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Abstract— In this paper, we investigate the problem of finding
a sparse sensor and actuator (S/A) schedule that minimizes
the approximation error between the input-output behavior of
the fully sensed/actuated bilinear system and the system with
the scheduling. The quality of this approximation is measured
by an H2-like metric, which is defined for a bilinear (time-
varying) system with S/A scheduling based on the discrete
Laplace transform of its Volterra kernels. First, we discuss
the difficulties of designing S/A schedules for bilinear systems,
which prevented us from finding a polynomial time algorithm
for solving the problem. We then propose a polynomial-time
S/A scheduling heuristic that selects a fraction of sensors and
node actuators at each time step while maintaining a small
approximation error between the input-output behavior of the
fully sensed/actuated system and the one with S/A scheduling
in this H2-based sense. Numerical experiments illustrate the
good approximation quality of our proposed methods.

I. INTRODUCTION

Over the past few years, the controllability and observ-
ability properties of complex networks have been subjects
of intense study in both the control and network science
communities [1]–[16]. Moreover, the desire to perform con-
trol/estimation using a sparse set of actuators/sensors spans
various application domains, ranging from infrastructure
networks (e.g., sanitation and power networks) to real-time
decision support systems (e.g., pandemic mitigation and soft
target protection). This interest stems from the need to steer
or observe the state of large-scale interconnected networks
with as few actuators/sensors as possible, due to issues re-
lated to data deluge, cost, and energy depletion. For example,
estimating the whole state of a complex network using fewer
measurement units will reduce the cost of monitoring the
network for systemic failures.

Previous studies have been mainly focused on solving
sensor/actuator (S/A) scheduling problems for linear time-
invariant networks. In [7], the authors propose an actuator
scheduling with bounded performance loss for a generic
set of performance metrics. The paper presents performance
guarantees for their scheduling by bounding the difference
between the fully actuated system and the one with schedul-
ing. In [8], the authors approach the joint S/A scheduling
problem and present a separation result for designing S/A
schedules.

Going beyond linear systems. In several applications,
from biology to engineering systems, linear models are
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inadequate to explain the behavior of large-scale dynamical
networks. On the other hand, due to the complexity of nonlin-
ear dynamical networks, the tools available to study them are
not as well developed as those for linear counterparts. In this
context, bilinear dynamical networks represent an important
class of nonlinear systems: rich enough to describe practical
systems, while also having substantial theory developed
for analyzing them. Examples include several problems in
electrical networks, surface vehicles, and immunology (see
[17]–[19]).

In our previous work [20], [21], we use the H2-norm
to propose a robustness metric for bilinear networks. In
[20], we look into protecting a network subject to attacks
on its interconnections. Specifically, we use the H2-norm
to measure how much a given edge disturbance affects
the performance of the network and to protect the edges
with the largest influence. In [21], we investigate how the
presence of multiplicative disturbances changes the behavior
of H2-based node centralities in a bilinear network. In
that work, we show that there is a magnitude range for
multiplicative disturbances where the bilinear network is still
stable but behaves qualitatively differently from any linear
approximation.

The H2-norm for bilinear systems is a particularly popular
performance metric for applications ranging from complexity
reduction to robustness analysis [20], [22]–[25], since it
holds many of the useful properties observed in the linear
case. In particular, in [22] the author shows how the H2-
norm relates the L2 norm of the inputs to the L∞ norm of
the outputs of a given bilinear system.

Our contributions. We propose a heuristic for designing
a S/A scheduling for bilinear networks. We formulate an
alternating convex optimization heuristic for sensor and
node actuator scheduling for arbitrary time horizons and
for average active sensors and actuators per time step. The
proposed algorithm presents good simulation results while
also being tractable in polynomial time. We start Section
II by properly defining our network’s dynamics and the
optimization problem of finding an optimal schedule. We
then look at how to use the Volterra kernels of our system
to define an H2-like metric for our network with scheduling.
In Section III, we go through the characteristics that make
this problem hard to solve and propose a simplified, more
tractable version. Then, in Section IV we simulate a 5-node
bilinear network and compare our results to a brute-force
complexity reduction solution and greedy algorithm.
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II. PRELIMINARY DEFINITIONS

A. Notations and Assumptions

Throughout the paper, the set of natural numbers less than
or equal to n is denoted by N≤n. Given a finite discrete set
S, the operator |S| is the number of elements in that set. The
set {0, 1} is the binary set and {0, 1}n is the set of all vectors
of dimension n whose elements are in the binary set. The
vector and matrix of all ones of dimensions n and n×n are
given by 1n and Jn, respectively, where the dimension might
be omitted if it is clear from the context. For an arbitrary
matrix or vector A let ∥A∥0 be the ℓ0 quasi norm, that is,
the number of non-zero elements in that matrix or vector.

B. Theoretical Background

We define a bilinear network as a tuple G =
{V, E , ω,Va,Vo, Ea} where V = N≤n is the set of n nodes,
E ⊆ V × V is the set of edges between nodes in V , and
ω : E → R+ is an edge weight function. The subset of
actuated nodes is denoted by Va ⊆ V , and Vo ⊆ V is
the subset of observed (measured) nodes. Similarly, Ea ⊆ E
denotes the subset of actuated edges. If the weight function
ω is unspecified, then the network is unweighted (w(e) = 1
for all e ∈ E). In this paper, we assume |V| = n, |Va| =
mv , |Vo| = o, and |Ea| = me. We consider a class of
stable distributed networks that consist of a group of n
subsystems/nodes (i.e., V) whose state variables xi, node
inputs vi, edge inputs wℓ, and node outputs yi are scalar.
The nodes’ discrete-time dynamics with time step ∆t evolve
with time according to

xi[k + 1] =
(
1−∆t γi

)
xi[k] +

∆t
∑

e=(i,j)∈E

ω(e)
(
xj [k]− xi[k]

)
+

∆t
∑

ℓ=(i,j)∈Ea

wℓ[k]xj [k] + ∆t biv[k],

(1)

where wℓ[k] and vi[k] are edge and node inputs, respectively,
and v = [v1, . . . , vme

]. The discretization time of our system
is given by small ∆t > 0, and the range for the damping
ratio γi is 0 < γi < 1/∆t. The row-vector bi ∈ R1×mv

selects which inputs affect a given node i and by how much.
We now can rewrite the dynamics of the whole network as

Σ :

{
x[k + 1] = N0x[k] +

∑
ℓ∈Ea

wℓ[k]Nℓ x[k] +Bv[k]

y[k] = Cx[k]
(2)

where N0 = I −∆t(L+diag([γ1, · · · , γn])) is stable1, and
L is the Laplacian of the underlying linear graph defined by
Ḡ = {V, E , w}. The rows of matrix B ∈ Rn×mv are the
vectors ∆t bi’s. Input matrix B captures the additive input
structure in the network, and C ∈ Ro×n captures the output
structure (i.e., which node to measure) in the network. In

1We consider ∆t > 0 small enough to make N0 stable. An alternative,
albeit slightly less intuitive, way to enforce the stability of the consensus
dynamics is to study the system with a grounded Laplacian, where we do not
assume self-loops but take N0 = I−∆t(L+(1/n)J). For our simulations,
we adopt grounded Laplacian instead of self-loops; however, the analysis is
the same, the only difference being a design choice for the network.

Fig. 1: Block diagram of the error system for Optimization Problem (4).

(2), ℓ ∈ Ea is an abuse of notation signifying that for each
ℓ = (i, j) ∈ Ea we define Nℓ = Nij := ∆t

(
eie

⊤
j + eje

⊤
i

)
where ei is the i-th column of the identity matrix.

To perform the S/A scheduling in this network, we need
to consider the possibility of switching a given S/A on or off
in the system dynamics. For this purpose, we introduce three
new sets of time-varying parameters, ρ : N≤T → {0, 1}o, σ :
N≤T → {0, 1}mv and µ : N≤T → {0, 1}me which indicate,
respectively which sensors, node inputs and edge inputs are
active at a given time-step k. Let R[k] = diag(ρ[k]) and
S[k] = diag(σ[k]), then the system dynamics with time-
varying S/A schedule is given by

Σ̄ :

{
x[k + 1] = N0x[k] +

∑
ℓ∈Ea

µℓ[k]Nℓx[k]wℓ[k] +BS[k]v[k]

y[k] = R[k]Cx[k]
(3)

As can be seen, the dynamics of a bilinear network with
scheduling is given by a specific type of time-varying bilinear
system with a constant drift matrix.

C. Preliminary Formulation of the Scheduling Problem

In our S/A scheduling problem, we are interested in
finding a scheduling (ρ, σ, µ) for a given time horizon T
such that the network with scheduling Σ̄ remains close to the
fully sensed and actuated one (Σ) according to some metric.
The problem under consideration is depicted in Fig. 1 and
the optimization formulation of the S/A scheduling problem
for bilinear networks can be written as:

min
ρ, σ, µ

f(Σ− Σ̄(ρ, σ, µ))

s.t. ∥ρ∥0 ≤ ρ̄

∥σ∥0 ≤ σ̄

∥µ∥0 ≤ µ̄

ρ ∈ {0, 1}o×T , σ ∈ {0, 1}mv×T , µ ∈ {0, 1}me×T

(4)

where f(·) is some performance metric for the system, and
ρ̄, σ̄ and µ̄ are respectively the desired average number of
sensors, node actuators and edge actuators per time step.
For the simulation, we convert the functions ρ, σ and µ to
matrices whose rows correspond to a given sensor/actuator
and whose columns correspond to a specific time step.

The problem as formulated here is very hard to solve
even before picking a performance metric f(·) due to its
combinatorial nature. For the rest of this section, we will
focus on defining a performance metric analogous to the
H2-norm that is applicable to network (3). In Section III, we
reformulate problem (4). We then propose an approximation
algorithm to obtain an efficient S/A scheduling for a bilinear
network.
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D. Volterra Expansion of Discrete-Time Bilinear Systems

To extend the notions of Gramians and the H2-norm
from time-invariant bilinear systems to the time-variant
case given by (3), we first look into its general solution
for zero initial conditions. We start by defining N̄ [k] =
[N1µ1[k], N2µ2[k], . . . , Nme

µme
[k]] and

x̄1[k + 1] = N0x̄1[k] +BS[k]v[k]

x̄2[k + 1] = N0x̄2[k] + N̄ [k]w[k]⊗ x̄1[k]

. . .

x̄i[k + 1] = N0x̄i[k] + N̄ [k]w[k]⊗ x̄i−1[k]

. . .

(5)

These systems relate to the original one as follows:
∞∑
i=1

x̄i[k+1] = N0

∞∑
i=1

x̄i[k]+ N̄ [k]w[k]⊗
∞∑
i=1

x̄i[k]+BS[k]v[k], (6)

assuming the infinite sum x̄[k] =
∑∞

i=1 x̄i[k] converges. We
can then write the solution of each of the kernels as

x̄1[k] =

k−1∑
ℓ1=0

Nk−1−ℓ1
0 BS[ℓ1]v[ℓ1]

x̄2[k] =

k−1∑
ℓ2=0

Nk−1−ℓ2
0 N̄ [ℓ2]w[ℓ2]⊗ x̄1[ℓ2]

. . .

x̄i[k] =

k−1∑
ℓi=0

N
k−1−ℓi
0 N̄ [ℓi]w[ℓi]⊗ x̄i−1[ℓi]

. . .

(7)

With this, consider the following adaptation of Lemma 1
from [26] to our time-varying bilinear system (3):

Lemma 1. For k ≥ 1, the output y[k] of (3) can be expressed
as y[k] = R[k]Cx̄[k] = R[k]C

∑k
i=1 x̄i[k] or, alternatively

ȳ[k] =

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ3−1∑
ℓ2=1

ℓ2−1∑
ℓ1=0

me∑
ji,...,j2=1

R[k]CN
k−1−ℓi
0 ×

×Njiµji [ℓi] . . . N
ℓ3−1−ℓ2
0 Nj2µj2 [ℓ2]N

ℓ2−1−ℓ1
0 ×

×BS[ℓ1]u[ℓ1]uj2 [ℓ2] . . . uji [ℓi].

(8)

The proof of this lemma is analogous to the one presented
in [26] and a natural consequence of results from the Volterra
series for general time-variant nonlinear systems [27]. The
Volterra series expansion for general time varying bilinear
systems is also studied in the literature [28] and can be easily
adapted for our specific case. With this result we can define
the Volterra kernels of (3) as

hi[k, ℓi, . . . , ℓ2, ℓ1] =

me∑
ji,...,j2=1

R[k]CN
k−1−ℓi
0 Njiµji [ℓi] · · · ×

×Nℓ3−1−ℓ2
0 Nj2µj2 [ℓ2]N

ℓ2−1−ℓ1
0 BS[ℓ1],

(9)

which allow us to extend the definitions of Gramians and H2-
norm from time-invariant bilinear systems to the particular
case of equation (3).

E. Reachability Gramian

In this subsection, we start with the following definition.

Definition 1 (Reachability Gramian). For a bilinear system

as defined in (3) define

P̄1[k, ℓ1] = Nk−1−ℓ1
0 BS[ℓ1]

P̄i[k, ℓi, . . . , ℓ1] = N
k−1−ℓi
0

[
µ1[ℓi]N1P̄i−1 · · ·

. . . µme [ℓi]NmP̄i−1

]
,

(10)

then its Reachability Gramian is defined as

P̄ [k] =

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ2−1∑
ℓ1=0

P̄iP̄
⊤
i . (11)

Note that, unlike the time-invariant case, there is no need
to assure convergence of the given Gramians, since we do
not work with the steady-state case and for any finite k, P̄ [k]
is well defined. Even so, we need to make sure the system
is stable, meaning that lim supk→∞ ∥P̄ [k]∥ is finite. To do
that we adapt the condition present in [26] for the proper
definition of P̄ defined for (3).

Theorem 2. The reachability Gramian (11) is stable if

• N0 is stable;
• µ[k]

√
∥
∑m

k=1 NkN⊤
k ∥ <

√
1− β/α, ∀k ≤ T where β

and α are such that ∥N i
0∥ ≤ αβi

The proof of this theorem is extensive and just slightly
different from the solution already presented in [26], so we
omit it here due to space limitations.

F. An H2-like Metric for Time-Varying Bilinear Systems

The H2-norm of the time-invariant bilinear system (2) is
defined as a function of the multivariate discrete Laplace
transform of its Volterra Kernel (Hi) as [29]

∥Σ∥2H2
=

( ∞∑
i=1

∫ 2π

0
· · ·
∫ 2π

0

1

2π
trace(H∗

i (e
jω1 , . . . , ejωi )

×Hi(ejω1 , . . . , ejωi ))dω1 . . . dωi

)1/2

,

(12)

which can be shown to relate to the Volterra kernels of the
system through Palancherel’s Theorem. In [29] the authors
show the relationship between the H2-norm of a time-
invariant bilinear system (2) and the steady state reachability
Gramian (P ) as ∥Σ∥2H2

= trace(CPC⊤). The H2-norm
defined this way has been shown to share a lot of similarities
with its linear counterpart. For example, for both cases, it
measures the trace of the covariance matrix of the output
when subject to white Gaussian noise inputs (N (0, I)) [20],
[22]. Furthermore, for both deterministic linear and bilinear
systems the H2-norm relates the ℓ2-norm of the input to the
ℓ∞-norm of the output, albeit in slightly different ways.

The H2-norm characterization for bilinear time-invariant
systems does not hold immediately for (3) and for the
reachability Gramian defined in (11) due to the time-variant
parameters of the system. We still, however, use the rela-
tionship between the defined Volterra kernels (9) and the
Reachability Gramian to motivate the following definition.

Definition 2 (H2-like Metric for Bilinear Networks with S/A
Scheduling). For the bilinear network (3) with scheduling
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with time horizon T , we define the H2-like metric as follows

∥Σ̄∥2H2
=

1

T
trace

(
T∑

k=1

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ2−1∑
ℓ1=0

∥hi(k, ℓi, . . . , ℓ1)∥F

)
,

(13)

where hi are given by (9).

For simplicity, we refer to the operator in Definition 2 as
the H2-norm of the bilinear system with scheduling, since it
is also based on the Volterra kernels of the system. Moreover,
if the scheduling is constant (that is, not varying in time) it
simplifies to the known definition of the H2-norm for the
resulting time invariant bilinear system. However, we make
the distinction here that all the previously known properties
of the H2-norm for linear and bilinear time-invariant systems
do not necessarily hold for this definition. Even so, with
Definition 2, we can state the following theorem.

Theorem 3. The H2-norm of a bilinear network with
scheduling defined in (13) can be computed as

∥Σ̄∥2H2
=

1

T
trace

(
T∑

k=1

R[k]CP̄ [k]C⊤R[k]

)
, (14)

where P̄ [k] is given by (11).

Defined this way, the H2-norm is an average of the
“instantaneous H2-norm” of the system in the time horizon.
Notice that since we assume the conditions of Theorem 2
are satisfied, P̄ [k] is stable, which means this average is
finite for any finite horizon T . Under these conditions, the
H2-norm, as defined in 2 measures an average lower bound
on the controllability energy of the system. Although the
previous properties of the H2-norm of time-invariant bilinear
systems do not necessarily hold for this definition, in the
simulation section, we investigate its empirical effectiveness
as a performance metric.

III. THE SCHEDULING PROBLEM REFORMULATED

In this section, using the performance metric (13) given by
Definition 2, we obtain a tractable formulation for problem
(4). As stated in (12), the H2-norm can be computed as a
function of the Reachability Gramian; making use of this
fact, we can state the following theorem.

Theorem 4. The cost function f(Σ− Σ̄(ρ, σ, µ)) = ∥Σ−
Σ̄(ρ, σ, µ)∥2H2

of a bilinear network under a scheduling
with time horizon T can be written in the form below.

f(Σ− Σ̄(ρ, σ, µ)) =
1

T

T∑
k=1

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ2−1∑
ℓ1=0

×

×
o∑

jT=1

me∑
ji,...,j2

mv∑
j1=1

(
1− ρjT [k]µji [ℓi] . . .

× µj2 [ℓ2]σj1 [ℓ1]

)
κi(k, jT , li, ji)

= f(Σ)− f
(
Σ̄(ρ, σ, µ)

)
,

(15)

where li = [ℓi, . . . , ℓ1], ji = [ji, . . . , j1] and

κi(k, jT , li, ji) ≥ 0 is given by

κi(k, jT , li, ji) = (cjT ⊗ cjT )(N
k−1−ℓi
0 ⊗N

k−1−ℓi
0 )(Nji ⊗Nji ) . . .

× (Nk−1−ℓ2
0 ⊗Nk−1−ℓ2

0 )(Nj2 ⊗Nj2 )×

× (Nk−1−ℓ1
0 ⊗Nk−1−ℓ1

0 )(bj1 ⊗ bj1 ).
(16)

Due to space limitations, the proof is omitted, but we
provide its general idea. The result of Theorem 4 can be
proved by first writing the equations of the error system given
in Fig. 1. After computing the controllability Gramian for the
error system, we use the results of Theorem 3 to compute its
H2-error. After some algebraic manipulation one can reach
the result given by Theorem 4.

This is derived directly from our choice of performance
metric and allows us to separate the metric for the difference
of the systems as the difference between the metrics of each
system. Using Theorem 4 and relaxing our integer constraints
to a continuous interval between zero and one, the original
optimization can be simplified to:

max
ρ, σ, µ

1

T

∑(
ρjT µji . . . µj2σj1

)
κi

s.t. ∥ρ∥0 ≤ ρ̄

∥σ∥0 ≤ σ̄

∥µ∥0 ≤ µ̄

ρ ∈ [0, 1]o×T , σ ∈ [0, 1]mv×T , µ ∈ [0, 1]me×T

(17)

where the limits of the summations and function arguments
from (15) are omitted for simplicity. It is easy to see that
such problem consists in the maximization of a posynomial
subject to posynomial constraints. This, however, is not
a geometric programming problem and cannot be solved
simply by convexifying the cost function and constraints.
Furthermore, the exponentially increasing number of terms
makes any greedy approach impractical.

Due to the hardness of the original problem, we look
into the simplified decoupled case, specifically finding a
scheduling for sensors and node actuators for a given fixed
set of edge actuators.

A. Alternating Optimization Heuristic

We start by pointing out that for a fixed set of edge
actuators, the cost of (17) becomes linear in the set of
sensors for a given set of node actuators and vice-versa. This
motivates the use of an alternating optimization algorithm
for each scheduling independently. Formally, for a given
set of node and edge actuators, we can write the (relaxed)
problem of finding an optimal sensor schedule by solving
the following optimization problem

max
ρ

1

T

T∑
k=1

o∑
jT=1

ρjT [k]κsen(k, jT )

s.t. ∥ρ∥0 ≤ ρ̄

ρ ∈ [0, 1]o×T

(18)
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and similarly, for a given set of edge actuators and sensors,
we can find the optimal set of node actuators by solving

max
σ

1

T

T−1∑
ℓ1=0

mv∑
j1=1

σj1 [ℓ1]κact(ℓ1, j1)

s.t. ∥σ∥0 ≤ σ̄

σ ∈ [0, 1]mv×T

. (19)

where

κsen =

T−1∑
ℓ1=0

mv∑
j1=1

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ3−1∑
ℓ2=1

me∑
ji,...,j2

κi(k, jT , li, ji), (20)

and

κact =
T∑

k=1

o∑
jT=1

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ3−1∑
ℓ2=1

me∑
ji,...,j2

κi(k, jT , li, ji), (21)

To evaluate the effectiveness of this heuristic, we will
compare it to a couple of other heuristics:

1) Time Invariant Selection: For this approach, we dis-
regard the time-variant aspects of (3), performing, instead,
an H2-based complexity reduction of the original system
(2). This helps illustrate the advantages of considering the
more complex time-variant case. Notice that if ρ and σ are
constants in time and µ is given, we can further (17) to

max
ρ, σ

o∑
jT=1

mv∑
j1=1

ρjT σj1 κ̃(jT , j1)

s.t. ∥ρ∥0 ≤ ρ̄

∥σ∥0 ≤ σ̄

ρ ∈ [0, 1]o, σ ∈ [0, 1]mv

(22)

where

κ̃(jT , j1) =

T∑
k=1

T−1∑
ℓ1=0

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ3−1∑
ℓ2=1

me∑
ji,...,j2

κi(k, jT , li, ji) (23)

The relatively small number of parameters of problem (22)
(O(mvo)) allows us to obtain the solution through brute force
assuming the problem is small enough.

2) Greedy Algorithm: Alternatively, we formulate a
greedy algorithm for selecting a S/A scheduling as a sec-
ondary comparison basis to our heuristic. To design the
greedy step, consider the problem of finding a sensor/actuator
pair at given sensor/actuator times to add to a pre-existing
schedule such as to maximize the H2-norm of the system
subject to the scheduling. That is, given a scheduling ρ−

and σ−, a candidate pair ρi[ℓs] and σj [ℓa] will increase the
objective function by

κ̄(ℓs, i, ℓa, j) +
∑

ρ−jT
[k] ̸=0

κ̄(k, jT , ℓa, j) +
∑

σ−
j1

[ℓ1] ̸=0

κ̄(ℓs, i, ℓ1, j1),

where

κ̄(k, jT , ℓ1, j1) =

k∑
i=1

k−1∑
ℓi=i−1

· · ·
ℓ3−1∑
ℓ2=1

me∑
ji,...,j2

κi(k, jT , li, ji).

(24)

As such, the greedy step consists in selecting the pair with
the maximum increment to the cost function.

Fig. 2: Bilinear Network with 5 nodes used during our simulations in
Section IV. All nodes are actuated/sensed and green edges are actuated.

∥Σ̄−Σ̃∥H2
∥Σ∥H2

× 100% σ̄ = 1 σ̄ = 2 σ̄ = 3 σ̄ = 4 σ̄ = 5

ρ̄ = 1 00.00% 00.78% 00.63% 00.62% 00.00%
ρ̄ = 2 00.78% 00.00% 00.43% 00.44% 00.00%
ρ̄ = 3 00.62% 00.44% 00.00% 00.45% 00.00%
ρ̄ = 4 00.62% 00.44% 00.46% 00.00% 00.00%
ρ̄ = 5 00.00% 00.00% 00.00% 00.00% 00.00%

TABLE I: Percentage performance difference between the
time-invariant independent S/A selection, and brute-force
solutions with the fully sensed and actuated case as a baseline.
Green means gain while red means loss.

IV. SIMULATIONS AND NUMERICAL RESULTS

In this section, we present numerical examples to illustrate
our heuristic approach. Our simulations are performed with
a time horizon T = 7 steps and for the 5-node graph given
in Fig. 2, where all nodes are sensed and actuated and the
five green edges were randomly selected to be actuated.
The discrete-time dynamics were derived from the grounded
graph Laplacian and the simulation conducted for varying
values of σ̄ and ρ̄, as evident in the tables.

A. Time-Invariant Cases and the Separation Principle

Our first set of simulations are conducted for the time-
invariant case, that is, we look for the solution of the
combinatorial optimization problem given by (22). The first
approach is to compute the solution for S/A selections
separately and then combine them. Alternatively, due to the
small size of our problem, we can also compute the optimal
solution through a brute-force method. In Table I we present
the difference between the independent selection and the
brute force solution in percentage gain with respect to the
fully sensed and actuated system.

Although the results for both the brute-force and indepen-
dent optimization are the same in most instances, sometimes
they are different, as evident by the red entries of Table I. As
expected, the brute-force solution is always better or equal
to the independent optimization, but the fact that it is strictly
better sometimes (for example ρ̄ = 3 and σ̄ = 2) indicates
that the separation principle does not hold for this problem.

B. Alternating Optimization and Greedy Methods

Next we compare our heuristics with other potential
solutions to the problem. Notice that for all time-varying
scheduling simulations, the constraints on the number of
sensors and actuators are enforced on average, meaning
they can be disrespected at a given time-step if that is
compensated at a different one. In Table II, we show the
results for our heuristics for scheduling compared to the brute
force solution of the time-invariant selection.

Table II illustrates the potential gain of a time-varying
schedule versus the simpler time-invariant selection. Our
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∥Σ̄−Σ̃∥H2
∥Σ∥H2

× 100% σ̄ = 1 σ̄ = 2 σ̄ = 3 σ̄ = 4 σ̄ = 5

ρ̄ = 1 00.00% 03.76% 04.79% 05.50% 05.88%
ρ̄ = 2 03.76% 00.00% 04.12% 06.74% 07.25%
ρ̄ = 3 04.80% 04.11% 01.48% 05.94% 08.61%
ρ̄ = 4 04.73% 06.06% 05.93% 01.30% 06.05%
ρ̄ = 5 05.88% 07.24% 08.62% 06.04% 0.00%

TABLE II: Percentage performance difference between the
time-variant alternating optimization heuristic versus the brute
force solution for the time-invariant selection. Green means gain
while red means loss.

∥Σ̄−Σ̃∥H2
∥Σ∥H2

× 100% σ̄ = 1 σ̄ = 2 σ̄ = 3 σ̄ = 4 σ̄ = 5

ρ̄ = 1 00.00% 03.32% 04.73% 05.47% 05.88%
ρ̄ = 2 03.31% 02.19% 05.86% 08.13% 10.36%
ρ̄ = 3 04.74% 05.85% 02.29% 09.82% 13.74%
ρ̄ = 4 05.47% 08.33% 09.83% 02.77% 11.17%
ρ̄ = 5 05.88% 10.36% 13.75% 11.17% 0.00%

TABLE III: Percentage performance difference between the
time-variant alternating optimization heuristic and the greedy
solution. Green means gain while red means loss.

heuristic for S/A scheduling is almost always significantly
better than the best possible S/A selection, being only
slightly worse on two instances. Furthermore, our heuristic is
based on solving polynomial-time algorithms while a brute-
force solution grows exponentially on the complexity of the
problem even for the simpler time-invariant S/A selection
problem.

On Table III we can see that our heuristic outperforms the
greedy algorithm in basically all instances. Even compared to
the brute-force solution of the time-invariant case the greedy
algorithm we proposed fails to produce good results, which
indicates its inadequacy in solving this problem.

V. CONCLUSIONS

In this paper, we consider the problem of designing S/A
scheduling for bilinear networks. We formulate our problem
as a specific class of time-varying bilinear systems and
adapt traditional definitions of Gramians and an H2-norm for
these systems. After discussing the exponentially increasing
complexity of the joint problem of S/A scheduling, we
simplify it to a joint S/A scheduling, ignoring the edge
actuators. We propose an alternating optimization heuristic
to solve this problem and compare it with other approaches:
the time-invariant case (complexity reduction) and a greedy
algorithm for scheduling. Our simulations indicate that the
separation principle does not hold even for the time-invariant
selection of sensors and node actuators, motivating our
search for a more complex algorithm. We then show that our
heuristic successfully leverages the advantages of allowing
for time variation on the choice of sensors and actuators,
since it performs significantly better on average than the
brute-force solution of the time-invariant case. Our algorithm
also outperforms the greedy solution, despite both being
able to consider time-varying scheduling, which indicates our
approach might be more adequate for finding an approximate
solution of this problem. Despite all that, our heuristics
still perform less well than the brute-force solution of the
time-invariant selection for two cases, which indicates the

suboptimality of our solutions. Furthermore, tests on larger
networks were made difficult due to the time-consuming
process of computing all parameters of the problems (such
as in κi in (17)), even if the final number of parameters for
optimization is small.
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