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On the Length of Inputs Necessary in Order to
Identify a Deterministic Linear System

EDUARDO D. SONTAG

Abstract—The family of m-input, n-dimensional linear systems can be
globally identified with a generic input sequence of length 2mn. This
bound Is the best possible. A best bound is provided also for a correspond-
ing local identification problem.

1. INTRODUCTION

A resuit of the author, valid for a large class of discrete-time systems
({4}; see also 5] for the continuous-time analog) states that, given a
parameterized family of systems, a generic long-enough input sequence
1s sufficient for [ /O behavior identification, the length depending on the
general form of the family. Although fairly constructive, this general
result does not give useful bounds for the lengths of the needed
sequences. For linear systems, we give such bounds in this note. The
techniques used here are completely different from those used 1n order to
prove the abstract result.

The results presented below give the smallest lengths needed for
identification experiments. These results complement those presented by
other authors—see, for example, [1]-[3]—who construct minimal reali-
zations once the corresponding experiment has been performed.

Il.  DEFINITIONS

An (n, m, p)-system S (over the real numbers) is an n-dimensional,
m-input, p-output, discrete-time, constant linear system; S is uniquely
determined by a triple (F. G. H) of matrices (Fisnbyn, Gisnbym, H
is p by n). The input sequence w=u, - -u, (4, in R™) identifies (n, m,
p)-systems iff the following property holds for any two such systems S,

1) If §, and S, give the same zero-state output sequence y,,--- .y,
when w is applied, then 5, and S, have the same zero-state 1/0
behavior.

When 1) i1s valid for any two canonical (=reachable and observable)
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(n. m. p)-systems, w identifies canomical (n, m, p)-systems. The number
a(n, m, p) [respectively, c(n, m, p)] will denote the smallest integer r for
which there 1s a sequence of length » which identifies (n, m, p)-systems
(respectively. canomical (n, m, p)-systems). The number a’'(n, m, p)
[respectively, ¢'(n, m. p)] will be the smallest integer r such that a generic
input sequence w of length r satisfies 1) for all (m, n, p)-systems S;, S,
(respectivelv, canonical such systems). (In other words, such that there is
an open dense set D in (R™) with the property that 1)1s valid using any
win D)

The above refer 1o global identification problems in the sense that a
single (“‘universal”) input sequence is to identify all (canonical) systems
of a given dimension. A more “local” type of question deals with the
following situation. Given a class as above of systems to be identified,
find open dense sets of systems 7,, and an mput sequence w; for each
such set, such that w, distinguishes between the systems in the corre-
sponding T,. The latter deals with those situations in which the a priori
information used for identification 1s not just of a discrete nature
(bounds on dimensions of realizations), but also includes knowing that
the system (or 1,0 map) in question belongs to a given generic set. Thus,
almost all systems -—except those in a “thin” set- -will be identifiable by
the action of the input sequence w,.

An example of such a local question 1s posed below. The class of those
m-input, p-output linear time-invariant 1/0 maps f=(f,.---.f)" for
which f has minimal realizaton of dimension n, 15 denoted by
Cin- - .n,. my—this class 1s naturally viewed as a topological space:
for concreteness. it will be seen as a subspace of the set of sequences of
Markov matrices (A4, - -, A,,), n=maximum of the n,. Each 1/0 map
gives rise to such a unique sequence, and conversely, 1t follows from
elementary realization theory that each sequence of this length gives rise
to at most one map in C(n, - .n,; m). The topology considered will
then be the natural one inherited from the space of all matnix sequences,
ie. RI™¥. For each set ny oo, blny,- oo on,0om) will denote the
smallest integer r such that the following property 1s true.

2) There is a family (7. w,). each T, open dense mn Clny.---.n,
and each w, of length r, such that: a) the 7, cover C(n,. -+ .n,: m). and
by for each (7. w) and each S,. S, in 7. 1) holds.

Lom),

HI. REsuLTS

Before stating the results, we consider the following problem for fixed
n. m. To find those r and those inputs sequences w of length r such that
if §1s an (n, m. 1)-system giving zero output when w 1s applied, then §
has zero 1/0O behavior. The /0 behavior of such a system 1s uniquely
determined by a transfer matnx W=(P /Q.--- . P,/ Q) where Q 1s a
monic polynomial of degree n and P,.--- . P,, are polynomals of degree
1. (If S is not canonical, there may, of course, be more than
one such representation of degree n.) The zero-output condition estab-
lishes a set of r inear equations X, ,(w)x =0 n the nm coefficients of the
P. When r is less than nm, there are then nonzero solutions in the P,
Choosing Q arbitrary, we conclude that if r 1s less than nm, there is, for
any given w, some S with nonzero transfer matnix. but giving zero output
for w. Moreover, S can be taken to be canonical and with Q a product of
lineur factors. Indeed, given any solution P,- - P_ of the above equa-
tons, 1t 1s enough to take for W the transfer matrix obtained by dividing

by a @ which has all roots real and different from the roots of the P,

at most n -

Theorem [ a(n, m, py=u'(n, m, py=c(n, m,p)=c'in, m, p)=2nm.

Theorem 2: b{n,- - .n . m)={m+max{n, - .n,}.

To prove Theorem 1, we note first that the quanuties are independent
of p. so that 1t 1s enough to prove the case p=1; indeed, each system
with p outputs gives rise to p single-output systems, and conversely, a
single-output system gives rise o a p-output system by simply repeating
the same output p times, so that dealing with a p-output problem
becomes equivalent to treating p simultaneous identification scalar prob-
lems. Further, 1t is clearly sufficient to show now that: 1) a’'(n, m,
1y< 2nm. and 2) 2nm <c(n. m, 1). If 2) is false, there is a sequence w of
length r less than 2nm identifying canonical (n, m, 1)-systems; thus, for
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every two such systems S,, S, their difference S:=S5,~ S, (parallel
connection, subtracting outputs) ts a (2n, m, 1)-system for which outputs
being zero for w implies zero 1/0 behavior. This gives a contradiction:
by the remarks in the previous paragraph, there 1s some § canonical such
that the latter property is not satisfied, and if Q is a product of linear
factors, this § can be written as S, — 8§, for some canonical (n, m,
1)-systems S; (partial fractions expansion). To show 1), and in fact to
obtain an explicit description of the set of identfying inputs, it is enough
to note that dey(K,,,, ;,(»)) 1s not identically zero (this is easily seen
using w=e¢,0e,0 - - - ¢, f, r=2n—1, e = ith canonical vector in R™).

To prove Theorem 2, we note first that b(n: m)<b(n,,--- .0 m) for
n=max{ny,---.n,} by an argument as above. Further, n{m+1) < h(n:
m): up to isomorphism ( =change of basis in the state space), canonical
(n, m, 1)-systems admit a global parametenization (given by the observa-
bility canonical form) with exactly n(m+1) parameters, and an input
sequence of length r maps these parameters polynomially into a
sequence of r output values; this map being one-to-one In an open set
forces the inequality. Consider now the set T of those observable (n, m,
1)-systems (F, G, H) for which (F. g) 1s reachable, where g = first column
of G. The input sequence w=e¢,0>" "'e,0" "' - ¢ 0"~ ! idenufies systems
in T up to isomorphism. (Briefly, using the observable canonical form,
the first 2n outputs permit determining F. g, and the other (m- l)n
outputs give the remaining columns of G.) Consider now the general case
p=1. Let § be a canonical system: observability then forces F to be
cyclic. Thus (see [8, p. 42]). there is some uw in R™ such that (F. Gu) 1s
reachable; in fact, almost every u sausfies this property. Given such a u.
a change of coordinates in R™ reduces this to the previous case (F.
g)=reachable. Thus, the theorem holds for p=1 where the (7. w) in 2)
of Section Il are constructed as above (in terms of canonical realizations,
T,:=all those (F, G. H) for which (F. Gu) is reachable for each u). The
case of arbitrary p now follows easily: given f=(f,.---.f,). there 1s a
common u as above such that all f are reachable with respect to w. and
the corresponding w (with 2 the maximum of the n,) 1dentfies every f
simultaneously.

IV. REMARKS

The first of the above proofs rests upon an understanding of the rather
interesting mapping of pairs of systems (8,. ;) into their difference
S, — §,. In terms of vaneties of systems, this map is dominaung in the
sense of algebraic geometry. although it 1s a map between varieties of the
same dimension 2n{m+p) and the fiber over the zero system has
dimension n(m+ p).

It should be noted that the set of pairs (8. w) such that the mput
sequence w uniquely determines $ among systems of the given dimen-
sion, 1.e., such that the corresponding 1/0 pair (w, v} 15 1Wdentifiable in
the sense of [1], [3), etc.. is generic in the set of pairs [(n, m, p)-system,
sequence of length r) precaisely when r is at least ntm+ ). Thus, in a
rather precise sense it is true that almost any sequence of length at least
n{m+ 1) identifies almost all systems. It 1s rather surprising, however,
that c(n, m, 1) is greater than n(m+ 1) in view of the fact that canonical
(n, m,1)-systems admit a global canonical form with n(m+ 1) parame-
ters. This shows that the difficulties that one encounters here do not he
merely in the nonexistence of canonical forms.
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