterogeneity observed
in vivo.

Future extensions could address pathway
crosstalk with TGF-f and Wnt signaling, which co-
regulate EMT in melanoma. Incorporating these
pathways would reveal how cells integrate mul-
tiple dynamic inputs to make fate decisions. The
model could also benefit from explicit repres-
entation of cis-inhibition mechanisms [67] that
shape Notch signal duration and amplitude at the
single-cell level. Linking our predicted switching
dynamics to single-cell RNA-seq trajectories [68]
would validate whether the computed H4/H27
transitions correspond to observed EMT state
distributions.

Finally, spatial effects such as cell-cell contact
dynamics and tumor microenvironment heterogen-
eity represent important future directions. Extending
the model to multicellular systems with spatially vary-
ing ligand fields could predict how tissue architec-
ture influences metastatic conversion patterns. Such
extensions would bridge from molecular mechanisms
to tissue-level phenomena, providing a multiscale
framework for understanding and potentially con-
trolling melanoma progression.
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