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Abstract

We show that, in general, it is impossible to
stabilize a controllable system by means of a continu-
ous feedback, even if memory is allowed. No opti-
mality considerations are involved. All state spaces
are Fuclidean spaces, so no obstructions arising from
the state space topology are involved either. For one
dimensional state and input, we prove that continuous
stabilization with memory is always possible.

1. Introduction

It is well known that optimal control problems
often result in solutions that can naturally be imple-
mented in terms of discontinuous feedback laws. It
appears to be less widely appreciated, however, that
it is in general not possible to control a (''controll-
able") system using continuous feedback, even without
any optimality requirements. Of course, the state
contains all the "information' needed for control, but
this does not imply the existence of a continuous
feedback for, say, a stabilization problem.

The (rather elementary) remarks given in this
note will show that: (I) sometimes continuous
"dynamic feedback' may be available for stabilization
even if no continuous (constant) state feedback sta-
bilizers, exist,and (II) in general not even dynamic
stabilizers can be defined continucusly.

will be of the form

Our systems

x = f(x,u), x e Rn, u e Rm,

so that the state space is R, 0Of course, one could
consider more complicated state spaces (e.g., mani-
folds) but, since our purpose is to show that certain
things cannot be done in general, it is better to take
the simplest possible spaces. In particular, this
will make it clear that the irpossibility of finding
continuous feedback is not due to topological obstruc-
ticns caused by the topology of the state space or the
input space.

In $3, we give necessary and sufficient condi-
tions for the existence of a constant feedback sta-
bilizers that are either continuous or locally
Lipschitz, if n =m = 1. These conditions make it
easy to construct examples where no continuous feed-

back exists, as well as examples where a continuous
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feedback stabilizer exists but a locally Lipschitzian
one does not. We then prove that, when n=m =1, a
time-varying feedback always exists. We show that this

situation is atypical and that, when n =2, it is
possible to have a ''completely controllable' system
that admits no continuous dynamic feedback,
even when allowing memory in possible
regulators. Finally, in §4, we briefly mention
some positive results on the existence of discontinuous

feedback which is not too pathological.

2. Definitions And Notations

(2.1)
giving (a) an open subset X of some Euclidean space

Definition. A control system is defined by

Rn, (b) a metric space U, (¢) amap F: XU -~ Rn,
and (d) a class U of admissible control functions

u(-),

taking values in U.

defined on subintervals of the real line, and

We require that
(I) £: XU »RY

(X,U,£,0)
is a locally Lipschitz map.

satisfy:

(I11) Every piecewise continucus U-valued function
is an admissible control,
(IT1) If I is an interval, and u(¢): I -U is

admissible, then (a) u(-)
time-varying vector field

is measurable and (b) the
(x,t) = £(x,u(t))
isfies Carathéodory-type conditions. (Precisely: let

sat-

A(K,u)

sup{ | [ £(x,u) | |: xeK}

Hfx,w-£fov,u) il

B(K,u) = sup{ T

i xe X, veK, x#Fi.
We assume that

J AK,u(t))dt < »  and J B(K,u(t))dt < =

J J
for every compact K< X,

val JZ 1))

It follows from the usual existence and unigueness

and every compact subinter-

theorems that whenever u(+) e U, X, € X, t, el
(u(-127,
trajectory x(-)

and such that x(to) = X_.

(= domain +hen there exists a unique maximal

corresponding to the control u{-},

The demain of x(¢) 1is an

o
interval, which is relatively open in I. (3v a tra-
jectorv for an admissible control u(+): I - U we

mean an absolutely continucus curve x{+j: J =~ X U<
such that

(#) X(t) = £{x(t),ulc))
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for almost all t e J.)
Moreover, the following is an easy consequence of

our technical assumptions:

(2.2) Piecewise Constant Approximation Lemma: If

u-): [a,b] ~U is an admissible control for the

system (*), and x(+): [a,b]

u(-), then there exists a sequence {un(-)} of

+ X 1is a trajectory for

piecewise constant controls defined on [a,b], and
xn(-): [a,b] ~ X, such that
for almost all t e[a,b],

trajectories
u (8 = u(t)

x, () = x(*)

and that
uniformly.

(2.3) Definition. is an X € X
such that

An equilibrium state

f(x,u) = 0 for some U e U.

We shall assume that 0 € X, and that 0 1is an

equilibrium state.

(2.4) Definition. The system (*) is asymptotically
controllable to a point X(a.c. to X) iff for each
x, € X - {x} there exists an admissible

u(+): [0, = U
corresponding to u(e)
x(0) = X,
satisfies

such that (i) the trajectory x(+)
and the initial condition
is defined for all t > 0, and (ii) x(*)

(#) lim x(t) = X

trtoo
(2.5) Definition. A constant asymptotic feedback
stabilizer (c.a.f.s.) for (*) is a pair (K,G) where
(i) K is a map from X-{0} to U,

(ii) a: X-{0} +~U is a map which selects, for each
X, € X-{0}, an admissible control

U (): [0, ~u,
XS
in such a way that, for each x, € X-{0}, the tra-
jectory x(-) for u, (+) and the initial condition
o

x(0) = Xy satisfies:

{ii.a) x(t) 1is defined for all t > 0
{(ii.b) 1lim x(t) = 0, and
tateo
(ii.c) Gx(t)(s) = K(x(t+s)) for all t>0 and
almost all s>0.
(2.6) Remark. The above definition says, approxi-

mately, that a c.a.f.s. is amap XK: X -+ U such that,

if X, € X, Xy # 0, then the solution x(+*) of
(e%) x = £(x,K(x))

x(0) = X,
is defined for all t > 0 and converges to 0 as
t ~ «. The reason why we do not say it exactly that
f(x,K(x)) may fail to be

(In fact, the

way 1s that, in general,

locally Lipschitz, or even continuous.

point of this paper is precisely to show that such
K's are unavoidable!) When this happens, we cannot
talk about ''the" solution of (#x), because there may
be many solutions, or none. Hence we must add the
assumption that (%) has a solution and, if more than
one solution exists, the specification of K must be
supplemented with the choice of one solution of (xx)
for each Xge So we must specify both the map K and,
a solution of (xx).

may specify, for each «x

for each Xo Equivalently, we

an admissible control ﬁx
¢}
is a solution of (%), with

Gx (t) = K(x(t)). Thus we arrive at Def. 2.5.
(o]

o’
whose trajectory x(-)

(2.7) Remark.
definition of what it means for (x) to be controllable

One can give a totally analogous

{(i.e., "controllable in finite time") to a point X,
by making the following changes in Def. 2.4:

(a) the domain of definition of wu(+)
10,17,
condition (#) is replaced by:

is required to
(0,=[, and (b)
x(T) = x. Similarly,
one can define a constant finite-time feedback sta-

be an interval rather than

bilizer (c.f.t.f.s.) exactly as in Def. 2.5, except
that now the admissible control ﬁx (*) 1is defined on

0
(with T depending on

some finite interval [0,T]

xo), and that condition (ii.b) is replaced by x(T) = O
(2.8) Remark. If K: X-{0} = U is locally Lipschitz
on X-{0}, then x -~ f(x,K(x)) is locally Lipschitz,
and (xx) has a unique solution x(+) such that

x(0) = Xy for any Xy € X-{0}. If, for every

Xy x(*) 1is defined for all t > 0,
as t -+ +», we will say that K
Lipschitz constant asymptotic feedback stabilizer
(1.L.c.a.f.s.). 1In this case, there exists a unique
4: X-{0} + U such that the pair (K,ﬁ) is a
c.a.f.s. in the sense of Def. 2.5, so this new defini-

and x(t) -+ 0
is a locally

tion agrees with Def. 2.5.

{2.9) Definition. A dynamic asymptotic feedback sta-
bilizer (d.a.f.s.) is a triple (g,K,ﬁ), where

z = g(z,%)
and input value set X,

defines a control system with state set Z

and where (K,ﬁ) is a c.a.f.s

for the system

(xx%) X = flx,w)
z = g(z,x)
(2.10) Remarks. (a) One can define in a similar way

the concept of a dynamic finite-time feedback sta-
bilizer (d.f.t.f.s.). (b) when K
X-{0}, (K,10)
tinuously on the initial state, we say that (K,u) is

is continuous on
and the trajectories of depend con-

a continuous feedback. (c)} Other definitions of



d.a.f.s. might be reasonable as well. For instance,

we may eliminate the requirement that the state of the

regulator coverage to 0, or we may only ask con-

vergence to O of the trajectories that start at some
fixed z(0). Although possibly of theoretical interest,
such a controller design would not provide a basic
feature of feedback: the stabilization even under
sudden perturbations of the plant.

In any case, our positive result (Theorem 3.5)
will prove existence of a 1.L.d.a.f.s. in the ""strong"
sense of Def. 2.9, for n

terexample for n

m = 1, whereas our coun~

2 proves nonexistence of a con-
tinuous d.a.f.s. with the weakest possible definition.

(2.11) Definition. A "time-varying feedback sta-
bilizer" for the system (x) is a pair (K,0Q),
K: Xx[0,»[ -+ U and, for each

where

X, € X, t, >0, uxo’to: [to,m[ + U 1is an admissible

control such that the trajectory x(+) for ﬁx £
o’ o

which satisfies x(to) = X5 is defined for all

t > tD, converges to 0 as +>

t , and satisfies
K{t,x(t)) = GX t (t) for t> to. Equivalently, if
0’7o

we let u 'to(t) = uxo,to(t+to)’ for 0 <t, we

o
see that X 1is the trajectory for @

“0’"o

and % satisfies Ktet ,X(1)) = ;x

such that

X(0) = Xy

t>0,

(v)
o’to
for

so that X 1is a solution of

(*xxxx) ;

E(x(2) X (t+t,,x(8)))

Therefore, (K,G) is a c.a.f.s. for the system

x=f(xu),z2=1,xeX, zeR,uel,

except for the fact that, as t - =, (x(1),z(t))
rather than to (0,0). By making
the change of variable w = a time-varying feed-

comr
verges to (0,+=),

-2—’
back for («) gives rise to a d.a.f.s., in the sense of

Def. 2.9.
3. Continuous Feedback

We consider first the case of systems with
X =U-=R. Let

0= {(x,u): xf(x,u) < 0}

0 = {(x,u): x # 0, xf(x,u) < 0},
Let 7: R° =+ R be the projection (x,u) - Xx.
(3.1) Lerma. If (#) is a.c. to O then n(0) = R-{0}.
Proof. Let Xy > 0, and u(-) e U such that
x(t) -0 as t - =, where

x(0) = x, x(t) = £(x(t),u(t)
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b
for t>0. Pick T >0 such that x(T) < _52 . Ther

pick a piecewise constant u'(+): [0,T] + R such that

X
x'(T) §_7§3 where x'(0) = Xg» and

X'(t) = £(x'(t),u' (1))

for 0 <t <T (here we use 2.2). Let

t, = sup{t: x'(1) > X}
Then

0 Lt <T, x'(to) = X5
and x'(t) < X for t,<t<T. If ¢ >0 is small
enough, then wu'(-) has the constant value u, for
tpLts ty*e. So the restriction of x'(+) to

[to,to+e] is an integral curve of the locally
Lipschitzian vector field f(-,uo). Clearly, this :
implies that f(xo,uo) < 0. Therefore, (xo,uo) €0,

and so X, € m(0). A similar argument applies if

Xy < 0. Q.E.D.
(3.2) Proposition. Assume that X = U = R. Then

(a)
if and only if there exists a continuous function
k: R-{0}
() () admits an a.f.s. (K,G) such that K 1is com
tinuous on R-{0} if there a con
tinuous function k: R-{0} =+ R such that (i) the
graph of k is included in 0 and (ii) the function

the system (x) admits a locally Lipschitz c.a.f.s.

+ R whose graph is included in 0.

X - f(x,k(x))-l is locally integrable on R-{0}.

Proof. Suppose that k: R-{0} »~ R 1is a locally
Then x - f(x,k(x))
Lipschitz vector field whose trajectories go to 0.
Hence f(x,k(x)) <0 if x> 0, and f(x,k(x)) > 0 if
x < 0. So Graph (k)< 0. Conversely, if

Graph (k)< 0, and k is locally Lipschitz, then k
is a c.a.f.s. If k 1is merely continuous, then one
can approximate k by a locally Lipschitz X'
that Graph (k')@; 0. This completes the proof of (a).

Lipschitz c.a.f.s. is a locally

such

Now let k: R-{0} = R satisfy (i) and (ii). Let
X, > 0, and define T: ]O,xo] - R, by
%o
T(x) = J ?r—i‘(‘vvd =T (3.3)
X

Then T
strictly decreasing. So T(0) = lim T(x) exists
x>0

is well defined, finite, positive, and

(and may be finite or infinite). Let
x(+): [0,T(O)[ =R
be the unique continuous function such that

T(x(t)) =t for 0 <t <T(0). Then x(+) is



strictly decreasing, and 1im
t+T(0)

then the compact interval

x(t) = 0. If

0 < t, < T(0),

I = [x(to),xo] is contained in {x: x > 0}, and so
0 < f(x,k(x)) < C for x eI, and some constant
C>0. So %g > é throughout I, and so

TG - T(x) > é(X-y) whenever
This shows that x(-)

y<x,vel, xel.

is Lipschitzian on I. So

x(+) 1is absolutely continuous, and satisfies
x(t) = £(x(t),k(x(r))) for almost all t e[0,T(0)].
Let u_ (t) = k(x(t)) for 0 < t < T(0).

X

0

Define k(0) = u, where U 1is such that

f(0,u) = 0 (recall that 0

point), and let ﬁx (t) = u for
o

is an equilibrium
t > T(0).

~

Construct u, for x_ < 0

o in a similar

fashion. Theg (k,G) is a continuous a.f.s.
(recall that our definition of continuity does
k be continuous at 0).
(k,0)

Then the graph of

not require that

Conversely, suppose is a con-

tinuous c.a.f.s. k must
(Otherwise, if there is
f(xo,k(xo)) > 0, then

containing

be included in 0.
such that

there exists an open interval I

an x_ > 0
o]

X, and such that f({x,k(x)) > 0 for x e I.
Hence no curve x(+) which satisfies
x(t) = f(x(t),k(x(t)) can cross I from

right to left, contradicting the fact that
(k,u) x(+)
which is a trajectory of u for some

o]
we can reparametrize using x,

is a c.a.f.s.) Along a curve

X, 7 o,

rather than t, as the parameter. Then we
and T satisfies (3.3).
remains finite for x > 0, the
- TGk () !

tegrable on {x: x > 0}.

can write t = T(x),
T(x)

function x

Since
is locally in-
The proof that it is
x < 0} is similar.
N.E.D.

locally integrable on {x:

Consider the system

(3.4) Example,.

x = f(x,u), where f(x,u) = u{l+x+aarctan(u)),
and @ € R 1is a constant. Then

=(0) = R-10}, for any o, but w(0) = R-{0}
iff « > 0 (and 7(0) = R-{0,1} if a < 0.)
So the system is not a.c. to 0 if a < 0
Now suppose that 0 < a < %. Then ¢ 1is the

union of three sets, namely,

01 = {(x,u): x>0, u<0}, 0, = {(x,u): u»0,

2
u < x < 0}, and

-l-a arc tan

03 = {(x,u): u <0, x < -1-a arc tan u}. We
have clos Osfﬁclos Ol =p,

{(-1,0)} and

{(0,0)}. It is easy to
k: R =+ R such that
whenever x # 0, x # -1.
can be taken to be of class

(x,k(x}))

clos Osriclos 02

clos OZf*clos 0y
construct a continuous
(x,k(x)) € 0
such a k

More-
over,

c”. However, has to belong to

O3 for x < -1, because n(OZ) does not
extend all the way to -«. And (x,k(x))
must be in O2 for -1 < x < 0, because n(Oﬂ
does not extend all the way to 0. Hence k(-1) must
equal 0, and so f(-1,k(-1)) = 0. Therefore,
(-1,k(-1)) ¢ C. So there is no continucus

k: R-{0} + R such that (x,k(x)) € 0 for all x # 0.

Hence, no locally Lipschitz c.a.f.s. exists. However,
if we no longer insist that k be locally Lipschitz,
it is clear that we can choose k such that
(1) k is c® except at x =1,

(1) |k ~ 11+x|® as x + -1, and

(iii) (x,k(x)) € 0 whenever x # 0, x # -1.
Here R > 0 1is arbitrary. If we choose 8 such that
R < %, then |£(x,k(x))| ~ a|14x|28 as x - -1, and
S0 X f(x,k(x)).1 is integrable near x = -1.
Therefore, k satisfies conditions (i) and (ii) of
part (b) of Prop. 3.2. So, we see that the system
x = f(x,u) admits a continuous c.a.f.s., but doesn't

admit a locally Lipschitzian c.a.f.s.

If o> %7 then there is a unique u, € R that

satisfies 1+a arc tan u, = 0. Then Uy is neces-
sarily negative, and so f(x,uo) e 0 for all x # 0.
So in this case, the system admits a constant (i.e.,
independent of x} c.a.f.s. Finally, for an example
where no continuous c.a.f.s. exists, take

X = ((u-1)2~(x-1))(x—2+(u+1)2). Then 00 {(x,u): x > 0}
consists of two disjoint pieces, namely, the set Ol

of points to the right of the parabola x = 1+(u-1)2,
and the set O2 of points (x,u) such

that x >0 and that (x,u) 1lies to the left of
the parabola x = 2—(u+1)2. 0 is simply the closure
of 0.

tinuous k: R,

It is easy to see that there exists no con-
+ R such that (x,k(x}) € 0 for all
On the other hand, one sees easily that

0, and that

x > 0.
m(0) = R-{0}, so the system is a.c. to
there exists a piecewise constant c.a.f.s.

We now show that, in dimension one, every system
which is a.c. to 0 can be stabilized by a con-

tinuous dvnamic feedback u = K(t,x).
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Proposition.

(3.5)

system (*)

(Still X =U=R.) The

is a.c. to 0 if and only if it admits

a continuous d.a.f.s. (in particular, the converse of

(3.1) is also valid.)

Proof. By (3.1), it is enough to prove that
m(0) = R-{0} implies the existence of a K(t,x)
We first construct K(%,x) for
Pick first any U with £(0,u) = 0
K(t,0) :=u for all t > 0.
Since w1 {(x,u): x>0}) = ]0,+[,

3 sets of reals {a,, jeil}, {bj, jeZ}, and {uj, jez}

as in (xx#x).
t>0, x>0.
and define

there exist

such that the following properties hold:
(1) all aj’bj > 0; {aj} {bj} have no nonzero
limit points; aj > ™ 35 j o +m, aj + 0 as

A L H

(ii) aj+1 < bj < aj+2 for all j;
(i11) f(x,uj) <0 for all x in Ij = [aj,bj].
For each j, let 3% and mj be positive numbers
such that
(iv) [fx,w)| < )% for all x in [aj+1’bj] and
all u between u. and uj+1, and
v) f(x,uj) < -m; for all x in Ij.
We now define amap X for t > 0 and x > 0 (which
can be analogously extended to x < 0, to give KX.)
First, for each j, let:
Kt,x) = uj+l for x in [bj’aj+2] (3.6)
and all t > 0. It remains to define ﬁ(t,x) for x

in intervals of the type {aj+1,bj] in such a way

that K 1is continuous.

To simplify notations, take now a fixed 3 and
let ¢ = aj*l’ d=b,,m= max(mj,mj+1),
M=M., <= (d-c)/4, ty = 38/m, and t, = Ty /M.

Further, define a continuous piecewise linear map .

on [c,d], for each r between d and d-38 = c+3

by:

w(x) = Ui for r<x<d

ur(x) = uj for ¢ <x<r-¢

ar(x) = linear on [r-&,r].
Now let

Kit,*) = %omt for 0<t< ty (3.7)
and

K(t,-) = u}M(t-t1)+c+é for t; <t <, (3.8)

Ncte that K is continuous in f(x,t), and that
K(tz,-) = K(0.+). Extend X to all pairs (t,x) with

x in {c,d] and t >0, as a periodic function with
period t,. Note that for x in [c,d]) this gives
that f(x,ﬁ(x,t)) is locally Lipschitz on x,

uniformly in t. This construction can be carried out
for all j, yielding corresponding t1(), t,(3) s,
An analogous construction gives R(t,x) for vx < 0.
Thus K is defined for all (t,x) with t > 0.

We now prove:

Claim 1.
X(t) = £(x(t),X(t,x(1))), suppose that 0 < x(ty) < b,

Then x(t0+3t2) < 33541 for

Let x(*) be a solution of

for some t, and some j.
tz = 2())
notations.

For this fixed j use the previous

Let t) be an integer multiple of ty
LTSttty £(d,ke,d)) <0

for all t, also x(té) < d. Since £ is periodic

satisfying ty Since

in t with period t the curve &: t - x(t6+t) is

We know

also a solution of i%t) = £{t,K(t,x(t))).
that £(0) < d,
E(t0+3t2-t6) < ¢. Since K(t,c) = uj
£(6,R(t,c)) <0 for all t,
£(t) <c¢ forall t>71, if £(T) <c.
the conclusion that g(to+3t2-té) < ¢ will follow if

and we want to prove that
for all t,
and therefore

we
have

In particular,

we prove that E(th) < ¢. So all we need is to prove
x(0) < d,
Since trajectories do not cross at

that, whenever x(-) satisfies it follows
that x(2t,) < c.

any given time, it will be enough to prove that

x(ZtZ) < ¢ whenever x(0) = d. Consider the map

B(t) = x(t) + mt-d. Then §£(0) = 0. If 2(z) =0 for
some 0 <t < ty then i(r] = £f(x(1),u(t)) with

u(t) = K(t,d-mt) = Ui g, SO x(t) < -m (by (v)
above). Thus &(t) < 0 whenever 3(t) = 0, if
D<tz< ty. It follows that 2(t) < 0 for such t,

and in particular that x(tl) < c+8. Now consider

x{(t) for t, <t 2t We may assume that x(tl)=c+£.

By the mean ialue theorem and (iv) above,

x(tz) < x(tl) + M(tz-tl) < c+24,
With an agrument similar to the one used above, one
shows that x(t2+25/m) < ¢, soalso x(ZtZ) <c, as
wanted.

Pick now any X, >0 and consider the trajectory
x(t),
We claim that

corresponding to (sxx«), and such that
x{t) =+ 0.
t, = 0.

prove that for everv j € Z

x(0)=xo.
To prove this, it suffices
to assume that Moreover, it is enough to

the inequality x(t) < a.

L7

holds for sufficiently large t (because aj ~0 a

j - -»). Since a., -+ = as j - +x, there is a ]

such that x{0) < aj. If we prove that x(t} < a

implies that x({%) fa for sufficiently large‘ T,

the conclusion will follow by a simple induction.

Moreover, by definition of K, we have K(t,aj_1)=u

i-2

for all t, and so f(aj—l’i(t’aj-l)) <D for all t.
x{(7) < aj-l for all =+ > 0 if

x(ro) <3

Therefore,

So, it suffices to prove that x(t) < a,

J
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implies that x(1) < aj_1 for some T > t. Now

<b

i1 je2 < aj, and f(x,K(t,x)) = f(x,uj_l) <D
“or all t, and all x such that bj_7 <x<a..
Hence £(x,K(t,x]) 1is bounded above by a fixed

strictly negative constant for b, _ <x<a,, t>0,

A
Therefore, x(t) i_aj implies that x(1) < bj‘7

for T > t. But then, by Claim I, x(n) < aj_1
>

some

r

for =ome 7. This concludes the proof that anv
of X(t) = £(t,K(t+ty,x(t))] that starts
x{0) >0 t The

proof for the case x(0) < 0

solution

at an converges to . 0 as

> o,
is similar.
Note that the above argument could be trivially
nodified to imply the existence of a K which is
for x # 0.

K which is continuous everywhere can be obtained,

infinitely differentiable in x, Even
a
if one modifies the above K by a time-varying linear
interpolant in a shrinking neighborhood of the origin.
For dimension greater than one the existence of
even advnamic f.s. is not insured by (%) being a.c.
An example of this is provided by the 2-dimensional

2 2
svstem (X = R”, U = R%):

. 2 Z
x(t) = (4-y"())u “(v)

-x(t)

vy = e X Wy 26 ¥ W gin20 0y,

This system is a.¢. to 0. However, no continuous

d.a.f.s. exists. This follows from the arguments in

Sussmann [1979, Appendix]. In fact, those arguments
show that it is impossible in this example to even
choose continuously a path from states to the origin.
(The obstructions here are in the choice of directions,
while those in dimension one are only in the choice of
particular input values.)

4. Discontinuous Regulation

We mention here some results from SUSSMANN [1979]
and from SONTAG ([1980].

These results indicate how to regulate nonlinear
svstems using various tvpes of (not necessarily con-
tinuous) feedback. Since the technical details may
be found in the above references, we only explain
here the intuitive ideas of each approach.

In the case of SUSSMANN [1979] one proves that a
“piecewise analytic" c.f.s. always exists provided
that the original system (plant) be completely
controllable (any state can be driven to any other
state) and that the "f"

The complete controllability assumption can

in (%) be real-analytic

in x.
be weakened considerably into a local condition
around the origin, but the condition on f cannot

since the results use facts from the theory of sub-
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analytic sets.

In contrast, the approach in SONTAG [1980] applies
to the construction of sampled feedback stabilizers
under rather minimal conditions on f (continuity,
and differentiable with controllable linearization at
"Sampled' refers to the fact that

control is assumed to be based on a constant-rate

the origin).

sampling; in a sense sampled-feedback lies somewhere
in between "'true' feedback and open-loop control, but
is closer to the former than the latter due to the
constant sampling rate. (In any digital implementa-
tion of a feedback law, a sampled feedback is

necessarily used.)
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