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Abstract— Recent research in neural networks and machine
learning suggests that using many more parameters than
strictly required by the initial complexity of a regression prob-
lem can result in more accurate or faster-converging models
— contrary to classical statistical belief. This phenomenon,
sometimes referred to as “benign overfitting”, raises questions
regarding in what other ways might overparameterization
affect the properties of a learning problem. In this work,
we investigate the effects of overfitting on the robustness of
gradient-descent training when subject to uncertainty on the
gradient estimation, which arises naturally if the gradient is
estimated from noisy data or directly measured. Our object of
study is a linear neural network with a single, arbitrarily wide,
hidden layer and an arbitrary number of inputs and outputs,
which can be equivalently written as an overparameterized
matrix factorization problem. In this paper we solve the
problem for the case where the input and output of our neural
network are one-dimensional, deriving sufficient conditions
for the robustness of our system based on necessary and
sufficient conditions for convergence in the undisturbed case.
We then show that the general overparameterized formulation
introduces a set of spurious equilibria that lay outside the set
where the loss function is minimized, and discuss directions of
future work that might extend our current results for more
general settings.

I. INTRODUCTION

Benign overfitting is a phenomenon observed when train-
ing large/deep neural networks [1]. This observation, when
first made, was disruptive because it challenged the tradi-
tional notion that overfitting a model always decreased its
performance. Since then, many works have attempted to
explain or understand this phenomenon [1]-[10] for different
classes of systems.

Two common simplifying assumptions made when analyz-
ing benign overfitting on neural networks are that of linear
activation functions and a single hidden layer, which to-
gether make the problem equivalent to an overparameterized
matrix factorization problem, and closely related to linear
regressions. In [5] the authors derive conditions for benign
overfitting to happen in linear regression problems, which
relate closely to the simplified neural network in question.
In [8], [9] the authors discuss how the gradient descent on
matrix factorization problems tends to prefer solutions with
good generalization properties. These works indicate that this
simplified version of the problem is not only an important
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first step for gaining insights about the general case but also
is by itself still a rich and complex problem, with works
beyond just the scope of overparameterization [11].

Moreover, overparameterization in linear regression and
matrix factorization problems is also known to potentially
accelerate the training process [12], and in recent works
[13], [14] the authors characterize the convergence rate of the
system as a function of the initialization of the gradient flow
dynamics. Their work shows that the more imbalanced (in
a sense formally defined in the papers) the initial conditions
are, the quicker the system converges to an equilibrium.
Furthermore, they show in [14] that the gradient flow for
overparameterized linear regressions converges at least as
quickly as the non-overparameterized case. This is a very
interesting result and naturally raises the question of what is
the disadvantage of using overparameterized formulations,
if not only the accuracy might be increased, but the training
time is potentially quicker as well, despite the higher number
of parameters.

We then look at the robustness trade-off from adopting
overparameterized formulations. Many works [15]-[20] eval-
uate the post-training performance when the input is subject
to adversarial disturbances. This became a very active area
of research once it was noticed in [21] that by applying visu-
ally imperceptible noises, one could completely fool image
recognition networks, despite their high training accuracy.
The works in the area focus on adapting the training process
to maximize the robustness of the network to adversarial
attacks while still maintaining satisfying performance.

Other papers analyze the robustness of the gradient flow as
a tool for minimizing arbitrary functions. In [22] the authors
analyze the convergence of the stochastic gradient descent
as a function of the probability distribution of the gradient
noise. In [23] one of the coauthors showed that the gradient
flow is ISS when the estimation of the gradient is uncertain
as long as the loss function satisfies some conditions. This es-
tablishes a sense of robustness for this class of systems when
no overparameterization is considered, and is a motivation
for this paper to study whether this property is maintained,
and to what degree, once an overparameterized formulation
is considered.

Multiple works in the literature analyze the behavior of
linear neural networks when submitted to some gradient
dynamics for training [24]-[31], and many of those results,
presented for different assumptions on the system, allow us
to conclude that for linear neural networks with a single
hidden layer: all local minima of the cost function are
global minima; all non-local minima critical points are strict
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saddles (the Hessian has at least one negative eigenvalue);
all solutions converge to a critical point of the cost function;
and for almost every initial condition the solutions converge
to the global minimum. All of these results give a complete
qualitative understanding of the behavior of our solutions and
allow us to conclude stochastic guarantees for the problem
under consideration.

In this work, we study the robustness of gradient descent
as a training tool when our problem formulation is overpa-
rameterized. We will formulate the problem for the general
case, but in this conference paper, we work out in detail only
the scalar/vector case. Understanding in depth this simplified
instance of the problem gives important insight into what to
look for, and how to understand the general case, and we
discuss similarities and differences between the scalar/vector
and general cases.

Our analysis shows that even for the simplified vector case,
considering an overparameterized formulation incurs a loss
of robustness when compared to the global ISS property
of the non-overparameterized formulation demonstrated in
[23]. For this case, however, one can characterize the “bad”
set of initializations which result in a solution that does
not converge to the target set as a zero measure set, and
define forward invariant sets of our state space in which
the system is guaranteed to be ISS for disturbances with
bounded magnitudes. Such a workaround, however, is not
easily extendable for the general case, as indicated by our
preliminary analysis presented in this paper. We also discuss
existing results in the literature and how they can help us
understand the problem of robustness when disturbances are
present in the estimation of the gradient.

The paper is organized as follows: Section I consists of
this introduction, in which we provide a brief overview of
the relevance and progress done regarding overparameterized
formulations for optimization problems; Section II presents
our problem formulation and performs a preliminary analysis
of the convergence of our solutions based on considering
our cost function as a candidate Lyapunov Function; Section
IIT completely deals with the problem of characterizing the
robustness of the vector case (n = m = 1 and k arbitrary)
demonstrating that the ISS property can be recovered for
this case by choosing a proper invariant manifold in which
to constrain our dynamics; Section IV presents some prelim-
inary analysis of the general case, focusing on the existence
of an enlarged equilibrium set, which hinder the definition
of a forward-invariant manifold to recover the ISS property;
Section V finally concludes this paper and provides insights
on the steps being taken to solve the problem of robustness
for the general case.

II. MOTIVATION AND FORMULATION
A. Preliminary Definitions

In this paper, we use I to denote the identity matrix, that
is, a square matrix whose all elements are zero except for
the ones in its main diagonal, which are one. If we want to
emphasize the dimension of the identity matrix we write I,
where I € R™; otherwise if the dimension is not indicated,

it is clear from the context. Similarly, we define e; as the
i-th elementary vector which is the ¢-th column of I for the
dimension implicit in the context. The matrix E;; = eiejT is
called an elementary matrix and has all elements zero except
for the one in row ¢ and column j, which is one (notice
that £;; does not need to be square). Let R be the set of
non-negative real numbers, then || - ||z : R™*" — Ry and
I -]z : R* — R, denote the Frobenius and ¢ norms for
arbitrary matrix and vector spaces respectively.

Let vec(:) : R®*™ — R™™ be the vectorization operator
which concatenates the columns of its input matrix into a
single column vector. Notice that vec(:) is bijective and
thus admits an inverse, denoted in this paper as vec™!(-).
Furthermore, let ® denote the Kronecker product (which is
commutative and bilinear), then for three arbitrary matrices
A, B, and C of matching dimensions, the following well-
known identity is used freely during some derivations of this
paper

vec(ABC) = (CT @ A) - vec(B). (1)

B. Linear Neural Networks with One Hidden Layer

Given a set of ¢ paired sampled inputs = = {z;}{_, and
outputs y = {y;}¢_,, where x; € R™ and y; € R™, the
linear regression problem can be expressed as the following
optimization problem

. 1 T (12

oluin - oY -6 X, 2)

where X and Y are n x £ and m X ¢ real matrices whose
i-th columns are x; and y;, respectively.

If we assume a rich enough dataset (¢ > max{m,n} and
that X is a full rank matrix) the unique solution to this
problem can be obtained as follows:

0*=(yxnHr, 3)

Alternatively, for the same set of data points, training
a neural network with a single hidden layer and linear
activation functions can be written as solving the following
optimization problem

argmin %HY - QP'X||%, 4)
PeRnxk QeRm Xk
where £ > n,m. Not only is this formulation similar to
linear regression in many ways (although still fundamentally
different), but one can also verify that P and @) solve (4) if
and only if they also solve the following matrix factorization
problem:
argmin L[V~ PQT |}, ®
PeRTLXk:7QER77LXk
where Y = ©* = (YXT)T, albeit at a different minimum
value. Notice that by choosing a factorized representation,
the number of free parameters is larger than the number of
constraints in the problem even if k& < max(m,n), however,
due to redundancies resulting from the matrix multiplication,
one must guarantee the minimum rank of matrix PQ ", not
the number of free parameters. Furthermore, by asking k >
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max(m,n) instead of simply & = max(m,n), we impose
the existence of a target set 7 := {(P,Q) | Y = PQ'"}
instead of an isolated optimal equilibrium. The existence
of a nontrivial set of optimal solutions is the reason for
some of the interesting properties observed in the literature,
namely the faster convergence for imbalanced initializations
observed in [12], therefore we make a point to guarantee the
existence of such set for our robustness analysis.

One possible method for solving the matrix factorization
problem (5) is the use of a gradient flow for the dynamics of
the parameters, however the resulting dynamics can be shown
to have multiple spurious equilibria, that is, equilibrium
points of the dynamics that do not lie in the target set.

By understanding how this problem behaves when solved
by an uncertain gradient flow algorithm we also gain an
understanding of the robustness of our original linear neural
network problem. This motivates us to look at the dynamics
of the parameters during training in search of some kind
of robustness guarantee. Specifically, we look for ways to
guarantee or recover the ISS property that is present in non-
overparameterized gradient flow systems, as shown in [23].

C. The Gradient Flow Dynamics

To impose a gradient flow dynamics for the parameters,
let us define the loss function as follows:

1 _
L(P,Q) = IV = PQ 7 (6)

Then, as derived in [14], we impose the following dynam-
ics for the parameters P and Q)

P=-VpL(P,Q) = (Y - PQT)Q,
Q=-VoL(P,Q)=(Y -PQ")"P,
or equivalently
,_[P]_[ (¥ =PQT)Q] _[fr(PQ)] _
7=g) = |8 Zre 3] = R )] = 22 @

Often, however, the gradient value used to enforce the
dynamics is an estimation of its true value and has an
uncertainty associated with it. To model this uncertainty we
add two disturbance terms on the dynamics as below

5 {g} _ (?—PQT)Q} N [g] = f2(2) + m . O

(Y —PQ")'P
where U : R, — R™F* and V : R, — R™** In the
next section, we explore a candidate Lyapunov function as a
means to characterize the stability of our system as a function
of the magnitude of our disturbances and of our initialization.

)

D. The Loss Function as a Candidate Lyapunov Function

A natural choice for a candidate Lyapunov function is our
loss function. By definition, £(P,Q) > 0 whenever P,Q
are not on the target set Y = PQ". Furthermore, one can
compute an upper-bound on the time derivative of the loss

function under gradient flow as follows

L(P,Q,U, V)= <vc, {SD

(veves 7))

_ﬂvzﬁ~%<vcwg}>

vl

With this, we can establish the following theorem:

(10)

IA

—IVLIE + VL] P

Theorem 1. The time derivative of the loss function (6) can
be upper-bounded as follows:

2

K-' S 7£(P7 Q) : (O-Iznin(Q) + U?nin(P)) + % H [‘[i':| (11)

F

Proof. This proof is omitted due to space limitations, but
it is available in the extended arXiv version of this paper
[32]. O

This Theorem gives us sufficient criteria for assuring
convergence of our system to the target set, however, it
depends on us being able to lower-bound, a priori, the
singular values of our parameter matrices along a trajectory.
We then look into ways of lower-bounding the quantity
02. (Q) + o2, (P) as a function of our initialization to
properly characterize the ISS property of this system for the
simplified case where n = m = 1. To obtain that lower
bound we study the undisturbed case and identify necessary
and sufficient conditions for its convergence to the target
set, which we use as guidelines to obtain a bound on the
maximum admissible disturbance signal.

III. THE SCALAR AND VECTOR CASES
mn=m=1k>1)

We assume along this section that n = m = 1, that
the scalar Y is non-negative (all results are still valid if
otherwise, but the characterization of stable and unstable
sets swap), and that P and () are row vectors in general
(in the particular case where k£ = 1 they are scalars). For
this simplified version of the problem, one can verify that
the undisturbed dynamics of the parameters of the system is
a nonlinear reparameterization of linear dynamics, that is

o o=t o] [g]

since Y — PQT is a scalar function. This means that the
trajectories on the state-space will look the same as the linear
system P= Q and Q = P with an extra stable set whenever
Y — PQ" = 0 (our target set) and a change in direction if
Y — PQT < 0. For the scalar case, we can draw the phase
plane of our system, as in Fig. 1. To formalize this conjecture,
we linearize the system around the origin, which results in

(12)

ﬂmm@,

13
0O 13)
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EES

Fig. 1: Phase plane for the scalar case of the gradient flow
dynamics. The trajectories followed by our solutions are
the same as the 2D saddle, except for the inclusion of a
new stable set whenever our nonlinear reparameterization
(Y — PQ) = 0 and a change in the direction of the
trajectories when (Y — PQ) < 0. In the figure there are a
couple of different solutions for the system (in blue) as
well as the borders of two possible invariant sets (black
and pink) that guarantee for initial conditions in them that
the system converges to the target set, given sufficiently
bound disturbances U and V.

where Ay, : R2*XF — R2¥F i a linear operator on a matrix
space. To write this in the familiar state space form we
vectorize both sides of the equation, resulting in:

o2 = (102 ) se(B) = duwne(5). 10

One can verify that Ay has eigenvalues +Y and —Y with
multiplicity k, and that an orthogonal basis of eigenvectors
associated with the positive (resp. negative) eigenvalues is
given by {ei ® [17 1]T i’f:l (resp, {ei ® [_17 HT f:l)'
Then, the following Lemma provides a link between the
characterized local (linear) properties of the system around
the origin and its global (nonlinear) behavior.

Proposition 1. For any initial condition [Py; Qo] such that

wl[B]) e mm({ue [}

the solution of (12) converges to the saddle point
[P(t); Q(t)] = 0. On the other hand, for every initial condi-
tion [Py; Qo] such that vec([Py; Qo)) € S, the solution of
(12) converges to the target set T.

Proof. This proof is omitted due to space limitations, but it
is available in the extended arXiv version of this paper [32].

O

Remark 1. For the scalar case, S~ and ST (defined the
same as S~ but for the unstable eigenvectors) correspond
to the lines P — @ = 0 and P + @Q = 0 respectively, as
highlighted in Fig. 1. The condition that F'(a,b) < 0 can be
understood as being to the southwest of the lower hyperbola
or the northeast of the higher hyperbola, while F(@,b) > 0
is the region in between the two hyperbolas. As mentioned
before, the set where [P; ()] is spanned by the eigenvectors
of our linearization associated with the negative eigenvalues
is the line P 4+ ) = 0 and is the only set in the state space
that converges to the saddle point [P;Q] = 0. In Fig. 1,
the dashed black lines are defined, for some ¢ € R, by
the equation |P 4+ Q| = ¢ which intuitively measures the
magnitude of our projection in S+, while the dashed pink
lines are defined by P@Q = ¢ which in some sense measures
the distance between a point and our target set along our
vector field. While both |P + Q| > ¢ and PQ > ¢ can be
shown to be forward invariant, we focus on the black lines for
this section, in hopes of being able to more easily generalize
this set for the general case in the future.

Considering the minimum distance to S~ (that is the norm

of the projection into S*) as a possible invariant set for our
problem gives

e (e ) w=((2])

For some « > 0, define the set

Ra={P,Q eR" [ |P+Q|3 > o},

2
=[P+ Q3.
? (15)

(16)
for which we can state the following theorem:

Theorem 2. For any « € [0, 2WY ), the set R, is forward-
invariant under the gradient flow dynamics if
1 . ao?
—|a|(Y — —).
Tl =)
Moreover; if (P,Q) € Ry, then PPT +QQ" = o(P)? +
o(Q)? > a?/2.
Proof. This proof is omitted due to space limitations, but it

is available in the extended arXiv version of this paper [32].
O

[Ullz + V]2 < a7

This theorem allows us to rewrite the previous lower-
bound dissipation inequality, for a solution initialized in R,
for some a € [0,2VY), as

2 2
LP.QUV) < —LP.Q% + H m . ay)
2

which is strictly negative until we reach the target set, as-
suming our disturbances and initialization respect the bounds
and conditions given by Theorem 2.

The results from Theorem 2 recover the ISS property
for the overparameterized gradient flow when restricted to
some R,. Notice that, unlike the non-overparameterized case
discussed in [23], the condition for invariance of R, imposes
a bound on the magnitude of the disturbance. Also, notice
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that this is a worst-case analysis, that is we assume that the
disturbance will always push our system toward the closest
point in the bad set S~.

Furthermore, any initialization such that PyQ] > Y is
guaranteed to never converge to the bad set. This can be
geometrically verified for the scalar case since PoQ) > Y
implies that the system is initialized either to the northeast
of the positive hyperbola or to the southwest of the negative
one. To guarantee robustness, however, we still require the
bound on the magnitude of the disturbance given by Theorem
2 for o = 2VY.

Therefore, we effectively impose a bound on the magni-
tude of the maximum acceptable disturbance for the system,
regardless of initialization, indicating a compromise in terms
of the robustness of adopting an overparameterized formu-
lation. For the remainder of this paper, we look at the extra
complications that arise from generalizing this analysis to
the general case.

IV. THE GENERAL CASE

For the general case, where m and n are arbitrary, we have
to deal with a matrix ODE for the dynamics of the param-
eters. One immediate problem from this is the existence of
spurious equilibria besides the origin. To formally show this,
we first state the following intermediate Lemma 1 followed
by Theorem 3 which characterize the system’s equilibria.

Lemma 1. Given two matrices A € RP*° and B € R1*°
for p,q,0 € N with q > o, the following two statements are
equivalent
1) ABT =0;
2) There exist orthogonal matrices V,, ®, and VYp,
and rectangular diagonal matrices with non-negative

diagonal elements % 4 and Y, such that
A=U, 5,07 (19)

and
B=UgYpd"

are SVDs of A and B, and ZAZE =0.

Furthermore, in 2) we can write ¥4 and X as

(20)

(X4 0 0

Y4a=|0 0 0

0 0 0

and _ -
0 0 0

Yg=10 5 0

0 0 0

where 4 and Sp are diagonal matrices whose main
diagonal elements are the nonzero singular values of A and
B respectively.

Proof. This proof is omitted due to space limitations, but it
is available in the extended arXiv version of this paper [32].

Theorem 3. For the dynamics given by (8), and an arbitrary
set of parameters P and Q), the following are equivalent

1) Z = [P;Q)] is an equilibrium point of fz, that is (Y —
PQYQ=0and (Y —PQT)TP=0;

2) (a) There exist an SVD of Y — PQ"T = UX®", and
orthogonal matrices I'p and T'g such that ¥ pFIT;
and @EQFg are SVDs of P and Q; and (b) ¥¥q =0
and "X p = 0.

Proof. This proof is omitted due to space limitations, but it
is available in the extended arXiv version of this paper [32].
O

Remark 2. In the full version of the paper, we will use this
theorem as a way to analyze the behavior of the system
locally around each equilibrium point, by exploring the given
structure of the equilibria. This characterization makes it
possible to write the Jacobian matrix of the system as a
function of the singular value decomposition presented.

Remark 3. In [13] the authors characterize the equilibria of
the system for the symmetric case (when P = ) and Y
is positive definite). Reinterpreting statement 2) of Theorem
3 for this case gives that Y — PPT = UXW' and P =
U pI'p, which in turn imposes that Y = WXy W . Using
these SVDs, the equation (Y — PPT)P = 0 becomes (Zy —
EPCT;)EP = 0 which holds if for every i either 0; y = JZP
or o; p = 0, which recovers their original result.

The presence of multiple equilibria in our dynamics means
that the approach done for the vector case does not immedi-
ately translate to the general case. Even so, in [14] the authors
present interesting results for the convergence of the system
to the target set for the undisturbed case. They guarantee con-
vergence to the target set for any initial condition except for
a set of dimension zero, which indicates possible robustness
to disturbances, as long as a minimum distance from such set
can be guaranteed from the initial conditions. From Theorem
1 of [14] we have an exponential bound on our cost function
L(P,Q) for the undisturbed case, where the exponential
constant is a function of the eigenvalues of the imbalance
matrix defined as A = PT P+Q" Q. In the paper the authors
explore the invariance of A along any trajectory to formulate
this bound, however once we allow for disturbances in the
computation of the gradient, the invariance property of A
is lost, as can be seen by computing A(t) for the disturbed
dynamics

A:PTP+PTP—QTQ—QTQ
QT(Y -PQNYTP+U'P
+PI(Y -PQNQ+PTU
~PI(Y-PQTQ-V'Q
Q'Y -PQT)'P-Q'V
=U'P+PU-V'Q-Q"V,

and as such, the results derived in [14] are not immediately

21

7 applicable. Nonetheless, the fact that we can guarantee
exponential convergence with some “margin” that depends
7360

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 12,2024 at 15:10:38 UTC from IEEE Xplore. Restrictions apply.



only on our initialization for the undisturbed case intuitively
indicates our trajectories might accept some level of dis-
turbance while still converging to our desired target set,
motivating further works on this subject.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we formulated the overparameterized linear
regression problem as a matrix factorization and presented
a dissipation-like inequality for the general problem when
the parameters are trained through an uncertain gradient
flow. The bound obtained, however, does not guarantee
convergence to the target set 7 for any initial condition,
which prompts the search for invariant subsets of the state
space in which the system can be shown to be ISS.

This publication focuses on the solution of the problem
for the case where the neural network has a single input
and a single output. In this situation, the parameter matrices
reduce to vectors and the analysis is significantly simplified.
We characterize the behavior of the system when training
through exact gradient flow and formulate necessary and
sufficient conditions for its convergence to the target set.
We then use those conditions as a guideline to formulate
sufficient conditions on the initialization of our system and
on the maximum admissible disturbance on the estimation
of the gradient that if satisfied guarantees that the system is
ISS.

We finish the paper with a brief discussion about the
general case. We show that in general, the dynamics be-
come significantly more complicated with the appearance of
multiple sets of spurious equilibria. While there are results
in the literature that guarantee convergence to the target set
for the general case, their extension to the disturbed case is
not straightforward.

Current research being conducted by the authors for the
general case indicates that despite its more complex dynam-
ics, we can still predict the behavior of the general case based
on its linearization around the origin, similar to how we solve
the problem on the vector case. We are currently looking into
how we can use this knowledge to characterize regions of our
state space where the ISS property is guaranteed in general.

We can, however, conclude that by opting for an overpa-
rameterized formulation, our system ceases to be ISS for the
whole state space when subject to gradient flow, contrary
to the non-overparameterized case, as shown in [23]. This
indicates a trade-off on using an overparameterized formula-
tion for performing linear regression, even if it is eventually
shown that it can be circumvented by a knowledgeable choice
of initial condition.
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