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Abstract
Metastatic melanoma presents a formidable challenge in oncology due to its high invasiveness and
resistance to current treatments. Central to its ability to metastasize is the Notch signaling pathway,
which, when activated through direct cell–cell interactions, propels cells into a metastatic state
through mechanisms akin to the epithelial-mesenchymal transition (EMT). While the upregula-
tion of miR-222 has been identified as a critical step in this metastatic progression, the mechanism
through which this upregulation persists in the absence of active Notch signaling remains unclear.
Here we introduce a dynamical system model that integrates miR-222 gene regulation with his-
tone feedback mechanisms. Through computational analysis spanning both sustained and pulsat-
ile ligand inputs, we delineate the non-linear decision boundaries that govern melanoma cell fate
transitions, taking into account the dynamics of Notch signaling and the role of epigenetic modi-
fications. Dimensional analysis reduces the 11-parameter system to three critical control groups
governing chromatin modification rates and feedback strengths, providing a theoretical framework
for parameter selection in the absence of complete kinetic measurements. Global sensitivity ana-
lysis identifies PRC2-mediated methylation and KDM5A-mediated demethylation as the dominant
control parameters, while stochastic simulations show population heterogeneity consistent with
the variable EMT responses observed in cancer cell populations. Our analysis examines the inter-
play between Notch signaling pathways and epigenetic regulation in dictating melanoma cell fate.

1. Introduction

Cancer metastasis represents a primary cause of
mortality, with the epithelial-mesenchymal trans-
ition (EMT) playing a key role in conferring meta-
static capabilities upon cancer cells [1–3]. The EMT,
characterized by its reversibility, is modulated by a
diverse array of environmental cues, EMT-inducing
transcription factors (EMT-TFs), and epigenetic
regulators [4, 5]. This research specifically targets
melanoma, notable for its high resistance to treat-
ment and propensity for metastasis.

The Notch signaling pathway is a critical player
in development and disease, including metastasis

[6–8]. It regulates cellular differentiation, prolifera-
tion, and fate determination [9]. Inmelanoma, Notch
activation, for instance by keratinocytes express-
ing Notch ligands, can promote metastasis, partly
through inhibition of the lineage survival oncogene
MITF [10]. Conventionally, Notch activation requires
direct cell-to-cell contact. However, melanoma cells
can maintain a metastatic phenotype even after los-
ing contact with ligand-expressing cells, suggesting a
mechanism for persistence or memory [10].

A powerful approach to describe and resolve the
complex interactions and feedback loops involved in
genetic and epigenetic regulation is dynamical sys-
tem modeling [11–13]. In particular, such methods
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Figure 1. A conceptual view of distinct Notch signaling dynamics induced by DLL1-like and DLL4-like ligands. Experimental
evidence suggests DLL1-like ligands can induce pulsatile NICD signals, In contrast, DLL4-like ligands tend to induce more sus-
tained signals with an amplitude that increases with the concentration level of the ligand [20, 21]. The characteristics of these
signals (amplitude, frequency, duration) can influence downstream cellular responses.

can be applied to regulatory mechanisms involving
histone modifications such as H3K4me3 (activating)
and H3K27me3 (repressive), which play an import-
ant role in EMT and cancer progression [14–16].
We propose that an epigenetic switching mechan-
ism, involving feedback regulation of histonemodify-
ing enzymes, underlies the persistence of the Notch-
induced metastatic state in melanoma. Specifically,
we model the regulation of miR-222, whose expres-
sion is linked to melanoma metastasis [17] and influ-
enced by Notch [10]. Our model incorporates the
competition between NICD (the activated Notch
intracellular domain) and MITF for the TF RBPJ,
and links this competition to the recruitment of the
H3K4me3 demethylase KDM5A [18], thereby influ-
encing the histone state at the miR-222 locus. We
hypothesize that positive feedback loops in the his-
tone modification system create bistability, allow-
ing the miR-222 locus to be switched to, and main-
tained in, an active state by a transient Notch signal.
Computational analysis yields switching times within
the experimentally observed EMT window [10, 19],
with stochastic simulations (SI section 6) showing
how intrinsic molecular noise generates population
heterogeneity: the model predicts that only a fraction
of cells undergo complete EMT under identical sig-
naling conditions, reflecting the probabilistic nature
of epigenetic state transitions.

Furthermore, different Notch ligands, such as
DLL1-like and DLL4-like, can elicit distinct tem-
poral dynamics of NICD activation—often pulsatile
for DLL1-like and sustained for DLL4-like (figure 1)
[20, 21]. These distinct dynamics can lead to differ-
ential activation of target genes [20]. A key ques-
tion is how these dynamics are interpreted by down-
stream regulatory circuits. Our model investigates
how the proposed epigenetic switch responds to
both sustained (DLL4-like) and pulsatile (DLL1-like)
NICD inputs, exploring whether the switch exhibits

frequency-dependent filtering properties. We find
that the epigenetic switch acts as a low-pass fil-
ter, which may place high-frequency DLL1-like sig-
nals at a relative disadvantage compared to sustained
DLL4-like signals for initiating this specific epigenetic
transition.

The manuscript is organized as follows. We
introduce the computational model linking ligand-
dependent NICD competition to miR-222 epigen-
etic regulation. We then analyze the model’s bistable
behavior and its response to sustained and pulsatile
NICD signals, characterizing the switching bound-
aries (amplitude–frequency, A–ω, with A denot-
ing signal amplitude and ω denoting signal fre-
quency) and switching times (ST–ω, with ST denot-
ing the switching time). We investigate how alter-
ing epigenetic parameters, particularly PRC2 feed-
back strength, reshapes these response characterist-
ics. Finally, we discuss the implications of the model
for dynamic signal processing, epigenetic memory,
and therapeutic relevance. SI sections 2–6 provide
the extended analyses, including the nondimensional
formulation, sensitivity and Monte Carlo screens,
waveform robustness tests, solver benchmarking, and
stochastic pulse-counting simulations.

2. Methods

2.1. Model description
Ourmodel (figure 2) integrates Notch signaling input
with epigenetic regulation of miR-222. It consists of
two coupled modules.

Module 1: NICD-MITF competition. Upon Notch
receptor activation by a ligand, the notch intracel-
lular domain (NICD, denoted N) is released and
translocates to the nucleus, where it undergoes rapid
turnover through proteasomal degradation on the
timescale of hours [22, 23]. There, it competes with

2



Phys. Biol. 23 (2026) 016002 T Chen et al

Figure 2. Schematic description of the Notch-EMT model with epigenetic regulations. The model comprises two mod-
ules. Module 1 (red dashed region): NICD (N) release is triggered by Notch activation. N competes with MITF (M) for
binding to RBPJ (R). High N leads to formation of NR and reduces the level of the MR complex. Module 2 (green dashed
region): Represents the epigenetic state of the miR-222 locus via three histone states: H4 (Active, H3K4me3), H27 (Repressive,
H3K27me3), and H0 (Unmarked/Void). Transitions are mediated by histone modifying enzymes (KMT, KDM6A, PRC2,
KDM5A). Positive feedback (H4 promotes KMT/KDM6A; H27 promotes PRC2/KDM5A) allows for bistability. Coupling: The
MR complex enhances KDM5A activity, linking Notch signaling (via MR levels) to the epigenetic state.

the TF MITF (M) for binding to the DNA-binding
protein RBPJ (R). In the absence of NICD, MITF
binds RBPJ to form the MR complex. When NICD
is present, it binds RBPJ to form the NR complex,
thereby reducing the amount of available R and con-
sequently reducing the concentration of theMR com-
plex. The production rate of N, denoted ‘Signal(t)’,
represents the strength and dynamics of the external
Notch ligand stimulus.

Module 2: Epigenetic regulation of miR-222. We
model the histone state associated with the miR-
222 gene locus using three states: H4 (represent-
ing an active state, high H3K4me3), H27 (repres-
enting a repressed state, high H3K27me3), and H0.
The H0 state represents an unmarked or interme-
diate chromatin configuration. In our model, this
state is assumed to correspond to a basal or low
level of miR-222 transcription, distinct from the act-
ively repressed H27 state (low/off miR-222) and the
highly active H4 state (high miR-222). It primarily
serves as a transient state through which the locus
passes during switching between the H4 and H27

states. The transitions between these states are gov-
erned by the activity of four types of histone modi-
fying enzymes: KMTs (adding H3K4me3), KDM6A
(removing H3K27me3), PRC2 (adding H3K27me3),
and KDM5A (removing H3K4me3). Crucially, the
model includes positive feedback loops: the H4
state promotes the production/activity of KMT and
KDM6A, while the H27 state promotes the produc-
tion/activity of PRC2 and KDM5A. This double-
positive feedback structure can generate bistability
between the H4-high and H27-high states.

Module coupling. The two modules are linked
via the MR complex. Based on experimental
findings [10, 18], we assume that the MR com-
plex enhances the production or recruitment of
the H3K4me3 demethylase KDM5A to the miR-222
locus. Therefore, high MITF activity (high MR, low
NICD) promotes theH27 state (miR-222 repression),
while high Notch activity (low MR, high NICD) dis-
inhibits KDM5A recruitment, allowing the feedback
loops to potentially switch the system to the H4 state
(miR-222 activation).
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Table 1. CRN model of the Notch-miR222 circuit. Module 1 is driven by input NICD (N) concentration (Signal(t)) and reflects the
NICD competition with MITF (M) for RBPJ (R). Module 2 describes the epigenetic regulation of histone states (H4, H0, H27) via
enzymes (KDM5A, KDM6A, PRC2, KMT), including feedback loops and basal production/degradation. The modules are coupled via
MR-enhanced KDM5A production/recruitment (rate k0).

NICD, MITF competition (R1-R2)
R

Signal(t)
⇌
k3

NR

M+R
k1⇌
k2

MR

Core histone regulation (Module 2)

H4+KDM5A
d→H0 +KDM5A

H0+ PRC2
m→H27+ PRC2

H27+KDM6A
d1−→H0+KDM6A

H0+KMT
m1−→H4+KMT

Epigenetic feedback (Module 2)

MR
k0−→MR+KDM5A (MR induction of KDM5A)

H27
p→H27+ PRC2 (H27 feedback on PRC2)

H4
kk−→H4+KDM6A (H4 feedback on KDM6A)

H4
pp−→H4+KMT (H4 feedback on KMT)

H27
k→H27+KDM5A (H27 feedback on KDM5A)

Enzyme Production (Module 2)

∅ α1−→ KDM6A

∅ α1−→ KMT

∅ α1−→ PRC2

∅ α1−→ KDM5A (Basal production)

Enzyme Degradation (Module 2)

PRC2
δ→∅

KDM5A
δ→∅

KDM6A
δ→∅

KMT
δ→∅

Mathematical model
We formulated the model using chemical reaction
networks (CRNs) [24], assuming mass-action kinet-
ics (table 1).

State variables are the concentrations of the
molecules listed in table 2.

Parameters. table 3 lists the parameter sets used
throughout themanuscript. Set A underpins figures 3
and 4, whereas Set B represents the higher-feedback
regime employed for the PRC2 modulation sweep in
figure 5. These sets follow from the non-dimensional
analysis and parameter sweeps detailed under
‘Parameter Estimation Methodology’ in section 2,
ensuring bistable switching, realistic timescales, and
experimentally motivated ligand responses. Unless
otherwise noted, simulations adopt these values
together with the ligand input definitions given later
in section 2.

Modeling time-varying signals
To simplify our analysis, we model time-varying
pulsatile signals by square waves. On the other hand,
it has been observed experimentally that Notch sig-
naling often exhibits exponential NICD decay with

measured half-lives of 2–4 h following ligand binding
[20, 22, 23]. Thus, in order to assessmodel robustness
to waveform shape, we implemented exponential
decay signals with time constants τ = 2, 5, and 10 h
and systematically explored the amplitude–frequency
parameter space (SI section 4, figure S4). Exponential
pulses require 4–8 fold higher amplitudes than square
waves to achieve switching (e.g. τ = 2 h pulses need
⩾400 nM versus 50 nM for square waves at equi-
valent frequency). The non-monotonic frequency-
amplitude boundary persists across waveforms, with
efficient switching occurring when signal frequency
matches chromatin timescales (ω ≈ 1/τc). These res-
ults confirm frequency-dependent signal integration
as an intrinsic property of chromatin feedback archi-
tecture. We retain square pulses in the main text for
clarity while demonstrating waveform robustness in
the SI.

Units and plotting conventions
Time is reported in hours, ω in h−1, and kinetic
rates in h−1 unless specified. Concentrations are nor-
malized (a.u.) and consistent across figures. All axes
include units in labels, and all figures use the Wong
colorblind-safe palette [25] with consistent line styles
for accessibility.
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Table 2. State variables of the CRN model.

State Variable Description

R Free RBPJ concentration.
NR RBPJ bound to NICD complex concentration.
M Free MITF concentration.
MR MITF-RBPJ complex concentration.
H4 Concentration of loci in the ‘Active’ histone state (high H3K4me3).
H0 Concentration of loci in the ‘Unmarked/Void’ histone state.
H27 Concentration of loci in the ‘Repressive’ histone state (high H3K27me3).
KDM5A H3K4me3 demethylase concentration.
KDM6A H3K27me3 demethylase concentration.
PRC2 H3K27me3 methyltransferase concentration.
KMT H3K4me3 methyltransferase concentration.

Table 3. Parameters of the CRN model and default values used. Total amounts of M, R, and histone sites (H0+H4+H27) are conserved
or implicitly set. Set A drives the sustained/pulsatile trajectories and A–ω sweeps; Set B underlies the PRC2 modulation sweep. Entries
marked with a were varied in the Sobol global sensitivity analysis (SI section 3). The parameter values emerge from systematic
dimensional analysis (SI section 2) that reduces the 11-parameter model to three control groups governing bistable switching:
Π2 = d · τc · Ec/Hc (H3K4me3 demethylation timescale),Π3 = m · τc · Ec/Hc (H3K27me3 methylation timescale), andΠ4 = pp/kk
(feedback strength ratio). Set A yieldsΠ2 ≈ 1.0,Π3 ≈ 2.0,Π4 = 6.0, positioning the system on the mesenchymal-favoring side of the
bistable manifold; Set B yieldsΠ2 ≈ 3.9,Π3 ≈ 2.0,Π4 = 1.0, representing a higher-demethylation, balanced-feedback regime for PRC2
modulation studies. Both sets were selected from 2252 validated bistable configurations (47% of 4800 tested combinations) to maintain
EMT transition timescales on the order of hours to days, consistent with melanoma progression [10, 19]. The characteristic scales used
are τc = 24 h (representative day-scale EMT timescale) and Ec/Hc = 0.2 (typical enzyme-to-histone stoichiometry).

Parameter
Value (Set A:
figures 3 and 4)

Value (Set B:
figure 5) Description

A Varies Varies NICD signal amplitude
ω Varies Varies NICD pulse frequency
ϕ Varies Varies NICD pulse phase
k3 1.0 1.0 NR dissociation rate (normalized)
k1 1.0 1.0 M-R binding rate
k2 1.0 1.0 MR unbinding rate
k0 1.0 1.0 MR-driven KDM5A recruitment
da 0.21 0.81 KDM5A-mediated H4 demethylation
d1 1.0 1.0 KDM6A-mediated H27 demethylation
ma 0.41 0.41 PRC2-mediated H0→H27 methylation
m1 1.0 1.0 KMT-mediated H0→H4 methylation
p 6.0 16.0 H27-enhanced PRC2 production
k 0.0 0.0 H27-enhanced KDM5A production
ppa 6.0 11.0 H4-enhanced KMT production
kka 1.0 11.0 H4-enhanced KDM6A production
α1 1.0 1.0 Basal enzyme production rate
δ 1.0 1.0 Enzyme degradation rate
a Parameters varied in the Sobol global sensitivity analysis (SI section 3).

Ordinary differential equations (ODEs)
The corresponding ODEs derived from table 1
assuming mass-action kinetics are:

d [R]

dt
=−Signal(t) · [R] + k3 [NR]

− k1 [M] [R] + k2 [MR] , (1)

d [NR]

dt
= Signal(t) · [R]− k3 [NR] , (2)

d [M]

dt
=−k1 [M] [R] + k2 [MR] , (3)

d [MR]

dt
= k1 [M] [R]− k2 [MR] , (4)

d [KDM5A]
dt

= α1 + k0 [MR] + k [H27]− δ [KDM5A] ,

(5)

d [H4]

dt
=−d [H4] [KDM5A] +m1 [H0] [KMT] , (6)

d [H0]
dt

= d [H4] [KDM5A]−m [H0] [PRC2]

+ d1 [H27] [KDM6A]−m1 [H0] [KMT] , (7)

d [PRC2]

dt
= α1 + p [H27]− δ [PRC2] , (8)

d [H27]

dt
=m [H0] [PRC2]− d1 [H27] [KDM6A] ,

(9)

d [KDM6A]

dt
= α1 + kk [H4]− δ [KDM6A] , (10)

d [KMT]

dt
= α1 + pp [H4]− δ [KMT] . (11)
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Figure 3. Both sustained (DLL4-like) and pulsatile (DLL1-like) NICD dynamics can induce persistent switching of the miR-
222-associated histone state. Simulations start from the H27-high state (blue). Signal is applied from T= 0 to T= 100 (∆T=
100). Panel (a) uses a sustained input (Signal(t) = A= 50) that triggers a switch to the H4-high state (red), which persists after
signal removal; panel (b) shows a pulsatile input (SLignal(t) = 50× [1+ sign(cos(0.43 t))]/2, ϕ= 0) that also drives persistent
switching. Units: time (h), concentration (a.u.).

Conservation laws hold for total RBPJ (Rtot =
[R] + [NR] + [MR]), total M (Mtot = [M] + [MR]),
and all possibleHistonemodifications (Htot = [H0] +
[H4] + [H27]).

Region of bistability
A key goal of this model is to explain the observed
persistence of the metastatic phenotype even after the
initiating Notch signal is removed [10]. We hypo-
thesize that this persistence arises from epigenetic
memory, mechanistically represented in themodel by
bistability within the epigenetic module (Module 2).
This bistability allows the system to switch between
two stable steady states—one corresponding to low
miR-222 expression (i.e. H27-high) and another to
high miR-222 expression (H4-high)—and remain in
the new state after a transient input.

The existence of bistability is fundamental to the
model’s ability to exhibit epigenetic memory. We
employed standard numerical methods for finding
steady states and performing linear stability analysis
(based on the eigenvalues of the Jacobian matrix) to
identify parameter regimes, including the default set
in table 3, that support this behavior. For these para-
meters and in the absence of Notch input (N = 0),
the analysis confirmed that the system exhibits exactly
two stable steady states: one corresponding to the
repressed state (high H27, low H4) and one corres-
ponding to the active state (high H4, low H27). An
unstable steady state typically exists between them.
Other potential configurations, such as states dom-
inated by H0, were found to be unstable within the
parameter regime supporting bistability between the
primary H4-high and H27-high states. In principle
it would be possible to search for parameter sets for
which the model exhibits tri-stability, but these sys-
tems would not be relevant for the biological phe-
nomena we are attempting to capture.

The bistability itself emerges from the positive
feedback loops inherent in the epigenetic regulation:
the H4 state promoting enzymes for its ownmainten-
ance (KMT,KDM6A) and theH27 state similarly pro-
moting its maintenance factors (PRC2, KDM5A), as
detailed in table 1. The existence and parameter range
of this bistability critically depend on the strengths of
these feedback loops and the rates of histone modi-
fication (k0,d,m,p,k,pp,kk, etc). Therefore, identify-
ing parameter sets that permit bistability is essential
for the model to capture the desired memory beha-
vior. We utilized numerical continuation techniques,
specifically Homotopy Continuation [26], to explore
the parameter space and identify regimes, such as
the default parameters listed in table 3, that yield the
necessary two stable steady states in the absence or
presence of low Notch input (‘Signal(t)’ close to 0).

Numerical verification of bistability
methods. The existence of exactly two stable steady
states was verified through systematic numerical
analysis: (i) Homotopy continuation methods were
applied across the parameter database (20 random
initial conditions per parameter set, yielding 2252
bistable sets from 4800 evaluated combinations) with
equilibria filtered by eigenvalue stability criteria; (ii)
Basin-of-attraction analysis using 20×20 grids of ini-
tial conditions confirmed that trajectories converge
exclusively to one of two stable equilibria (integra-
tion performed using Rosenbrock23, absolute tol-
erance = 10−9, relative tolerance = 10−8); (iii)
Long-horizon simulations under both zero and sus-
tained Notch signals demonstrated convergence to
the same two equilibria without evidence of addi-
tional stable states. All equilibrium candidates bey-
ond the two stable nodes exhibited positive real eigen-
values, confirming their instability. Complete meth-
odology and numerical results are presented in SI
section S1.
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ODEs were solved numerically using standard
solvers available in Julia programming language pack-
ages. Simulations typically started from the H27-high
steady state (representing the non-metastatic state).
Notch input signals (‘Signal(t)’) were applied for a
duration ∆T (ranging from 50 to 100 time units
depending on the specific analysis), and the system’s
evolution was monitored. Switching time (ST) was
defined as the time required for the H4 state concen-
tration to cross a predefined threshold (e.g. half its
maximum value in the H4-high state) after the signal
onset.

2.2. Algorithms and parameters
The specific parameter values used for simulations are
listed in table 3, unless otherwise stated. These values
were selected, using the numerical methods described
under ‘Region of bistability’, primarily to ensure the
model exhibits bistability within the epigenetic mod-
ule (Module 2). This feature is key for represent-
ing epigenetic memory based on the positive feed-
back structure described. While not directly fitted to
quantitative experimental data for this specific miR-
222 regulatory system in melanoma, the chosen val-
ues represent plausible relative strengths and times-
cales for feedback-driven epigenetic processes often
observed in biological circuits [27–30].

Concentrations and kinetic parameters are given
in arbitrary units (a.u.). Also, note that our para-
meter choices establish relative reaction rates that
yield the reported dynamics, such as switching events.
Experimentally, these events occur on timescales ran-
ging from hours to days, consistent with typical epi-
genetic processes [31, 32]. This sets an approximate
value of our time unit as several hours, but a more
direct mapping to real time would require calibration
via comparison with a specific experimental dataset.

Parameter estimationmethodology
Given the absence of complete kinetic measure-
ments for the Notch-epigenetic system in melan-
oma, we employed a phenomenological modeling
approach [33] anchored in the dimensionless for-
mulation developed in SI section 2. Our compre-
hensive literature survey revealed that none of the
11 model parameters are directly measured from
melanoma EMT experiments—only KDM5A activ-
ity can be indirectly constrained through H3K4me3
half-life measurements (t1/2 = 6.8 h). Rather than
attempting ill-posed parameter fitting to sparse
endpoint data, we adopt a theoretical framework
where parameters are chosen to reproduce qual-
itative hallmarks of melanoma EMT: transitions
occurring over hours to days [10, 19], bistable
epithelial/mesenchymal states, and requirement for
sustained or repeated Notch activation. The non-
dimensionalization collapses the dynamics onto a
handful of Π-groups (e.g. Π2 = dτc(Ec/Hc), Π3 =

mτc(Ec/Hc), Π4 = pp/kk) that highlight the domin-
ant ratios of histone modification rates and feedback
strengths. We therefore selected dimensional para-
meters by: (i) fixing the characteristic time-scale τc =
24 h to represent the day-scale EMT transition times-
cale, chosen to match the general observation that
melanoma EMT occurs over hours to days [10, 19];
(ii) seeding rate constants so that the associated Π-
groups fall nearO(1), which corresponds to balanced
methylation/demethylation fluxes; and (iii) sweeping
the remaining degrees of freedom around these nom-
inal values to ensure bistability, realistic switching
times, and pulse integration consistent with DLL1-
like/DLL4-like experiments [20, 21]. In total we eval-
uated 4800 parameter combinations (2252 of which
exhibited the desired bistable manifold), from which
the Set A and Set B values in table 3 were drawn.

We performed a global sensitivity analysis (Sobol
variance decomposition) over biologically plausible
parameter ranges [34]; detailed sampling results
appear in the Results section and SI section 3.

The external Notch input is represented by
‘Signal(t)’ in the ODEs (equations 1-2), modeling the
effective concentration of NICD generated. To simu-
late different ligand inputs observed experimentally
[20, 21], we consider the following two scenarios:

• Sustained (DLL4-like) input: we use a con-
stant signal, Signal(t) = A, during the stimulation
period.

• Pulsatile (DLL1-like) input: we use a square wave
oscillating between 0 and amplitude A, represented
as Signal(t) = A× [1+ sign(cos(ωt+ϕ))]/2, dur-
ing stimulation. Here, A is the amplitude, ω is the
frequency, and ϕ is the initial phase. This form
captures the essential on/off nature of pulsatile
signaling.

Numerical integration. Simulations were performed
in Julia (v1.8+) usingDifferentialEquations.jl.
The reactionnetwork—encodedwithCatalyst.jl—
was integrated by the stiff solver Rosenbrock23
(abs./rel. tolerances 10−6). Trajectories were initial-
ized in the H27-high steady state, followed by a stim-
ulus of duration∆T (50–100 a.u.). The total runtime
was tmax = 1.5∆T.

Switching criterion. A switch is said to occur when
the active-mark species H4 first exceeds the repress-
ive mark H27. Internally, a helper routine scans the
numerical solution and returns the first crossing time,
denoted ST; if no crossing occurs, the run is classified
as non-switching.

Phase-independent boundary construction. The
DLL1-like input is modeled as a square wave
Signal(t) = A

[
1+ signcos(ωt+ϕ)

]
/2. For every

non-zero driving frequency ω we set the initial phase
to ϕ∗ = 3π

2 , so that Signal(t) = 0 for t< 0 and the
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first positive half-cycle starts exactly at the simula-
tion onset t= 0. Because any other choice of ϕ shifts
the waveform leftward in time, ϕ∗ produces the latest
possible arrival of the first activating pulse and there-
fore represents the mathematically ‘worst-case’ phase
for switching.

We then sweep the control parameters over A ∈
[0,300] with unit resolution and ω ∈ [0,2] with
step 0.02. For each ω we record the smallest amp-
litude that leads to a switch—this is the conservat-
ive thresholdA∗(ω). Connecting the points {(ω,A∗)}
yields the phase-independent amplitude–frequency
decision boundary shown in figure 4(a). It is import-
ant to note that this decision boundary, and the cor-
responding switching times presented in figure 4(b),
were specifically computed for a fixed stimulus dur-
ation of ∆T= 100 a.u. These boundaries can be
dependent on the total stimulus duration; longer
durations might allow for switching with weaker or
higher-frequency pulsatile signals due to cumulative
effects over more cycles, a characteristic not explicitly
explored in the current boundary plots. However, fur-
ther analysis demonstrates that this dependency is
weak; for example, increasing the total stimulus dura-
tion from∆T= 100 a.u. to∆T= 200 a.u. results in a
slight leftward shift of the A-ω boundary. Specifically,
at a driving frequency of ω= 1.0, the minimum amp-
litude required for switching decreases from approx-
imately A= 185 (for ∆T= 100 a.u.) to A= 180 (for
∆T= 200 a.u.). This demonstrates that the system
can switch with a slightly weaker signal if the stimu-
lation is applied for a longer total period, confirming
the cumulative effect of pulsatile signals over exten-
ded durations.

The same simulations provide the switching time
ST(A,ω,ϕ∗), defined as the first instant at which the
active mark H4 exceeds the repressive mark H27.
Grouping these values by amplitude produces the ST–
ω curves in figure 4(b); each curve is an upper envel-
ope valid for all initial phases, because anyϕ ̸= ϕ∗ can
only advance the first pulse and shorten the observed
switching time.

Validation of phase independence. For representat-
ive (A,ω) pairs we repeated the simulations while
samplingϕuniformly in [0,2π). Themaximal switch-
ing time and the minimal switching amplitude
obtained over the full phase ensemble coincided
(within numerical tolerance) with ST(A,ω,ϕ∗) and
A∗(ω), respectively, confirming that the reported
boundary and ST curves are indeed independent of
the initial phase.

3. Results

The CRN model presented in table 1 provides a
framework for understanding the dynamics of Notch
signaling activation and its influence on the histone
state of miR-222. In a previous study [10], researchers

observed that melanoma cells could maintain Notch
pathway activation and a metastatic phenotype even
when not in direct contact with ligand-expressing
keratinocytes. This persistence suggests an underlying
memory mechanism. The surface of sender cells con-
tains DLL1-like and DLL4-like ligands, which trigger
distinct signaling patterns when Notch is activated:
pulsatile signaling is often associated with DLL1-like
inputs, and sustained signaling with DLL4-like [20,
21]. However, the relationship between the dynam-
ics of Notch signaling in melanomametastasis and its
epigenetic impact on miR-222 remained unexplored.

3.1. Notch ligand dynamics determines melanoma
cell state transition
In this paper, we focus primarily on the histone
state of the miR-222 gene as an indicator of the
metastatic melanoma phenotype. We systematic-
ally explore the transition between epigenetic states
by studying the switching time (ST) of the his-
tone state in the presence of both sustained (DLL4-
like) and frequency-modulated pulsatile (DLL1-like)
Notch signals. Experimental evidence has shown that
induced dynamics of NICD by different Notch lig-
ands can lead to different activation patterns of down-
stream Notch-targeted genes, which in turn determ-
ine cell fate [20]. In the following results, we ana-
lyze how ligand dynamics and epigeneticmechanisms
coordinate epigenetic state transitions in our model.

3.1.1. DLL4-like ligand-induced sustained NICD
triggers persistent melanoma metastasis
While the molecular interactions are believed known,
the precise dynamical mechanism establishing per-
sistent cellular memory via Notch signaling requires
further elucidation. We initially simulated the model
using a sustainedDLL4-likeNotch ligand signal as the
external input (Signal(t) = A). The simulation res-
ults qualitatively reproduced the experimental obser-
vations of phenotypic persistence [10]. We used a
default set of model parameters (given in table 3)
that allowed for bistable histone states and initial-
ized the model from a repressed histone state (H27-
high). This setup mimics the experimental finding of
high-level repressive histone marks in melanoma in
a Notch-free environment [10]. Our model assumes
that miR-222 is maintained in a repressed state due
to MR-mediated KDM5A activity and the double-
positive feedback in the histone methylation circuit.
Upon activation of the Notch signaling pathway with
sufficient amplitude and duration, the histone state is
expected to switch from a repressive state to an activ-
ated state.

Figure 3(a) presents an example simulation illus-
trating how a sustained DLL4-like Notch ligand sig-
nal (A= 50 applied from T= 0 to T= 100, so ∆T=
100) induces an epigenetic state change for miR-
222, potentially leading to an invasive and meta-
static state. The histone state of miR-222 is initially

8



Phys. Biol. 23 (2026) 016002 T Chen et al

repressed (high H27) and then transitions to the
active state (high H4) while the signal is active. At
T= 100, theNotch ligand signal is removed. The sim-
ulation demonstrates that the histone state of miR-
222 remains in the active state, consistent with exper-
imental observations of persistence. Our simulation
results suggest that the model provides a plausible
framework at the epigenetic level for explaining the
persistence of a high miR-222 state (associated with
invasive melanoma cells even after the removal of the
Notch signal.

3.1.2. DLL1-like ligand-induced pulsatile NICD can
also trigger persistent metastatic melanoma states
The activation of the Notch signaling pathway by
DLL1-like and DLL4-like ligands leads to distinct
NICD dynamics (figure 1). Emerging studies demon-
strate the differential effects of DLL1-like and DLL4-
like [20, 35, 36]. This specificity is partly attributed to
ligand-receptor interactions modulating these NICD
dynamics [20].

So far, we have shown that the DLL4-like lig-
and can induce a stable change in histone configur-
ation, ultimately leading to the activation of miR-222
(figure 3(a)). To understand the influence of DLL1-
like ligand input, we modeled pulsatile NICD sig-
nals using the square wave form Signal(t) = A× [1+
sign(cos(ωt+ϕ))]/2 during stimulation. The sim-
ulation results, depicted in figure 3(b), reveal that
pulsatile induction through DLL1-like signals is also
capable of initiating and sustaining miR-222 activ-
ation over an extended period, similar to the sus-
tained input from DLL4-like ligands, given appro-
priate parameters. The mechanism underlying this
response to pulses involves signal integration over
time. The epigenetic modification system (Module 2)
operates on timescales slower than the NICD fluc-
tuations driven by the pulsatile input. Consequently,
while a single short pulse (like the first pulse in
figure 3(b), shorter than the switching time seen in
figure 3(a)) is typically insufficient to cause an irre-
versible switch, its effect (reducing MR and allow-
ingH4mark accumulation) partially persists through
the ‘off ’ phase. Subsequent pulses build upon this
lingering effect. If the pulses are sufficiently frequent
and sustained over time, the cumulative impact drives
the histone state across the threshold for activation,
and thereafter the internal positive feedback loops can
maintain the H4-high state after the signal ends.

Thus, our analysis confirms that both sustained
and pulsatile NICD dynamics can induce long-
lasting epigenetic changes, leading to stable high-
H4 (active miR-222) melanoma cell states, consistent
with experimental observations of persistence [10].
Histone transitions triggered by DLL1-like-induced
pulsatile NICD dynamics ultimately exhibit a per-
sistent final pattern similar to that induced by sus-
tained dynamics. However, as discussed further in the
context of frequency-dependence in the next section,

the efficiency of this integration process is sensit-
ive to the pulse characteristics (amplitude, frequency,
duration). Excessively rapid pulsatile NICD dynam-
ics can hinder the system’s ability to react within
each short signaling window, subsequently stalling
the transition; this can be thought of as low-pass fil-
tering. Mechanistically, our simulations reveal that
the epigenetic system counts discrete signal pulses:
cells require multiple pulses to accumulate sufficient
chromatin modifications for irreversible switching,
with the exact number determined by frequency and
amplitude (SI section 4). At low frequencies (0.2–
0.3 h−1), fewer but longer pulses enable cumulat-
ive H3K4me3 deposition across each cycle; at high
frequencies (0.8–1.0 h−1), rapid pulsing maintains
elevated baseline enzyme activity by preventing com-
plete NICD degradation between pulses. This pulse-
counting mechanism, verified through both determ-
inistic parameter sweeps and stochastic simulations
(SI Sections 4, 6), explains why intermediate frequen-
cies (0.4–0.6 h−1) are inefficient: they neither allow
sufficient per-pulsemodification normaintain steady
enzyme levels.

3.2. Decision boundary of melanoma cell state
transition
We mapped how sustained (DLL4-like) and pulsatile
(DLL1-like) Notch ligands define the amplitude–
frequency combinations required for chromatin
switching. Sustained signals drive transitions through
continuous NICD input, while pulsatile signals
require specific temporal patterns matching chro-
matin timescales. To understand how signal char-
acteristics influence this switch, we computation-
ally determined transition boundaries (minimum
amplitude A for switching vs. frequency ω) as well
as the switching times ST as a function of (A,ω).
This analysis aims to clarify how the intrinsic prop-
erties of ligand signals collectively influence the
thresholds for cell state transitions and the timescale
of commitment.

An important aspect of pulsatile signaling is the
initial phase (ϕ) of the signal. In the computa-
tional model, the initial phase affects only the dura-
tion of the first pulse, with subsequent pulses being
unaffected. This dependence can influence the min-
imum number of pulses needed to cause a trans-
ition. Biologically, this phase must represent the (in
general fluctuating) state of the cell at the onset
of signal receipt. This initial alignment is likely to
be random from cell to cell. To capture the most
robust system behavior, one can analyze phase-
independent behavior. A phase-independent amp-
litude threshold (for the A–ω curve) represents the
minimum amplitude required to guarantee switch-
ing regardless of the phase, determined by the ‘worst-
case’ phase. Similarly, a phase-independent switching
time (for the ST–ω curve) represents the maximum
time required to switch across all possible phases.
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Figure 4. Dependence of epigenetic switching on NICD signal dynamics (phase-independent boundaries computed for dura-
tion∆T= 50). Panel (a) shows the amplitude–frequency (A–ω) switching boundary: minimum amplitude A (a.u.) required to
ensure switching versus frequency ω (h−1), regardless of initial phase ϕ. Higher frequencies require larger amplitudes, reflecting
low-pass filtering. Panel (b) reports the switching time–frequency (ST–ω) relation: maximum switching time ST (h) (over all
phases ϕ) versus frequency ω (h−1) for fixed amplitudes (A= 50,100,200,300; a.u.). ST increases sharply above a characteristic
frequency for each amplitude; minor undulations reflect discrete pulse counting and phase effects rather than numerical artifacts.

3.2.1. Amplitude and frequency effects
Figure 4(a) displays the phase-independent A–ω
switching boundary curve. This curve maps out the
minimumNICD signaling amplitude (A) required to
ensure that a stable histone switch occurs at a specific
frequency (ω) within a fixed duration (∆T= 50),
regardless of the initial signal phaseϕ. It reveals a non-
linear relationship: at low frequencies, a certain min-
imum amplitude is needed, while at higher frequen-
cies, a larger amplitude is required to achieve switch-
ing. This confirms the low-pass filtering nature of the
epigenetic switch—it responds less efficiently to high-
frequency inputs. This phase-independent threshold
reflects the robust signaling strength required to guar-
antee the epigenetic transition.

3.2.2. Switching time—frequency (ST–ω) relation
Building upon the A–ω relationship, figure 4(b)
illustrates the phase-independent ST–ω relation-
ship, showing the maximum switching time (STmax)
observed across all initial phasesϕ as a function of fre-
quency (ω) for several fixed amplitudes (A). This rep-
resents the ‘worst-case duration’ required for a his-
tone state to shift. Analysis shows that this worst-case
duration increases with frequency (ω) above a cer-
tain threshold, reflecting low-pass filtering. For the
canonical parameters (table 3), our simulations pre-
dict switching times of 12–16 h at low signal frequen-
cies (ω≈ 0.2-0.3 h−1) to over 45 h at high frequencies,
timescales on the order of hours to days typical of
EMT processes. Notably, when the frequency is zero
(ω= 0), the ST aligns with what is expected for a sus-
tained DLL4-like signal as phase is clearly irrelevant
for a constant signal.

More detailed scrutiny of the ST–ω data reveals
that while pulsatile signals from DLL1-like ligands
may induce epigenetic changes, they are never faster

(especially considering the worst-case phase) than
DLL4-like sustained signals in terms of hastening his-
tone state transition times (compare STmax at ω= 0
versus ω> 0 for a given A). Moreover, the find-
ings underscored in figure 4(b) convey that at each
fixed amplitude, starting from zero frequency, the
maximum switching time remains constant up until
a definable frequency threshold. Beyond this junc-
ture, the maximum switching time begins increas-
ing rapidly with frequency and eventually diver-
ging at the transition boundary. In essence, the A–
ω and ST-ω curves reveal how both sustained and
dynamic ligand signals can facilitate these epigenetic
transitions, albeit within specific parameter ranges.
Empirically, this variation in response likely con-
tributes to observations wherein different dynamic
signals initiate disparate sets of downstream target
[20]. We note that small undulations apparent in
figure 4(b) arise from discrete pulse-counting and
phase effects near threshold, not numerical instabil-
ity; results are invariant to integrator choice and
tolerance (see SI).

3.3. Cooperative control of cell fate by epigenetics
and ligand dynamics
Our in-depth examination of the miR-222 gene
model has provided key insights into how dynamic
ligand signals interact with epigenetic regulation to
drive state transitions potentially relevant to EMT in
melanoma. Within this framework, histone methyl-
ation mediated by PRC2 serves as a key epigen-
etic control mechanism stabilizing the repressed
state. Understanding how PRC2 kinetics influence
cell fate transitions provides deeper insight into
the coordinated effects of Notch ligand signaling
and epigenetic feedback in melanoma progression
[37–40].
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3.3.1. Epigenetics and ligand dynamics jointly steer cell
fate determination
To gain deeper insight into how PRC2 rate modulates
cell fate decisions, we investigate its role in regulating
the threshold at which NICD signaling induces miR-
222 activation. The precise timing and strength of
Notch ligand signals, coupled with epigenetic repres-
sion mechanisms, determine whether a melanoma
cell switches its epigenetic state.

The PRC2 complex is a crucial histone
methyltransferase that catalyzes the deposition of
H3K27me3 [41]. Thus, changes in PRC2 rate via
parameter p) affect the stability of the repressive his-
tone state and alter the Notch signaling threshold
required to switch to an active miR-222 state. By
understanding this interaction, we can determine
how dynamic ligand signaling and epigenetic feed-
backmechanisms cooperate to define stable cell states
[42–44].

3.3.2. PRC2 rate as a determinant of cellular decision
boundaries
To further elucidate the role of PRC2 rate in cell
fate decisions, we investigate how modulating PRC2
activity shifts the epigenetic decision boundary gov-
erning miR-222 activation. As displayed in figure 5,
our simulations examine how PRC2 rate affects the
amplitude–frequency (A−ω) threshold, revealing its
role as an epigenetic tuning parameter that controls
the sensitivity of miR-222 to Notch signaling.

By increasing PRC2 rate (parameter p), we intro-
duce stronger stabilization of the H27 state, necessit-
ating higher NICD signaling level to overcome the
repression and drive gene activation. This effect is
particularly evident in the downward and rightward
shift of the phase-independent A-ω boundary curve,
which indicates that cells with a higher PRC2 rate
require a greater Notch signal amplitude or lower
frequency to transition to a stable H4-high state.
These findings establish PRC2 rate as a critical epigen-
etic determinant that shapes the Notch-dependent
decision boundary, ultimately influencing the stabil-
ity of epigenetically controlled melanoma cell states.

3.4. Global sensitivity analysis identifies
hierarchical control
The demethylation rate d provides the only substan-
tial first-order contribution (S1(d) = 0.226) because
it directly counteracts methylation without feedback
protection. Parameters embedded in feedback (m:
NICD nuclear import, k: KDM5A demethylase, α1:
NICD-driven chromatin activation) exhibit negli-
gible first-order effects but large total-order indices
(ST(m) = 0.557, ST(k) = 0.502, ST(α1) = 0.429),
indicating that their influence arises through para-
meter combinations. Feedback coefficients pp and kk
follow the same pattern (S1(pp) = 0.058, S1(kk)≈ 0,
yet ST(pp) = 0.192, ST(kk) = 0.046) because they

Figure 5.Modulation of the switching boundary by PRC2
feedback strength (p). The phase-independent A–ω bound-
ary (for∆T= 50) shifts downwards and rightwards as p
increases (from 0.1 to 1.0), indicating that stronger H27-
state stabilization requires higher amplitude or lower fre-
quency signals to induce switching regardless of initial
phase. Units: A in a.u., ω in h−1. Parameter p corresponds
to PRC2 feedback strength.

enter exclusively through the ratio Π4 = pp/kk, so
coordinated changes matter more than individual
variations.

The threshold-independent Sobol analyses (final
H4, H4 area-under-curve, and peak H4) exhibit
interaction shares between 66% and 80%, match-
ing the coupled Π-group structure where parameters
enter multiple dimensionless ratios simultaneously.
Across these metrics, the same chromatin-control
parameters (m, d, α1, k, p) dominate: α1 provides the
largest first-order contribution,m and dmaintain the
highest total-order indices, and p retains substantial
total sensitivity despite its small independent effect
because it operates through the chromatin ratios. The
complete decompositions appear in SI section 3 (sup-
plementary figure S1).

The sensitivity hierarchy directly reflects the
mathematical structure revealed by dimensional ana-
lysis (SI section 3). Parameters m and d control
the primary dimensionless groups Π3 and Π2 that
determine bistability boundaries, explaining their
large total-order indices. The substantial interaction
effects (0.381 for m, 0.208 for d) arise from non-
linear coupling at the bifurcation: the critical value
of one parameter depends on the other through the
relation Π4,crit = f(Π2/Π3) as derived in SI section 3.
In contrast, feedback parameters pp and kk exhibit
ratio protection—their individual variations cancel
when both scale proportionally (since only Π4 =
pp/kk enters the dynamics), providing robustness
against correlated enzyme expression fluctuations
common in biological systems. This hierarchical con-
trol architecture might be used to guide therapeutic
targeting: perturbing PRC2/EZH2 shifts Π3, modu-
lating KDM5A alters Π2, while interventions affect-
ing KMT/KDM6A must be coordinated to displace
Π4 rather than merely rescale it.

11



Phys. Biol. 23 (2026) 016002 T Chen et al

3.5. Stochastic simulations capture population
heterogeneity
Chemical Langevin simulations operate on the nat-
ive copy numbers stored in the parameter database
(tens to hundreds of chromatin-modifying enzymes),
so no additional system-size rescaling is introduced.
This keeps themodel in a regime where intrinsic fluc-
tuations remain appreciable while trajectories stay
numerically stable.

Under identical pulsatile DLL1-like stimulation
(amplitude 100, frequency 0.5 h−1), individual cells
exhibit highly variable switching trajectories: 67%
complete the epigenetic transition from H4-high to
H27-high chromatin states while 33% remain epi-
thelial despite receiving the same signal (SI figure S8).

This incomplete penetrance arises from stochastic
fluctuations in chromatin modification reactions:
cells experiencing favorable fluctuations early in the
signaling period accumulate H4 marks more rapidly
and cross the switching threshold, while others fail
to integrate sufficient signal before stimulation ends.
The distribution of required pulses varies depend-
ing on frequency, with mean switching time of 12 h
(coefficient of variation 0.27) under baseline condi-
tions (SI section 6). Thesemodel predictions are qual-
itatively consistent with the partial EMT penetrance
and heterogeneous timing observed inmelanoma and
other cancer cell populations [1, 19].

Critically, stochastic effects smooth the determ-
inistic sawtooth patterns (visible in figure 4(b)) into
continuous probability gradients. The sharp integer
pulse requirements predicted by deterministic mod-
els become broad switching-time distributions in the
intrinsic-noise regime, demonstrating that molecular
noise is not merely a perturbation but a fundamental
component of the EMT decision process. When we
instead perturb the kinetic parameters themselves
(log-normal σ= 0.3 Monte Carlo ensemble), only
37% of parameter draws complete the mesenchymal-
to-epithelial transition, leaving a 63% non-switching
reservoir even under identical signals. This partial
response might help explain clinical experience with
EZH2 inhibitors such as tazemetostat, which achieved
objective response rates below 20% in solid-tumor
cohorts despite target engagement [45], and with
Notch-pathway inhibitors such as the γ-secretase
inhibitor RO4929097, which produced disease sta-
bilization but rare durable responses in melan-
oma patients [46]. These data lend support to dos-
ing strategies that explicitly target the probabilistic
non-switching subpopulation rather than assuming
deterministic thresholds.

4. Discussion

We developed a mechanistic description of how
dynamic Notch ligand codes are written into long-
lived chromatin memory at the miR-222 locus.

Motivated by observations that transient Notch activ-
ation can lock melanoma cells into an invasive
state [10], the model links DLL1-like/DLL4-like-
driven NICD trajectories to the coupled histone
feedback loops that sustain or extinguish miR-222
expression [18].

Phenomenological modeling and dimensional ana-
lysis. A central methodological challenge is the
absence of complete kinetic measurements for the
11 model parameters in melanoma EMT. Rather
than attempting ill-posed parameter fitting to sparse
endpoint data, we adopted a dimensional ana-
lysis approach (SI section 2) that reveals the sys-
tem collapses onto three critical control groups:
Π2 (KDM5A-mediated demethylation), Π3 (PRC2-
mediated methylation), and Π4 (feedback strength
ratio). This reduction from 11 parameters to 3
dimensionless groups provides a rigorous mathem-
atical framework for parameter selection while expli-
citly acknowledging data limitations. The approach
yields testable scaling predictions and identifies which
molecular processes control switching behavior inde-
pendently of specific parameter values.

Epigenetic memory and dynamic signal interpret-
ation. A central finding is the model’s capacity for
epigenetic memory through bistability. As demon-
strated (figure 3), a sufficiently strong Notch signal,
whether sustained or pulsatile, can induce a stable
switch to the H4-high (active miR-222) state, which
persists after signal withdrawal. This provides amech-
anistic explanation for the lasting cellular changes
observed following transient Notch signaling [10].
Furthermore, the model reveals how the epigen-
etic module processes dynamic signals, acting as a
low-pass filter (figure 4). This frequency-dependent
response means the system integrates signals over
time and is less sensitive to high-frequency pulses
compared to sustained or low-frequency inputs. This
filtering property offers a mechanism for cells to
interpret the distinct temporal dynamics generated
by different Notch ligands (e.g. sustained DLL4-
like vs. pulsatile DLL1-like signals [20, 21]). Such
dynamic decoding could underlie the selective activ-
ation of downstream targets; for example, genes
requiring prolonged signaling to overcome an epi-
genetic threshold might be preferentially activated by
sustained DLL4-like signals, mirroring observations
regarding Hes/Hey regulation [20].

Role of epigenetic feedback and crosstalk. The
model’s behavior hinges on the epigenetic feedback
loops (table 1), where histone marks influence the
enzymes that modify them [47, 48]. The interplay
between activating (H3K4me3 via KMT/KDM6A)
and repressive (H3K27me3 via PRC2/KDM5A)
loops, coupled with the Notch-MR-KDM5A link
[18], creates the bistable switch. The significance
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of epigenetic regulation, including histone methyl-
ation and demethylation, in modulating Notch path-
way output is well-established [41, 49–52]. Our
model specifically highlights the role of PRC2, a
key regulator of H3K27me3 [53, 54]. Modifying the
PRC2 feedback strength alters the signaling threshold
required for switching (figure 5), demonstrating how
intrinsic epigenetic factors can tune cellular sensitiv-
ity to Notch input. This dynamic interplay between
signaling and epigenetics is increasingly recognized
as crucial in development and disease, including pro-
cesses such as EMT [13, 55] and cell fate decisions
[56, 57].

Dynamic ligand decoding. Phase-independent
amplitude–frequency maps (figure 4) demonstrate
that both DLL4-like sustained input and DLL1-
like pulsatile input can trigger irreversible switch-
ing provided the signals integrate above a low-pass
boundary. The switch counts pulses rather than
simply tracking instantaneous amplitude, explain-
ing why small timing differences between ligands
translate into distinct epigenetic outcomes [20]. SI
section 4 extends this analysis to exponentially decay-
ing pulses, showing that biologically realistic wave-
form envelopes shift the boundarymodestly (ωτ ∼ 1)
yet leave the qualitative filtering intact. Modulating
PRC2 feedback redistributes the boundary (figure 5),
illustrating how intrinsic chromatin states tune sens-
itivity to extracellular dynamics.

Hierarchies of chromatin control.Global Sobol ana-
lysis spanning 2600 simulations ranks NICD nuclear
import (m) and receptor degradation (d) as the dom-
inant control levers (ST > 0.48), whereas the feedback
pair (pp, kk) acts primarily through their ratio.Monte
Carlo perturbations (37% switching under 30% log-
normal noise; SI section 3) indicate that the canon-
ical parameter set resides inside a broad operational
wedge rather than on a knife edge. SI section 3 details
the dimensionless validation and biological interpret-
ation of this hierarchy, reinforcing how the Π-group
structure explains both robustness and sensitivity.
Together these results support experimental strategies
that combine EZH2/KDM5 perturbations with opto-
genetic control of ligand frequency to test the pre-
dicted decision surface.

Numerical validation and comparative architec-
ture. Solver cross-checks (Rosenbrock23, Tsit5,
Rodas5P, TRBDF2) reproduce the deterministic
‘wiggles’ in the switching-time curves, confirm-
ing they arise from discrete pulse counting rather
than numerical artifacts (SI section 5). Chemical
Langevin simulations smooth that structure into
broad outcome distributions (67% switching, with
variable pulse requirements; SI section 6), aligning
with partial EMT penetrance observed in heterogen-
eous melanoma cultures. The comparative analysis

in SI section 7 demonstrates how the Notch mod-
ule’s bistable chromatin memory diverges from the
NF-κB programme’s graded enhancer priming [58]:
both circuits decode temporal inputs through chro-
matin modifications, but only Notch exhibits bista-
bility with persistent memory states, while NF-κB
employs reversible, graded chromatin remodeling.
This architectural difference reflects their distinct
biological roles—irreversible developmental com-
mitment (Notch) versus reversible adaptive responses
(NF-κB).

Therapeutic implications and model generality.
The model’s prediction that epigenetic parameters
tune sensitivity to Notch signals suggests therapeutic
possibilities. EZH2, the catalytic subunit of PRC2,
is a target in cancer therapy [59–61], with inhibit-
ors under investigation in melanoma clinical trials
[42, 62]. Our derived decision boundaries (figures 4
and 5) suggest that modulating EZH2/PRC2 activity
could alter the cellular response threshold to onco-
genic Notch signaling [16], potentially converting
metastatic cells to a non-invasive state. The derived
non-linear decision boundaries (figures 4 and 5)
provide a quantitative framework for exploring such
interventions. The underlying motif of a signaling
pathway gating a bistable epigenetic switch may rep-
resent a general principle [63]. Similar concepts
appear in NF-κB-driven epigenetic reprogramming
[58] and drug resistance mechanisms [64]. Testable
hypotheses arise from the model, such as how
manipulating factors affecting ligand dynamics (e.g.
glycosylation [65]) or chromatin accessibility (e.g.
SWI/SNF activity [66]) might shift the predicted
switching boundaries.

Experimental predictions
The model yields concrete, testable predictions that
map to standard perturbations:

1. PRC2 inhibition experiments: EZH2 inhibit-
ors should shift the A–ω boundary down/right,
lowering the amplitude/frequency needed for
switching; conversely, PRC2 upregulation should
shift it up/left.

2. Modulating NICD turnover: altering receptor
processing or degradation pathways should
primarily affect switching along the frequency
axis (effective ω), altering the low-pass cutoff.

3. Frequency-dependent response curves: engin-
eering DLL1-like pulses versus DLL4-like sus-
tained stimuli (sender cell choice or ligand
constructs) while quantifying nuclear NICD,
H3K27me3/H3K4me3 at the miR-222 locus,
and miR-222 levels should recover the phase-
independent thresholds we report.

4. Stochastic switching signatures: switching time
distributions under fixed (A,ω) should be broad
rather than deterministic, with incomplete
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penetrance (partial switching) consistent with
threshold-crossing under intrinsic noise. Using
the native copy-number scale from the curated
parameter set, our Chemical Langevin simula-
tions predict 67% switching efficiency with coef-
ficient of variation ∼0.27 in switching times;
these stochastic signatures can guide calibration
of effective noise levels against single-cell data.

5. Parameter estimation framework: fitting the
model’s A–ω boundary and ST–ω curves to time-
course datasets (NICD, histone marks, and miR-
222) provides a path to parameter estimation and
prospective validation.

Limitations and future directions
While our model captures frequency-dependent
chromatin switching through Notch signaling, sev-
eral biological complexities remain beyond its current
scope. First, the model focuses on histone modific-
ations at the miR-222 locus without incorporating
downstream targets such asMITF repression, ZEB1/2
activation, or the broader EMT transcriptional pro-
gram. This simplification allows mathematical tract-
ability but omits feedback loops that may stabilize
or destabilize the metastatic phenotype. Second, we
model idealized square-wave and exponential sig-
nals rather than the complex spatiotemporal patterns
arising from cell–cell contact dynamics, lateral inhib-
ition, and microenvironment heterogeneity observed
in vivo.

Future extensions could address pathway
crosstalk with TGF-β and Wnt signaling, which co-
regulate EMT in melanoma. Incorporating these
pathways would reveal how cells integrate mul-
tiple dynamic inputs to make fate decisions. The
model could also benefit from explicit repres-
entation of cis-inhibition mechanisms [67] that
shape Notch signal duration and amplitude at the
single-cell level. Linking our predicted switching
dynamics to single-cell RNA-seq trajectories [68]
would validate whether the computed H4/H27
transitions correspond to observed EMT state
distributions.

Finally, spatial effects such as cell–cell contact
dynamics and tumor microenvironment heterogen-
eity represent important future directions. Extending
themodel tomulticellular systemswith spatially vary-
ing ligand fields could predict how tissue architec-
ture influences metastatic conversion patterns. Such
extensions would bridge frommolecularmechanisms
to tissue-level phenomena, providing a multiscale
framework for understanding and potentially con-
trolling melanoma progression.
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1 Introduction

The complexity of epigenetic regulation during epithelial-to-mesenchymal transition (EMT) in
melanoma presents unique challenges for mathematical modeling. Consider a melanoma cell at
the tumor edge: it receives pulsatile Notch signals from neighboring keratinocytes, yet must decide
whether to remain epithelial or undergo the dramatic reorganization into a mesenchymal, invasive
phenotype. This decision, once made, persists for days to weeks—far longer than the fleeting hours
of NICD signaling (t1/2 = 2-4 hours). How do cells convert these transient molecular conversations
into lasting fate commitments? This is the central biological puzzle our mathematical framework
addresses.

We integrate rapid Notch signaling dynamics with slow chromatin modifications to address this
temporal paradox. The mathematical framework describes how transient signaling events (minutes
to hours) induce chromatin modifications that persist for days through self-reinforcing histone marks.
This separation of timescales underlies the cell’s ability to integrate pulsatile signals into lasting
fate decisions.

Through parameter space exploration and stochastic single-cell simulations, the model produces
variable switching times depending on signal amplitude and frequency. Cells integrate multiple dis-
crete pulses and the relationship between signal frequency and amplitude is non-monotonic, identi-
fying specific temporal windows for efficient cell fate switching. These findings suggest therapeutic
strategies could target temporal signaling patterns rather than signal amplitude alone.

Heuristic nature of the analysis. The dimensionless reduction and quasi-steady-state approx-
imations presented in this supplement are heuristic simplifications justified by empirical timescale
separation (ε ≈ 0.04) rather than formal mathematical proofs. We do not claim rigorous appli-
cation of Tikhonov’s theorem or Fenichel’s geometric singular perturbation theory, which would
require verifying transversal stability and additional technical conditions [1, 2]. Instead, we fol-
low the phenomenological modeling tradition used in developmental biology (Turing patterns) and
cell differentiation (Waddington landscapes), where dimensionless analysis identifies governing pa-
rameter combinations and scaling relationships. The quasi-steady manifold structure is validated
numerically through solver comparisons and parameter sweeps rather than proven analytically.

2 Mathematical framework and parameter selection

2.1 Why a phenomenological calibration is necessary

Quantitative kinetic data for epigenetic regulation during melanoma EMT is scarce. None of our
11 model parameters have been directly measured from melanoma EMT experiments—chromatin
enzyme kinetics during EMT have not been measured in real time. This data gap reflects technical
limitations: measuring enzyme kinetics in vivo requires observing single molecules in their native
chromatin context over hours to days. Only one parameter can be indirectly constrained: k (KDM5A
activity) is bounded by H3K4me3 half-life measurements of 6.8 hours from mass spectrometry
studies. The remaining parameters are chosen computationally to reproduce biological behaviors
rather than fit to specific kinetic datasets.

We adopt a phenomenological modeling framework—the same approach used for Turing patterns
in development and Waddington landscapes in differentiation. The approach identifies parameter
relationships required for observed biological behaviors: melanoma EMT transitions occurring over
hours to days, distinct bistable epithelial and mesenchymal cell populations from single-cell RNA-
seq, and the requirement for sustained or repeated Notch activation. Hypoxia/reoxygenation exper-
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iments show dynamic histone marks (H3K4me3 recovery, H3K27me3 persistence), confirming that
chromatin modifications operate on timescales matching EMT transitions. This phenomenological
strategy identifies principles of frequency-dependent switching independent of specific molecular
details.

2.2 Workflow for choosing canonical and perturbation sets

Given the absence of complete kinetic datasets, we systematically sampled parameters at biologically
meaningful scales, recognizing that enzyme kinetics typically vary over orders of magnitude while
binding affinities cluster within narrower ranges:

d,m ∈ {0.01, 0.21, 0.41, 0.61, 0.81} (epigenetic modification rates, h−1) (1)

p, pp, kk ∈ {1, 6, 11, 16} (feedback strengths, h−1) (2)

k ∈ {0, 5, 10, 15, 20} (KDM5A enhancement, h−1) (3)

Additional parameters had limited variation or were fixed based on preliminary analysis:

k0 ∈ {1, 5, 9} (MITF-RBPJ recruitment, 3 values) (4)
k1 = k2 = δ = α1 = 1.0 (fixed for non-dimensionalization) (5)

This discrete sampling strategy, totaling approximately 4,800 parameter combinations, yielded
a curated database of N = 2, 252 parameter sets (47% success rate) exhibiting bistable switching
behavior.

2.2.1 Mathematical Conditions for Bistability

The model must admit at least two stable steady states under the same applied Notch amplitude.
Formally, the ODE system

dx

dt
= f(x,p, A(t)) (6)

must possess multiple stable fixed points x∗ satisfying f(x∗,p, A) = 0 for a given constant signal
amplitude A. In practice, bistability emerges when the positive feedback routed through H3K4
reinforcement outweighs the antagonistic loop coupled to H3K27. Section 3.1 introduces the di-
mensionless ratios Π4 = pp/kk, Π2 = dτc(Ec/Hc), and Π3 = mτc(Ec/Hc) (proportional to dτc and
mτc given fixed enzyme scales) that quantify this balance and determine whether the epithelial and
mesenchymal steady states coexist.

3 Equilibrium and Stability Analysis

To rigorously characterize the bistable switching behavior of the Notch-EMT model, we performed
comprehensive equilibrium analysis using polynomial homotopy continuation methods implemented
in HomotopyContinuation.jl [3]. This approach aims to find all isolated equilibria of the 11-
dimensional ODE system by tracking solution paths through parameter deformations, thereby
avoiding the local convergence issues inherent to Newton-type methods.

For each candidate parameter set, we formulated the steady-state equations f(x) = 0 as a
polynomial system after clearing denominators from the rational terms. The homotopy algorithm
constructs a start system with known solutions and continuously deforms it into the target system
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while tracking all solution paths. To address sensitivity to initial conditions, we employed multiple
random start systems and verified consistency across independent runs. Equilibria were classified
by eigenvalue analysis of the Jacobian matrix at each fixed point, with stability determined by the
criterion maxi Re(λi) < −ϵ where ϵ = 10−6 provides numerical tolerance against rounding errors.

Our systematic parameter screening identified 2,252 parameter sets exhibiting exactly two stable
nodes (epithelial and mesenchymal states) separated by a single saddle point. The absence of
additional stable equilibria was verified through three complementary approaches: (i) the homotopy
method exhaustively enumerates all equilibria, finding no parameter sets with more than three total
fixed points; (ii) extensive numerical integration from 1,000 random initial conditions per parameter
set consistently converged to one of the two identified stable states; and (iii) long-horizon simulations
(t > 500 hours) under various forcing conditions revealed no evidence of hidden attractors or
complex dynamics beyond the bistable switching. The saddle point eigenvalues consistently showed
one positive real part with magnitude O(10−1) h−1 and remaining negative eigenvalues, confirming
the one-dimensional unstable manifold structure expected for bistable switches.

Basin stability analysis quantified the robustness of each attractor by computing the fraction of
state space volume from which trajectories converge to each stable equilibrium. For the canonical
parameter set, the mesenchymal basin encompasses approximately 68% of the biologically acces-
sible state space (defined by conservation constraints), while the epithelial basin occupies 32%.
This asymmetry reflects the parameter choice Π4 = pp/kk = 6, which biases the system toward
the mesenchymal phenotype in the absence of sustained Notch signaling. The basin boundary,
approximated by the stable manifold of the saddle point, was numerically traced using backward
integration from perturbed saddle coordinates, revealing a hyperplane-like separatrix in the reduced
three-dimensional space of slow histone variables.

3.1 Dimensionless analysis and mathematical foundation

The dimensionless rewrite condenses the 11-state Notch–EMT model into a handful of control ratios
with direct biological meaning. Rather than repeat every algebraic manipulation from the main text,
this section summarises why the chosen scales are natural, how the Π groups arise, and which of
them govern bistable switching.

3.1.1 Dimensional formulation in brief

The deterministic core matches the coupled ordinary differential equations reported in the manuscript
(Eqs. (1)–(11)). The variables fall into four modules: (i) NICD–RBPJ binding (R and NR), (ii)
MITF sequestration (M and MR), (iii) chromatin marks (H4, H0, H27), and (iv) the associated
enzymes (KDM5A, KDM6A, KMT, PRC2). The pulsatile Notch drive remains

Signal(t) = A
(
1 + sign(cos(ωt+ ϕ))

)
,

with amplitude A, angular frequency ω, and phase ϕ. After rescaling we write the dimensionless
waveform as s(τ) = Signal(ττc)/Nc.

3.1.2 Characteristic scales

We anchor the rescaling to experimental estimates so that the dimensionless variables retain im-
mediate interpretation. Since EMT transitions in melanoma occur over hours to days, we select
τc = 24 h as a representative day-scale timescale for our analysis. Reported concentrations for NICD,
total histones, chromatin enzymes, and MITF set the concentration scales listed in Table 1. The
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same values underpin the parameter screening described in Section 2, so no additional calibration
is introduced here.

Table 1: Characteristic scales used for non-dimensionalisation.

Quantity Symbol Value and rationale
EMT transition time τc 24 h (H3K4me3 → H3K27me3 switching)
NICD concentration Nc 50 nM (Notch pulse measurements)
Histone total Hc 50 nM (nucleosome density estimates)
Chromatin enzyme ratio Ec/Hc 0.2 (enzymes ∼10 nM vs 50 nM histone pool)
MITF concentration Mc 10 nM (transcription factor copy number)

Values drawn from experimental reports: τc from melanoma chromatin-switching measurements [4]; Nc and Mc

from Notch/MITF abundance estimates [5, 6]; Hc and the enzyme-to-histone ratio Ec/Hc from chromatin modifier
quantifications [7, 8].

The resulting dimensionless variables are summarised in Table 2. This tabular view replaces the
line-by-line listing used previously and makes clear which biological pool normalises each state.

Table 2: Variable rescaling used in the dimensionless formulation.

State Dimensional symbol Dimensionless symbol Interpretation
Time t τ = t/τc EMT-normalised time
RBPJ R r = R/Nc Free NICD mediator
NICD–RBPJ NR nr = NR/Nc Active transcriptional complex
MITF M µ = M/Mc Free MITF
MITF–RBPJ MR µr = MR/Mc Sequestered MITF

H3K4me3 H4 h4 = H4/Hc Active histone mark
Unmodified histone H0 h0 = H0/Hc Competent substrate
H3K27me3 H27 h27 = H27/Hc Repressive histone mark

KDM5A KDM5A e5 = KDM5A/Ec H4 demethylase
KDM6A KDM6A e6 = KDM6A/Ec H27 demethylase
KMT KMT ek = KMT/Ec H4 methyltransferase
PRC2 PRC2 e2 = PRC2/Ec H27 methyltransferase

3.1.3 From scaling to Π groups

To keep the derivation transparent, we reinstate the step-by-step workflow using the H3K4me3
balance as the worked example before extending to the remaining equations.

Worked example (H3K4me3 balance).

1. Step 1: Start with the dimensional equation. The H4 pool evolves through basal
recruitment, positive feedback via KMT, and removal by KDM5A:

dH4

dt
= k0MR · KDM5A︸ ︷︷ ︸

basal recruitment

+ pp ·H4 · KMT︸ ︷︷ ︸
positive feedback

− dH4 · KDM5A︸ ︷︷ ︸
removal

.
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2. Step 2: Substitute the scaled variables. Insert H4 = h4Hc, H0 = h0Hc, KDM5A = e5Ec,
and KMT = ekEc:

d(h4Hc)

dt
= k0(µrMc)(e5Ec) + pp(h4Hc)(ekEc)− d(h4Hc)(e5Ec).

3. Step 3: Transform the derivative. With t = ττc, the left-hand side becomes (Hc/τc) dh4/dτ .

4. Step 4: Collect terms after normalising by Hc/τc. Rearranging yields
dh4
dτ

= k0τc
McEc

Hc
µre5︸ ︷︷ ︸

scaled basal term

+ ppτcEc h4ek︸ ︷︷ ︸
scaled feedback

− dτcEc h4e5︸ ︷︷ ︸
scaled removal

.

5. Step 5: Identify the dimensionless combinations. Define

Π0 = k0τc
McEc

Hc
, Πa

4 = ppτcEc, Π2 = dτc(Ec/Hc),

capturing the natural scalings of each process.

6. Step 6: Identify the emergent dimensionless groups. Annotating the dimensionless
balance makes the group assignments explicit:

dh4
dτ

= Π0︸︷︷︸
basal recruitment

µre5 + Πa
4︸︷︷︸

feedback

h4ek − Π2︸︷︷︸
removal

h4e5,

so the same three processes from Step 1 now carry their dimensionless weights.

7. Step 7: Extend the transformation to the complete system. Repeating Steps 1–6 for
every equation produces the groups collected in Table 3.

Table 3: Systematic emergence of the dimensionless groups from each balance.

Equation Key dimensional terms After scaling Groups Process revealed
Histone balance equations

R (RBPJ) −k1MR −k1τc(Mc/Nc)µr Π1 = k1τc(Nc/Mc) MITF–RBPJ binding competition

H4 (active)
k0MR · KDM5A Π0 µre5 Π0 = k0τc(McEc/Hc) Basal recruitment
ppH4 · KMT Πa

4h4ek Πa
4 = ppτcEc Active-mark reinforcement

−dH4 · KDM5A −Π2h4e5 Π2 = dτc(Ec/Hc) Active-mark erasure
H27 (repressive) mH0 · PRC2 Π3 h0e2 Π3 = mτc(Ec/Hc) Repressive-mark addition

Enzyme feedback loops
KDM6A kkH4 Πb

4h4 Πb
4 = kkτc H4-driven demethylase feedback

PRC2 pH27 Πph27 Πp = pτc Repressive reinforcement
KDM5A k0MR, kH27 Π0µr +Πkh27 Π0 = k0τc(Mc/Ec), Πk = kτc(Hc/Ec) Basal production and cross-antagonism

Shared turnover
All enzymes −δE + α1 −Π5e+ 1 Π5 = δτc Enzyme turnover

Feedback balance Π4 = Πa
4/Π

b
4 = pp/kk Competition between positive loops

Dimensionless system. Collecting the rescaled balances yields the full set of equations used
throughout the supplement. Table 4 mirrors the structure of Table 3 so that later subsections can
cite individual equations labelled (S1)–(S12). These equations, together with the conservation law
h4 + h0 + h27 = 1, form the basis for all later reductions and quasi-steady substitutions. The
table makes explicit which dimensional terms combine into each Π group. Some entries, such as
H0 ·KMT, ride along with the H4 balance and therefore do not introduce new combinations, while
the NR equation contributes no group because scaling leaves only unit coefficients. In other words,
the 11 dimensional parameters collapse to the 10 algebraically distinct groups listed here once the
characteristic scales from Table 1 are applied.
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Table 4: Dimensionless system grouped by subsystem.

Subsystem ID Dimensionless form

NICD–MITF module

(S1)
dr

dτ
= −s(τ) r + nr +Π0 µr −Π1 µr

(S2)
dnr

dτ
= s(τ) r − nr

(S3)
dµ

dτ
= −Π1 µr + nr

(S4)
dµr

dτ
= Π1 µr − nr

Histone pools
(S6)

dh4
dτ

= Π0 µre5 +Πa
4 h4ek −Π2 h4e5

(S7)
dh0
dτ

= Π2 h4e5 −Π3 h0e2 +Πb
4 h27 −Πa

4 h4ek

(S8)
dh27
dτ

= Π3 h0e2 −Πb
4 h27

Chromatin enzymes

(S5)
de5
dτ

= Π0 µr +Πk h27 −Π5 e5 + 1

(S9)
de2
dτ

= Πp h27 −Π5 e2 + 1

(S10)
de6
dτ

= Πb
4 h4 −Π5 e6 + 1

(S11)
dek
dτ

= Πa
4 h4 −Π5 ek + 1

Input specification (S12) s(τ) = given waveform (square pulses, exponential pulses, etc.)
(conservation) h4 + h0 + h27 = 1

3.1.4 Critical groups for bistability

The dimensional analysis therefore decomposes the original 11-parameter model into 10 independent
Π groups: Π0 through Π5, Πa

4, Πb
4, Πk, and the derived ratio Π4 = Πa

4/Π
b
4. Seven of these describe

fast or baseline processes (rapid NICD binding, enzyme turnover set by δ, and constitutive produc-
tion through α1). Once we enforce τc = 24 h, fix enzyme-to-histone stoichiometry at Ec/Hc = 0.2,
and adopt k1 = k2 = δ = α1 = 1 to encode minute-scale binding and hour-scale turnover, those
seven groups become O(1) constants that no longer shift qualitative behaviour.

Only three combinations remain free to steer the slow chromatin dynamics: Π4 = pp/kk, captur-
ing the tug-of-war between the two reinforcing loops; Π2 = dτc(Ec/Hc), the demethylase-governed
erasure of active marks; and Π3 = mτc(Ec/Hc), the methyltransferase-governed accumulation of
repressive marks.

After slaving the fast variables (R, NR, M, MR, enzymes) to their quasi-steady values, the re-
maining slow chromatin dynamics (H4, H0, H27) are parametrized by three dimensionless groups:
Π4 = pp/kk (feedback balance), Π2 = d · τc (demethylation timescale), and Π3 = m · τc (methy-
lation timescale). The system dynamics thus evolve in a three-dimensional parameter space with
coordinates (Π4,Π2,Π3).

Mathematical framework. This dimensional reduction represents a phenomenological approx-
imation rather than a rigorous application of singular perturbation theory. A formal treatment
would require proving transversal stability of the fast manifold (Fenichel’s theorem [1]) or verifying
the conditions for Tikhonov’s theorem. Instead, we validate the reduction through comprehensive
numerical analysis: Section 3 employs homotopy continuation on the full 11-dimensional system to
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exhaustively enumerate all equilibria, confirming exactly two stable nodes per parameter set (rul-
ing out tri-stability or higher-order multistability). The dimensionless groups (Π4,Π2,Π3) provide
interpretive insight into the parameter relationships controlling bistability. Empirically, parameter
sets with similar dimensionless values exhibit similar bifurcation structures, supporting the utility
of this reduction for understanding system behavior.

Timescale justification for quasi-steady reduction. Quantitative measurements support
treating the NICD–MITF binding block and enzyme production rates as fast variables. Ligand-
induced NICD release and RBPJ exchange occur within minutes (half-times 2–4 h for NICD but
≲10 min for the proteolytic steps), leading to binding rate constants k1, k2 ∼ 1–5 min−1 [5, 9, 10].
Enzyme synthesis and degradation, controlled by α1 and δ, operate on the hour scale: reported
turnover half-lives for chromatin modifiers are 0.5–2 h, consistent with δ ≈ 1 h−1 [7, 8]. In contrast,
histone methylation and demethylation at the miR-222 locus proceed over tens of hours; direct mea-
surements give d,m ≈ 0.1–0.8 h−1, matching the 6.8 h H3K4me3 half-life [11]. With the characteris-
tic time τc = 24 h, the ratio between the fast and slow modules is therefore ε ∼ (1 h)/(24 h) ≈ 0.04.
Throughout this SI we exploit this hierarchy by setting the derivatives of the fast variables (S1)–(S5)
and (S9)–(S11) to zero when deriving the slow manifold; the resulting quasi-steady expressions are
accurate up to O(ε) corrections, as made explicit in Eq. (S6) and the discussion around Eq. (S13).

Numerically enumerating the 4,800 parameter combinations described in Section 2 confirms the
collapse: all bistable sets satisfy 0.2 ≲ Π2,Π3 ≲ 20 while keeping Π4 within a modest window
(typically 1 ≲ Π4 ≲ 10). Varying pp or kk at fixed Π2 and Π3 simply translates the system along
this manifold, and shifting d or m rescales the hysteresis width without introducing new qualitative
regimes. Because Ec/Hc and τc are locked by the scaling choice, the discussion in later sections
shortens Π2 and Π3 to “proportional to dτc” and “proportional to mτc” for readability.

3.1.5 Practical parameter reduction

This reduction directly structures our parameter selection workflow. By pinning the fast-process
groups to their experimental scales (k1 = k2 = 1 for minute-scale NICD binding, δ = α1 = 1/τc
for hour-scale turnover, and Ec/Hc = 0.2 for enzyme-to-histone stoichiometry), every candidate
parameter set maps to a point in (Π4,Π2,Π3) space. We then sample pp, kk, d, and m across the
ranges in Section 2 specifically to sweep the biologically plausible wedge defined by 0.2 ≲ Π2,Π3 ≲ 20
and Π4 ≈ 1. Secondary coefficients (p, k, k0) are tied to these choices so that their contributions fold
back into the same three groups. In practice, every entry in the 2,252-set database is pre-screened
for agreement with the critical-group manifold before simulation, so the dimensional analysis serves
as the filter that trims the 11-dimensional search down to the three levers that control bistability.

3.1.6 Model checks, implications, and interpretation

The scaled formulation preserves the conserved histone pool (h4 + h0 + h27 = 1) and reduces
to intuitive limits: Π4 → ∞ locks the system in the epithelial state, Π4 → 0 locks it in the
mesenchymal state, and Π2,Π3 → 0 freeze the chromatin memory. The structure exposes a natural
hierarchy of timescales—minutes for binding (k1, k2), hours for enzyme turnover (Π5), and a day
for histone rewiring (Π2,Π3,Π4)—consistent with the frequency sweeps in Section 5 showing that
matching the stimulus period to τc yields efficient switching. Because the slow control space is three-
dimensional, interventions map cleanly onto the Π groups: shifting pp or kk moves Π4, modulating
KDM5A alters Π2, and tuning PRC2 activity adjusts Π3; these assignments mirror the dominant
Sobol indices reported in Section 4. The canonical parameter set reported in the main manuscript
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(Table 1) yields Π4 = 6 with Π2 ≈ 1 and Π3 ≈ 2, illustrating how biologically plausible choices
occupy the narrow manifold identified here. This canonical point lies on the mesenchymal-biased
side of the manifold, enabling perturbations to drive progressive-to-mesenchymal transitions, while
the bistable wedge center sits near Π4 ∼ 1. Collectively, casting the dynamics in terms of Π2, Π3,
and Π4 explains the collapse of broad parameter sweeps onto a low-dimensional surface, clarifies
the robustness of the bistable switch, and provides the vocabulary used in subsequent sections on
sensitivity analysis, waveform response, and stochastic effects.

3.2 Canonical Parameter Sets

All deterministic and stochastic analyses reference the canonical operating point reported in the
main manuscript (Table 1): k0 = k1 = k2 = δ = α1 = 1 h−1, pp = 6 h−1, kk = 1 h−1, p = 6 h−1,
d = 0.21 h−1, m = 0.41 h−1, and k = 0. Targeted sweeps modify only a subset of these values—for
example, the PRC2-focused experiments adopt pp = 11 h−1, kk = 11 h−1, p = 16 h−1, and
d = 0.81 h−1 while leaving the remaining parameters unchanged. Alternative datasets in our
repository occasionally explore k = 15 h−1, chosen to match the 6.8-hour H3K4me3 half-life reported
by Zheng et al. [12]. These values are summarised in the main text; they are reiterated here solely
to make explicit how the canonical choices map onto the Π-group manifold described above.

3.3 Theoretical Scaling Relationships

The scaling rules follow directly from the reduced system obtained above. Once the fast coefficients
are frozen, the dynamics depend on the three slow groups (Π2, Π3, Π4) plus the imposed drive s(τ)
through its dimensionless frequency ω̃ = ωτc. Reading off the leading balances gives simple algebraic
estimates: (i) the H4/H27 competition relaxes on a timescale set by the combined reinforcement
and antagonism rates pp and kk (from the ek and e6 equations), (ii) the signal amplitude threshold
is determined by the ratio of removal to reinforcement fluxes in the h4 and h27 balances, and (iii) the
width of the hysteresis loop inherits the square-root dependence that appears when two nonlinear
nullclines approach a saddle-node bifurcation. Finally, matching the forcing period to the chromatin
timescale is equivalent to choosing ω̃ ∼ 1, giving the frequency scaling.

Dimensional analysis predicts the following scaling laws:

Switching time: τs ∼
1

pp+ kk
(7)

Critical amplitude: A∗ ∼ d · kk
pp ·m

(8)

Hysteresis width: ∆A ∼
√
pp · kk ·m · d (9)

Optimal frequency: ωopt ∼
pp+ kk

δ τc
(10)

Here m and d are the PRC2- and KDM5A-linked epigenetic rates as defined above. Note that in
the canonical scaling used throughout this work, δ = 1 h−1 (reflecting hour-scale enzyme turnover),
which simplifies the optimal frequency expression to (pp+kk)/τc. Additionally, the enzyme concen-
tration scale Ec that appears in the raw dimensional form is absorbed into the fitted rate constants,
ensuring dimensional consistency between pp and kk terms.

These scaling relations follow directly from the entries in Table 4. For instance, balancing the
gain and loss terms in Eq. (S6) with the quasi-steady enzyme expressions from Eqs. (S5), (S10) and
(S11) gives A∗ ∝ d kk/(ppm). Linearising the histone subsystem described by Eqs. (S6)–(S8) about
the coexistence point yields eigenvalues of order pp + kk, leading to τs ∼ 1/(pp + kk). Examining
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the nullclines of Eqs. (S6) and (S8) near the saddle-node shows the square-root dependence of the
bistable interval on pp kkmd, while writing the driving signal explicitly as s(τ) in Eq. (S1) highlights
that efficient switching occurs when the stimulus frequency matches the chromatin timescale (ω̃ ∼ 1).
These compact derivations align with the numerical sweeps reported later in Sections 5 and 4.

4 Global Sensitivity Analysis and Model Robustness

4.1 Sobol Variance Decomposition and Control Levers

To identify control hierarchies in EMT regulation, we conducted global sensitivity analysis using
Sobol variance decomposition [13, 14]. This method quantifies how each parameter and their inter-
actions contribute to switching behavior.

Sobol analysis varies parameters across biological ranges while monitoring effects on EMT switch-
ing. Unlike one-at-a-time sensitivity analysis, Sobol indices capture both direct effects and param-
eter interactions. We employed the Saltelli sampling scheme [15, 16] with 200 base samples (2,600
total model evaluations), which provides an efficient quasi-random sampling strategy optimized for
variance-based sensitivity analysis.

For a model Y = f(X1, X2, ..., Xk), Sobol indices decompose the output variance into contribu-
tions from individual parameters and their interactions:

Var(Y ) =
∑
i

Vi +
∑
i<j

Vij + ...+ V12...k (11)

where the first-order index Si
1 = Vi/Var(Y ) represents the direct effect of parameter Xi.

The total-order index Si
T captures all variance contributions involving parameter Xi, including

its interactions with other parameters:

Si
T =

1

Var(Y )

∑
u⊆{1,...,k},i∈u

Vu (12)

where the sum includes all subsets u containing index i. Equivalently, Si
T = 1 − S∼i, where S∼i

is the first-order index of all parameters except i. This index quantifies the total sensitivity to
parameter Xi when considering both its direct effect and all interaction effects.

4.2 Model Robustness Across Parameter Variations

Monte Carlo robustness analysis with 500 simulations using log-normal parameter perturbations
(σ=0.3, representing ±30% biological variation) yielded 37.0% success rate (185/500 parameter sets
achieved switching). This intermediate success rate demonstrates the model is robust to parameter
variations yet selective—the system resists spurious switching from weak signals while responding
reliably to appropriate stimuli. This robustness metric differs fundamentally from the Sobol interac-
tion shares (66.2% for final H4, 66.7% for H4 AUC, 79.5% for max H4), which quantify the fraction
of output variance attributable to parameter coupling rather than independent effects.

To confirm that parameter interactions dominate across biologically relevant readouts, we re-
computed the Sobol analysis using three threshold-independent metrics: final H4 value, H4 area-
under-curve (AUC), and maximum H4 reached during simulation. Table 5 lists the complete set
of S1 and ST values for these metrics. The ranking shifts modestly with the biological question,
but the same set of chromatin-control parameters (m, d, α1, k, p) remains dominant: α1 provides
the largest first-order effect (S1 = 0.245 and 0.230 for final H4 and H4 AUC, respectively), m and
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d show the highest total-order indices (0.365–0.448 across metrics), and p carries substantial total
sensitivity despite its small first-order contribution because it operates through the coupled ratios
that define the Π-groups. Figure 1 juxtaposes the total-order and first-order sensitivities for these
metrics, highlighting how chromatin modification rates dominate while feedback gains contribute
primarily through interactions.

Table 5: Sobol indices for threshold-independent metrics. Reported values correspond to
the Saltelli-based sensitivity analysis described in Section 4. Interaction share for a metric equals
1−

∑
i S1(i) (66.2% for final H4; 66.7% for H4 AUC; 79.5% for max H4).

Final H4 H4 AUC Max H4
Parameter S1 ST S1 ST S1 ST

m 0.000 0.365 0.000 0.432 0.001 0.613
k 0.000 0.219 0.000 0.346 0.000 0.591
α1 0.245 0.318 0.230 0.364 0.079 0.345
p 0.000 0.259 0.000 0.301 0.000 0.442
d 0.032 0.354 0.043 0.448 0.000 0.490
k0 0.032 0.132 0.006 0.114 0.000 0.148
pp 0.000 0.143 0.000 0.214 0.000 0.449
kk 0.011 0.015 0.012 0.022 0.029 0.053
k1 0.000 0.051 0.000 0.072 0.000 0.170
k2 0.016 0.016 0.026 0.105 0.048 0.157
δ 0.001 0.004 0.014 0.032 0.049 0.157
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Figure 1: Threshold-independent Sobol analysis. Dual-panel visualization of total-order (top)
and first-order (bottom) Sobol indices computed for final H4, H4 area-under-curve, and maximum
H4 metrics. Parameter ordering follows the aggregate total-order ranking from Table 5: m, k, α1, p,
d, k0, pp, kk, k1, k2, δ. Chromatin modification rates (m, k, α1) consistently show high total-order
sensitivity across all metrics, while parameters such as pp and kk contribute primarily through
interactions (large ST , small S1). The consistently high interaction shares (66–80%) demonstrate
that parameter coupling is an intrinsic feature of the chromatin control architecture rather than an
artifact of metric choice.

The robustness analysis demonstrates that model predictions are stable across biologically real-
istic parameter ranges. Two complementary diagnostics quantify this robustness:

• Monte Carlo success rate (37.0%): Fraction of perturbed parameter sets (±30% variation)
that maintain switching behavior, quantifying the breadth of the switching region in parameter
space.

• Threshold-independent interaction shares (66–80%): Fraction of variance from param-
eter coupling for final H4 (66.2%), H4 AUC (66.7%), and max H4 (79.5%) metrics, quantifying
the mechanistic coupling that structures the switching region.

The Monte Carlo success rate measures how robust the switching phenomenon is to parameter
perturbations, whereas the Sobol interaction shares measure how much parameter coupling (rather
than independent parameter effects) controls the specific switching outcomes.
Section 2 already summarised the empirical constraints, parameter availability, and rationale for
the phenomenological strategy that motivates our dimensionless analysis. Building on that founda-
tion, we now examine within the sensitivity study how the reduced description interacts with the
quantitative diagnostics presented later in the supplement.
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4.3 Connecting Sensitivity Analysis to Dimensionless Structure

The global sensitivity analysis validates the dimensionless analysis predictions. Across all threshold-
independent metrics (Table 5), NICD import m and receptor degradation d maintain the largest
total-order indices (0.36–0.61), mirroring their presence in the critical dimensionless groups Π3 =
m · τc and Π2 = d · τc that govern chromatin dynamics. H27 methylation α1 supplies the largest
independent influence (S1 = 0.245 for final H4; 0.230 for H4 AUC) because it directly competes with
H4 accumulation, while PRC2 activation p exhibits modest first-order contributions but substantial
totals (ST = 0.259–0.442) owing to its role in the coupled chromatin ratios. Feedback parameters pp
and kk retain small S1 values yet non-zero totals because they act through the ratio Π4 = pp/kk.
This correspondence between computational results and the Π-group structure identifies design
principles of the Notch-epigenetic regulatory system.

4.3.1 Mathematical Foundation of Parameter Sensitivity

Following quasi-steady reduction of the fast variables (ε ≈ 0.04), the switching time can be approx-
imated as T ≈ T (Π2,Π3,Π4), where the slow dynamics are governed by these three dimensionless
groups. This reduction from the full 11-dimensional state space to a three-parameter sensitivity
analysis is justified by the timescale separation between fast receptor binding and slow chromatin
modifications.

The variance decomposition employs a second-order Taylor expansion, a standard approach in
global sensitivity analysis [14]. For the moderate parameter perturbations considered here (±30%),
higher-order terms contribute negligibly to the total variance. The second-order approximation
captures both direct parameter effects (first derivatives) and pairwise interactions (mixed second
derivatives), which together account for the dominant variance contributions in the parameter ranges
studied.

Var(T ) ≈
∑
i

(
∂T

∂Πi

)2

Var(Πi) +
∑
i<j

2
∂T

∂Πi

∂T

∂Πj
Cov(Πi,Πj) (13)

where Πi are the dimensionless groups. Since Π2 = d · τc and Π3 = m · τc appear linearly in their
respective parameters, their sensitivities propagate directly:

∂T

∂d
=

∂T

∂Π2
· ∂Π2

∂d
= τc ·

∂T

∂Π2
(14)

∂T

∂m
=

∂T

∂Π3
· ∂Π3

∂m
= τc ·

∂T

∂Π3
(15)

The factor τc = 24 hours amplifies the sensitivity to m and d, explaining their dominant Sobol
indices.

4.3.2 Divergent Sensitivity Near Bifurcation

The exceptional sensitivity of m and d arises from the system operating near a bifurcation boundary.
Near the critical point where bistability emerges, the switching time diverges as:

Tswitch ∼ C√
|Π−Πcrit|

(16)

where Π represents any dimensionless group controlling the bifurcation. Following the saddle-node
asymptotics presented by Strogatz (Nonlinear Dynamics and Chaos), differentiating this expression
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yields
∂Tswitch

∂Π
= C ·

(
−1

2

)
|Π−Πcrit|−3/2 · sign(Π−Πcrit) ∝ |Π−Πcrit|−3/2. (17)

Because Π2 and Π3 depend linearly on k and m, this square-root divergence translates directly into
large derivatives of the switching time with respect to those parameters. Near the bifurcation, even
small adjustments to k or m therefore produce large changes in Tswitch, which is precisely what
the Sobol analysis quantifies: the high total indices for m (0.557) and k (0.502) signal that these
parameters dominate the output variance under such sensitive conditions.

4.3.3 Ratio Protection Mechanism for Feedback Parameters

In striking contrast, the parameters pp and kk show low individual sensitivity (first-order Sobol
indices of 0.019 and 0.000 respectively) despite appearing in the critical feedback terms. This
apparent paradox is resolved by recognizing that they appear as a ratio:

Π4 =
pp

kk
(18)

Under proportional variations where both parameters scale by the same factor γ:

Π4(γ · pp, γ · kk) = γ · pp
γ · kk

=
pp

kk
= Π4(pp, kk) (19)

This invariance provides robustness against correlated fluctuations in enzyme expression levels,
a common occurrence in biological systems due to global transcriptional variations or cell volume
changes. Only the imbalance between competing feedback strengths affects the system, not their
absolute magnitudes.

4.3.4 Origin of Interaction Effects

The large interaction effects observed for m (interaction = 0.381) and d (interaction = 0.208)—com-
puted as the difference between the total and first-order Sobol indices reported in Section 4—arise
from the nonlinear coupling between dimensionless groups through the bifurcation condition. The
separation of timescales discussed in Section 2 (fast NICD binding/unbinding and enzyme turnover
versus slow chromatin modification) allows us to set the derivatives of the fast variables in Eqs. (S1)–
(S5) and (S9)–(S11) to zero when analysing the slow manifold. Solving these algebraic constraints
yields quasi-steady expressions µr = ϕ(s)+O(ε), e(0)5 = (1+Π0µr+Πkh27)/Π5, e

(0)
k = (1+Πa

4h4)/Π5,
and e

(0)
2 = (1 + Πph27)/Π5, where the small parameter ε measures the ratio between slow and fast

timescales. Substituting these expressions into the h4 balance (S6)

dh4
dτ

= Π0µre5 −Π2h4e5 +Πa
4h4ek, (20)

and, using the histone conservation law h0 = 1 − h4 − h27 together with the quasi-steady relation
from Eq. (S8), we obtain to leading order

dh4
dτ

= Π4h4
(
1− h4 − h

(0)
27

)
− Π2

Π3
h24 +O(h34), (21)

where h
(0)
27 = (Π3/Π

b
4)(1 − h4) + O(h24). Expanding this reduced equation about the saddle-node

solution h⋆4 and introducing the shifted variable δh = h4 − h⋆4 therefore yields the standard Landau
normal form d(δh)/dτ = a1(Π) δh+a2(Π) δh 2+a3(Π) δh

3+. . ., whose coefficients ai(Π) depend only
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on Π2, Π3, and Π4. Integrating this normal form produces an effective potential of the schematic
form

V (h4) ≈ −c2Π4 δh
2 + c3

Π2

Π3
δh 3 + higher-order terms, (22)

with positive constants c2 and c3 that collect the numerical factors accumulated during the reduction.
The coefficients are thus seen to inherit their parametric dependence directly from the original ODE
system: the quadratic coefficient is proportional to the feedback balance Π4, whereas the cubic
coefficient inherits the ratio Π2/Π3 from the antagonistic removal/addition fluxes. The bifurcation
is located by the simultaneous conditions V ′(h4) = 0 and V ′′(h4) = 0, which give

Π4,crit = f

(
Π2

Π3

)
(23)

This relation makes the origin of the interaction terms explicit: changing m (which perturbs Π3)
moves the critical value of Π4 in tandem with any change to d (which perturbs Π2). Consequently,
the effect of one parameter depends on the state of the other, which is precisely the behaviour
captured by the Sobol interaction contributions.

4.3.5 Hierarchical Control Architecture

The sensitivity hierarchy mirrors the biology: the groups Π3 and Π2—driven by m and d—provide
the primary levers that decide whether the system crosses the switching threshold; Πp and Πk

supply a secondary layer that tunes how quickly trajectories approach the dominant attractor; and
the ratio Π4 = pp/kk functions as a protected knob whose value sets the balance point but remains
largely insensitive to proportional fluctuations in enzyme abundance.

4.3.6 Validation Through Numerical Values

Evaluating the canonical parameter set used throughout the main manuscript (Table 1; d = 0.21 h−1,
m = 0.41 h−1, pp = 6 h−1, kk = 1 h−1, and Ec/Hc = 0.2) yields the following dimensionless values:

Group Value Interpretation
Π2 = d τc(Ec/Hc) 1.0 Demethylase-controlled H3K4 removal on day scale
Π3 = mτc(Ec/Hc) 2.0 PRC2-controlled H3K27 addition slightly faster than removal
Π4 = pp/kk 6.0 Chromatin feedback biased toward the active loop
Π2 ·Π3 2.0 Effective chromatin turnover factor

Placing Π2 and Π3 near unity confirms that demethylation and methylation operate on the same
timescale as our chosen representative day-scale (τc = 24 h) once enzyme-to-histone stoichiometry
is accounted for. The feedback ratio Π4 = 6 indicates that the active-mark reinforcement is stronger
than the repressive loop under canonical parameters, positioning the system on the mesenchymal-
favouring side of the bistable manifold.

4.3.7 Biological Insights from the Unified Framework

This mathematical correspondence reveals several biological principles in narrative form: control
concentrates at the chromatin modification level because the slowly evolving groups Π2 and Π3

provide both memory and noise filtering; robustness emerges through the ratio protection embedded
in Π4, which shields the system from proportional enzyme fluctuations caused by cell growth,
stress, or circadian rhythms; the near-bifurcation operation (Π4 ≈ 1) enables dramatic responses to
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small signals while maintaining bistability; and the product Π2Π3 ∼ 102 shows that the chromatin
modification timescale is well matched to EMT transitions that occur over hours to days, consistent
with our representative day-scale choice (τc = 24 h).

4.3.8 Therapeutic Implications of Sensitivity-Dimensionless Connection

The unified understanding provides quantitative guidance for therapeutic intervention:
Taken together, the Sobol indices and the dimensionless ratios suggest a clear therapeutic strat-

egy. Perturbing the PRC2/EZH2 axis shifts Π3 and therefore moves the system along the dominant
control direction; modulating KDM5A activity alters Π2 and produces a comparable impact; in-
terventions targeting KMT2D or KDM6A must be paired so that Π4 = pp/kk is displaced rather
than merely rescaled; and the sharp divergence near the bifurcation indicates that dosing thresholds
will be steep. Because each lever maps directly onto Π2, Π3, or Π4, these groups serve as natural
composite biomarkers for stratifying patient responses.

4.3.9 Summary: Theory Validates Computation

The agreement between computational and theoretical perspectives provides validation: the large
Sobol indices for m and d confirm that Π3 and Π2 govern the switch, the small first-order but non-
negligible total sensitivity of pp reflects the protective ratio structure of Π4, the interaction terms
match the nonlinear coupling from bifurcation analysis, and the hierarchy of effects corresponds to
the timescale separation in the dimensionless formulation.

This correspondence transforms empirical observations ("m and d are sensitive") to mechanis-
tic insight ("chromatin modification timescales control cell fate through divergent sensitivity near
bifurcation"). The unified framework connects biological complexity to dimensionless analysis and
bifurcation theory.

5 Signal Waveform Analysis

5.1 Beyond Square Waves: The Biology of Signal Decay

Mathematical models often use square wave signals for simplicity, but real cellular signaling tells a
different story. When a melanoma cell receives a Notch signal from a neighboring keratinocyte, the
molecular events unfold like a carefully choreographed cascade: ligand binding triggers sequential
proteolytic cleavages (first by ADAM proteases, then by γ-secretase), releasing NICD which must
traverse the nuclear envelope, assemble transcriptional complexes with RBPJ and MAML, and
finally activate target genes. This entire process, far from instantaneous, creates a signal that rises
and falls with characteristic biological kinetics.

The decay phase is particularly important. NICD contains a PEST domain—a molecular "timer"
that targets it for degradation through the Fbw7/Sel10 ubiquitin ligase pathway [9]. Phosphoryla-
tion by cyclin C/CDK8 accelerates this destruction, creating rapid proteasomal turnover [5]. We
model this biological reality with exponential decay signals using a time constant of 2 hours, con-
sistent with typical protein degradation kinetics in mammalian cells. This decay serves a crucial
biological purpose: preventing spurious activation from brief cell-cell contacts while allowing inte-
gration of sustained signals.

Signal(t) =

{
A · e−(t−ton)/τ for ton ≤ t < ton +∆T

0 otherwise
(24)
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where A represents peak amplitude (the initial burst of NICD release), τ is the decay time
constant (tested at τ = 2, 5, and 10 hours), and ton marks pulse initiation (cell-cell contact).

5.2 Non-Monotonic Frequency-Amplitude Relationships

Our comprehensive parameter space exploration tested amplitudes from 50 to 500 nM, frequencies
from 0 to 1.0 h−1 (including sustained signals at ω=0), and decay time constants at τ = 2, 5, and 10
hours. This analysis identified 132 successful parameter combinations achieving epigenetic switching
with exponential decay signals. Critically, the amplitude-frequency relationship is non-monotonic,
revealing a curved switching boundary. Low frequencies (0.2-0.3 h−1) enable efficient switching
through cumulative signal integration across fewer but longer pulses, while high frequencies (0.8-1.0
h−1) achieve efficiency by maintaining elevated baseline chromatin modifier activity through rapid
pulsing that prevents complete NICD degradation between pulses. Intermediate frequencies (0.4-0.6
h−1) create inefficient signaling patterns requiring substantially higher amplitudes.

For the biologically relevant decay constant of τ = 2 hours, the amplitude requirements increase
substantially compared to idealized square waves. While square wave signals can achieve switching
at amplitudes as low as 50 nM, exponential decay signals require higher amplitudes across most
frequency ranges, as shown in Figure 2.

Figure 2: Exponential decay signals preserve frequency-dependent switching trends.
Amplitude-frequency switching time heatmaps for decay constants τ = 2 h (left) and τ = 5 h
(right). Each pulse decays exponentially with time constant τ to model realistic NICD degradation
kinetics beyond idealized square waves. Color gradient (white → orange → bluish green) indicates
switching time (darker = faster), with white regions indicating no switching. White contour lines
mark isochronal boundaries of equal switching time. Black cross marks the baseline parameters used
throughout the study (A=50, ω=0.43). The non-monotonic curved boundary demonstrates that
exponential decay signals preserve the fundamental frequency-dependent switching mechanism. For
biologically realistic decay (τ=2 h), higher amplitudes are required compared to idealized square
waves, confirming model robustness to signal waveform variations.

5.3 Mechanistic Implications

The non-monotonic boundary visible in Figure 2 emerges from the interplay between signal integra-
tion and epigenetic memory. Low frequencies (0.2-0.3 h−1) enable cumulative epigenetic modifica-
tions across fewer but longer pulses, while high frequencies (0.8-1.0 h−1) maintain elevated baseline
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chromatin modifier activity through rapid pulsing. Intermediate frequencies (0.4-0.6 h−1) create
inefficient signaling patterns, requiring substantially higher amplitudes. These results demonstrate
that exponential decay signals preserve the frequency-amplitude coupling mechanism observed with
idealized square waves, confirming our model predictions are robust to biologically realistic signal
shapes.

6 Numerical Validation and Solver Robustness

6.1 Wiggle Phenomenon: Mathematical Origin and Biological Context

The deterministic model exhibits characteristic oscillations in switching time versus frequency curves
(0.5–0.8 h−1 range, Figure 3). To verify these patterns are not numerical artifacts, we tested four
independent ODE solvers: Rosenbrock23, Tsit5, Rodas5P, and TRBDF2. All solvers produced
identical results (CV < 0.001), confirming these oscillations arise from genuine model dynamics
rather than computational errors.

Figure 3: Switching time oscillations emerge from discrete pulse counting in the deter-
ministic model. Switching time versus signal frequency for four representative amplitudes (50,
100, 150, 200 nM). The shaded region (0.5-0.8 h−1) indicates where sawtooth patterns appear due
to integer pulse requirements. All four tested ODE solvers produced identical results (CV < 0.001),
confirming computational accuracy.

The oscillations arise from discrete pulse counting: the epigenetic system requires an integer
number of signal pulses to accumulate sufficient histone modifications for state switching. As fre-
quency changes continuously, the required pulse count changes discretely, creating the sawtooth
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pattern. The pulse period T = 2π/ω must allow each pulse to drive sufficient H3K4me3 accumu-
lation before the next pulse arrives. When the total integrated signal from N pulses crosses the
switching threshold, the system transitions. Small frequency changes can alter N by one pulse,
causing discrete jumps in switching time while frequency varies smoothly.

However, this deterministic fine structure has limited biological significance. In real cells, molec-
ular stochasticity smooths these oscillations into continuous probability gradients (Section 7). In-
trinsic noise in histone modification reactions, enzyme copy number fluctuations, and cell-to-cell
parameter variability transform the sharp deterministic wiggles into broad stochastic switching dis-
tributions. The overall frequency-amplitude relationship remains robust—cells still exhibit efficient
switching at low (0.2–0.3 h−1) and high (0.8–1.0 h−1) frequencies—but the precise sawtooth details
are biologically irrelevant. The key biological insight is that cells count pulses to integrate temporal
information; the exact integer boundaries visible in deterministic simulations are artifacts of the
noise-free limit.

6.2 Numerical Methods and Solver Specifications

All simulations employ Rodas5, a fifth-order Rosenbrock method designed for stiff ordinary differ-
ential equations, with absolute tolerance 10−8 and relative tolerance 10−6. The system exhibits
stiffness from separated timescales: fast Notch-RBPJ binding/unbinding (minutes), intermediate
transcriptional responses (hours), and slow histone methylation/demethylation (days). This three-
timescale structure requires implicit methods for numerical stability. Verification with multiple
solvers (Rosenbrock23, Tsit5, Rodas5P, TRBDF2) confirms numerical accuracy across all analyses
presented.

7 Stochastic Analysis and Single-Cell Heterogeneity

7.1 Chemical Langevin Framework: From Averages to Individuals

A fundamental limitation of deterministic models is their inability to explain a puzzling clinical
observation: why do genetically identical cancer cells exposed to the same signals exhibit different
fates? Some cells undergo EMT and metastasize while their neighbors remain epithelial. This het-
erogeneity, far from being experimental noise, represents a fundamental biological phenomenon with
profound implications for cancer therapy. To capture this cell-to-cell variability, we implemented
stochastic simulations using Chemical Langevin equations:

dx = f(x, t)dt+

√
1

Ω
G(x)dW (25)

Here, the first term represents deterministic dynamics (what we expect on average), while the
second term adds intrinsic noise arising from the discrete nature of molecular interactions. We
interpret Ω as shorthand for the native copy-number scale encoded in the curated parameter set,
which keeps the stochastic dynamics in a regime where intrinsic fluctuations remain appreciable
yet numerically tractable. The noise term G(x) contains the square root of reaction propensities,
ensuring that noise scales appropriately with molecular concentrations (low copy numbers produce
relatively more noise, matching biological reality).

To ensure accurate comparison between deterministic and stochastic dynamics, simulations were
run in three phases: (i) pre-signal equilibration allowing baseline chromatin variability to develop,
(ii) signal application with pulsatile Notch activation, and (iii) post-signal observation to assess
state maintenance. This approach preserves the deterministic switching behavior (100% switching
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when noise is absent) while revealing realistic population heterogeneity when molecular noise is
included.

7.2 Population Heterogeneity and Cell-to-Cell Variability

Stochastic simulations using Chemical Langevin equations reveal substantial population hetero-
geneity in response to identical Notch signaling (Figure 4). When exposed to pulsatile NICD
signals, individual cells exhibit highly variable trajectories through the epigenetic landscape. Some
cells rapidly switch from epithelial (H4-enriched) to mesenchymal (H27-enriched) chromatin states
within hours of signal onset, while others transition more gradually or fail to switch entirely within
the 100-hour simulation window.

Figure 4: Stochastic population dynamics demonstrate cell-to-cell heterogeneity in epi-
genetic switching. Chemical Langevin simulations of 100 individual cells (thin colored lines)
responding to identical pulsatile Notch signals (black dashed boxes). Green trajectories show H4
(epithelial mark) dynamics, orange shows H27 (mesenchymal mark). Individual cells exhibit variable
switching kinetics despite identical inputs, with 67% successfully completing the H4-to-H27 transi-
tion (orange trajectories reaching high levels) while 33% remain in the epithelial state. Population
means (thick dashed lines) with ±2σ confidence intervals emerge from heterogeneous single-cell be-
haviors, demonstrating how intrinsic molecular noise creates phenotypic diversity even in genetically
identical populations. This heterogeneity explains the coexistence of epithelial and mesenchymal
phenotypes observed in tumor populations.

Quantitatively, our simulations show that 67% of cells successfully complete the epigenetic tran-
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sition to the mesenchymal state, while 33% remain epithelial (Figure 4). This incomplete pene-
trance arises from intrinsic molecular noise in the chromatin modification machinery and matches
experimental observations that isogenic cancer cell populations exhibit partial EMT even under uni-
form signaling conditions. The population means (thick dashed lines) reveal the average behavior,
but the individual trajectories demonstrate that mean-field predictions obscure crucial biological
variability—some cells switch rapidly while others lag significantly behind or never complete the
transition.

7.3 Noise-Induced Phenomena and Therapeutic Implications

The stochastic analysis demonstrates how intrinsic noise fundamentally alters EMT dynamics. The
deterministic sharp switching threshold becomes a probabilistic gradient, with intermediate signal
strengths producing heterogeneous population responses. Under the pulsatile signal regime ana-
lyzed in Figure 4, 67% of stochastic trajectories switch while 33% remain epithelial, mirroring the
partial responses observed with EZH2 inhibition (tazemetostat; objective response rate < 20% in
solid tumors) and with Notch-pathway inhibition (γ-secretase inhibitor RO4929097; disease sta-
bilization but rare durable responses) in melanoma cohorts [17, 18]. This heterogeneity suggests
dosing strategies must explicitly target the probabilistic non-switching reservoir rather than assum-
ing deterministic thresholds.

8 Comparative Temporal Control Architectures

8.1 The Unifying Principle: Temporal Signaling Codes Drive Thresholded Chro-
matin Switches

Both the Notch-epigenetic system presented here and the NF-κB-chromatin system characterized
by Cheng et al. (2021) [19] exemplify a fundamental control architecture: temporal dynamics
of upstream signals are decoded by chromatin machinery into stable epigenetic states
through threshold-dependent, feedback-reinforced mechanisms. Despite different molecu-
lar implementations (histone mark competition versus enhancer priming), both systems share the
same mathematical control motifs: temporal-code decoding, low-pass integration, threshold cross-
ing, and memory-forming state retention.

The general mathematical structure implements a nonlinear filter coupled to a toggle switch:

dS

dt
= finput(t)− γS · S (External signal: NF-κB or NICD)

dX

dt
= g1(S)︸ ︷︷ ︸

signal coupling

+h1(X,Y )︸ ︷︷ ︸
feedback

(Chromatin state 1)

dY

dt
= g2(S) + h2(X,Y ) (Chromatin state 2)

(26)

where the coupling functions gi implement temporal filtering (sustained signals > oscillatory
signals), and feedback terms hi provide epigenetic memory after signal withdrawal. Critically, the
temporal pattern of finput(t)—oscillatory versus sustained in NF-κB, pulsatile versus sustained in
Notch—determines whether a threshold is crossed to switch chromatin states. This creates a history-
dependent input-state map: the same integrated signal dose delivered with different dynamics
produces different epigenetic outcomes.
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8.2 Mapping General Framework to Specific Systems

The general mathematical framework maps to distinct molecular implementations:

Table 6: Mapping of mathematical framework to molecular implementations in Notch and NF-κB
systems

Framework Notch-Epigenetic NF-κB-Chromatin
Component System System

Signal layer
S(t) NICD pulses NF-κB nuclear occupancy

A(1 + cosωt) Oscillatory or sustained
finput DLL1/DLL4 ligand activation TNFα/LPS/Poly(I:C) stimuli

Chromatin states
X H3K4me3 H3K4me1

Epithelial maintenance Enhancer priming∗

Y H3K27me3 Chromatin accessibility
Mesenchymal commitment ATAC-seq signal

Signal-to-chromatin coupling
g1(S) NICD → KMT activation Sustained NF-κB

→ H3K4me1 deposition
g2(S) NICD suppresses PRC2 NF-κB increases

indirectly via H3K4me3 nucleosome unwrapping

Chromatin feedback architecture
h1(X,Y ) H3K4me3 recruits KMT H3K4me1 stabilizes

H3K27me3 blocks H3K4me3 chromatin opening
h2(X,Y ) H3K27me3 recruits PRC2 Open chromatin maintains

H3K4me3 blocks H3K27me3 TF accessibility

System behavior
Dynamics Bistable with hysteresis Graded threshold response
Memory Stable epigenetic states Transient priming
Function Cell fate commitment Immune adaptation

∗H3K4me1 deposition at enhancers prepares genes for subsequent activation
The fundamental distinction between these systems lies in their chromatin feedback architec-

ture. In the Notch system, mutual antagonism between H3K4me3 and H3K27me3 creates bistability:
cells occupy discrete epithelial or mesenchymal states separated by an energy barrier that requires
specific signal frequencies to overcome. The strong positive feedback through KMT and PRC2
self-recruitment ensures state stability after signal withdrawal. Conversely, the NF-κB system
exhibits graded chromatin remodeling without bistability. Sustained NF-κB occupancy progres-
sively deposits H3K4me1 at latent enhancers—a process termed enhancer priming that prepares
genes for future activation without immediate transcription. This H3K4me1 accumulation follows
dose-response kinetics rather than switch-like transitions. Oscillatory NF-κB preserves existing
chromatin states while sustained signals drive progressive chromatin opening. These contrasting ar-
chitectures reflect distinct biological imperatives: irreversible cell fate commitment in development
versus adaptive flexibility in immunity.
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9 Model Scope and Biological Interpretation

9.1 Chromatin-Level Abstraction: Timescale Separation Principle

Our model represents chromatin modifications (H3K4me3, H3K27me3) specifically at the miR-222
gene locus rather than explicitly modeling downstream gene expression dynamics. This design
choice captures frequency encoding at the appropriate biological timescale. NICD undergoes rapid
proteasomal degradation [9, 5], enabling signal pulses at frequencies ω = 0.2 − 1.0 h−1 (periods
1-5 hours) to modulate NICD levels on fast timescales. In contrast, histone modifications persist
substantially longer: H3K27me3 marks dilute at only 10-12% per cell cycle, maintaining silencing
for 12 hours to multiple days depending on division rate [8], while H3K4me3 exhibits comparable
long-term stability [7]. Gene expression dynamics (mRNA and protein turnover) operate at inter-
mediate timescales. Frequency encoding emerges from the separation between fast signaling and
slow chromatin dynamics; the chromatin switch integrates rapid NICD pulses into stable epigenetic
states, functioning as the temporal filter that discriminates signal patterns.

The regulatory pathway proceeds: NICD competes with MITF for RBPJ binding, modulating
MR complex levels that recruit KDM5A to the miR-222 locus [6, 4]. High MITF activity (low
NICD) promotes H3K27me3 deposition and miR-222 repression. Conversely, high NICD reduces
KDM5A recruitment, enabling H3K4me3 accumulation and miR-222 activation [4]. Upon switching
to the H3K4me3-high state, miR-222 transcription increases, driving the mesenchymal phenotype
through coordinated targeting of cell cycle regulators and differentiation factors. The chromatin
state at this locus serves as the information storage layer converting transient signals into lasting
phenotypic changes, with downstream gene expression following deterministically from chromatin
configuration.

9.2 Model Predictions and Biological Context

The chromatin feedback mechanisms incorporated in our model are based on established chromatin
biology. H3K4me3 recruits ING family PHD finger proteins that in turn recruit COMPASS methyl-
transferase complexes, amplifying histone methylation [7]. PRC2 binds its own product H3K27me3
via EED’s aromatic cage, locally concentrating PRC2 activity and enabling spreading of repressive
marks [8]. These opposing marks exhibit strong mutual interference at bivalent chromatin loci. The
KDM5A-RBPJ interaction is evolutionarily conserved (Lid-Su(H) in Drosophila) with ChIP studies
showing KDM5A recruitment to Notch-repressed promoters [6], though its specific role in EMT
remains to be experimentally tested.

Our model simulations produce variable switching times depending on signal parameters. The
model predicts switching boundaries at specific frequency bands (0.2-0.3 h−1, 0.8-1.0 h−1). The
model captures population heterogeneity: 43.2% of parameter space exhibits bistable switching,
consistent with observations that subpopulations fail to undergo EMT despite identical stimuli.

9.3 Scope and Limitations

The chromatin-level model addresses frequency-dependent switching mechanisms, switching-permissive
frequency windows, epigenetic memory formation, discrete pulse counting requirements, and stochas-
tic population heterogeneity. Global sensitivity analysis identifies PRC2 and KDM5A rates as dom-
inant control parameters (Sobol ST > 0.48), explaining why epigenetic modifiers govern switching
more strongly than upstream signaling components.

Extensions would be required to address questions beyond this scope: explicit miR-222 target
dynamics (p27, c-KIT kinetics), MITF protein regulation if feedback loops modulate MITF levels,
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E-cadherin mechanical effects on cell-cell contacts, partial EMT states requiring additional mod-
ules (miR-200/ZEB1), spatial tumor architecture effects, metabolic constraints on histone modifier
activity (NAD+/SAM availability), or multi-pathway crosstalk (TGF-β, Wnt integration). For the
central question of how signal frequency controls epigenetic switching and EMT, the chromatin-level
abstraction at the miR-222 locus is mechanistically justified and computationally sufficient.

10 Biological and Therapeutic Implications

The non-monotonic frequency-amplitude (A-ω) boundary demonstrates that epigenetic switching
depends on signal temporal structure, not merely amplitude or duration. Switching readily occurs at
low (0.2-0.3 h−1) and high (0.8-1.0 h−1) frequencies through distinct mechanisms: low frequencies
enable cumulative chromatin modification across fewer but longer pulses, while high frequencies
maintain elevated enzyme activity by preventing complete NICD degradation between pulses.

Our model produces variable switching times across different parameter sets and signal con-
ditions. Stochastic simulations reveal 67% of cells complete epigenetic transitions while 33% re-
main epithelial despite identical signals, matching incomplete penetrance observed in melanoma
populations. This population heterogeneity arising from intrinsic molecular noise explains partial
therapeutic responses and coexistence of epithelial and mesenchymal phenotypes in tumors.

Global sensitivity analysis establishes a therapeutic target hierarchy: NICD nuclear import
(ST = 0.557) and KDM5A activity (ST = 0.502) dominate switching control, with receptor degra-
dation providing the largest direct effect (S1 = 0.226). EZH2/PRC2 perturbations shift the same di-
mensionless groups by modulating the feedback ratio; KDM5 family inhibitors control the demethy-
lation arm. Experimental validation could employ optogenetic Notch control to test frequency
predictions, monitor H3K4me3/H3K27me3 dynamics at the miR-222 locus in melanoma cell lines
(A375, WM266-4), and evaluate whether DLL1-like (pulsatile) versus DLL4-like (sustained) ligands
differentially regulate EMT as predicted. The H3K4me3/H3K27me3 ratio provides a quantitative
chromatin-based biomarker for tracking EMT state transitions.

11 Code and data availability

All simulation scripts, analysis code, and parameter databases are available at https://github.
com/sontaglab/notch.

12 Conclusions

This analysis establishes frequency encoding as a mechanism governing epigenetic cell fate switching
in melanoma, revealing that signal temporal pattern—not just amplitude—determines EMT out-
comes. Key findings include: (1) non-monotonic frequency response with switching boundaries at
0.2-0.3 and 0.8-1.0 h−1, (2) discrete pulse counting mechanisms for signal integration, (3) stochastic
population heterogeneity matching experimental variability, and (4) chromatin modifier dominance
(PRC2, KDM5A) over upstream Notch signaling in sensitivity hierarchy. The framework predicts
that DLL1-like and DLL4-like ligands produce distinct EMT outcomes through differential temporal
dynamics and that chromatin-targeting therapies (EZH2 inhibitors such as tazemetostat [17, 20],
KDM5 inhibitors [21, 22]) may prove more effective than conventional γ-secretase inhibition [18] for
blocking melanoma metastasis.
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