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1. INTRODUCTION

We consider systems of the form

(1.1) (dx/dt)(t) = f(x(t),u(t)).

States x(t) evolve in an analytic (paracompact) n-dimensional manifold M. Control values u(t) belong to a

subset U of an analytic manifold P, such that int(U) is connected and U ⊆ clos(int(U)) --for instance, U = a

m mconvex subset of R and P is R or any open set containing U. Further, we assume that f: M×P → TM is

analytic (this can be weakened for many of the results) and that (1.1) is complete, in the sense that

solutions are defined for all t, for any x(0) and any piecewise constant u(.)  with values in P (again, this

assumption could be dropped for many of the arguments below).

Recall that (1.1) is said to satify the accessibility [resp., strong accessibility] property from x [4] iff the

(positive time) reachable set A(x) [resp., the set A (x) of states reachable from x in time exactly t, for somet

t>0] has a nonempty interior.  Consider the orbit O(x) of a state x under the group G generated by the

actions of piecewise constant controls, i.e., under the group of transformations generated by the

diffeomorphisms

(1.2) exp(tf(.,u)), u  in  U.

It is well known that (1.1) satisfies the accessibility property from x iff O(x) is a ngbd of x, or equivalently,

iff dimL(x) = n, where L is the Lie algebra generated by all the vector fields of the form f(.,u).  Similarly,

strong accessibility from x is equivalent both to (a) dimO (x) = n and to (b) dimL (x) = n, where O (x) iso o o

the "zero time orbit" of x --z is zero time reachable from x iff

(1.3) z = [exp(t f(.,u )) ... exp(t f(.,u ))](x),1 1 o o r r

with t +...+t = 0,-- and where L is the ideal of L generated by all the vector fields of the form f(.,u) - f(.,v)1 r o

for u and v in U.

Fix now a ("sampling period") λ>0, and let A(x,λ) be the set of states of (1.1) reachable from x using

controls which are constant on intervals of the form [kλ,(k+1)λ). In analogy to the continuous time case

(which can be thought of as the case λ=0,) we ask: When does there exist a positive λ such that A(x,λ)

has an open interior?  This property may be called "sampled accessibility from x".  It turns out that this

question is equivalent to the following.  Let O(x,λ) be the orbit of x under the group G generated by allλ

the diffeomorphisms exp(λf(.,u)), for u in U. Then (1.1) will be sampled accessible from x iff O(x,λ) is a
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ngbd of x, for some λ>0.

Denote also

(1.4) φ(x,u ...u ;α ...α ):=1 r 1 r

[exp(α λf(.,u )) ... exp(α λf(.,u ))] (x),r r o o 1 1

where each α is either +1 or -1.  (Note: u ...u denotes the concatenation of the corresponding controls.)i 1 r

For simplicity, we shall often drop the α , and "some u " will implicitely mean "some u and some α ". Wei i i i

shall add the subscript λ when λ is to be emphasized.  Consider the number

(1.5) sup{rank d φ(x,u ...u ;α ...α )},w 1 r 1 r

the sup taken over all r>=1 and all possible α = α ,...,α , and all u ,...,u , and where d indicates the1 r 1 r w

differential of the function φ(x,.;α) with respect to the variables w = u ...u . It follows from the theorem in1 r

the Appendix (see also [1]) that O(x,λ) is an (immersed) submanifold of M, of dimension equal to (1.5).

Furthermore, if y is any given state in the orbit O(x,λ), then the sup is achieved among those w such that

φ(x,w) = y.  In connection with the results in [3], we point out in the Appendix that the connected

component of O(x,λ) which contains x is equal to the orbit of x under the normal subgroup of Gλ

generated by all the transformations of the form

(1.6) φ(.,u,v;α,-α).

The main problem we address is, then, that of characterizing those systems (1.1) for which the sup in

(1.5) is equal to n for some positive λ. The characterization turns out to be surprisingly simple:  If and

only if dimL (x) = n.  (For smooth but nonanalytic systems, the same proof shows sufficiency of thiso

condition.) We give a proof in section 2, showing also that if the rank condition holds then there is a ngbd

of x which is contained in O(x,λ) for all λ sufficiently small.  This generalizes a classical result for linear

systems ([2]).  Section 3 includes a global study of the one-dimensional case.  It is shown there, in

particular, that in general the "bad" frequencies --at which global accessibility is lost,-- constitute a

discrete set, but that this set may be rather pathological.  An Appendix sketches an "orbit theorem" which

applies to both continuous and sampled systems.
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2. A CHARACTERIZATION

Consider a given system as in (1.1), and associate to it, for a fixed λ>0, the "sampled" discrete time

system

(2.1) x(t+1) = f (x(t),u(t)), t=0,1,...λ

where f (x,v):= φ(x,v;1). Note that (2.1) defines an "invertible" system ([1]), in the sense that each f (.,v) isλ λ

a diffeomorphism (with inverse f (.,v;-1)). We shall say that a pair (x,λ) is normal iff O(x,λ) is open (i.e.,λ

has dimension n); this has an obvious interpretation in terms of "weak controllability" from x for (2.1).  We

shall use the notation N for the set of normal pairs (x,λ), and N(x), N(λ) for the sets of those λ and x

respectively such that (x,λ) is in N. Since normality is characterized by the possibility of achieving full

rank in (1.5), it follows that the complement of N is an analytic subset of M×R . Thus N is open, and+

analogous conclusions hold for each N(x) and N(λ).

Assume now that (x,λ) is normal.  Thus the rank in (1.5) is n for suitable r, α , u . As a function of the u ,i i i

then, the image of (1.4) contains an open subset V of M. In terms of (1.1), then, A (x) contains V, where tt

= λ(σα ). Thus (1.1) is strongly accessible, and dimL (x) = n.  This suggests the following result:i o

(2.2) THEOREM.  The following statements are equivalent, for any given state x:

(a) dimL (x) = n;o

(b) N(x) is nonempty;

(c) A(x,λ) has a nonempty interior for some λ>0;

(d) there exist an open set V and a Λ>0 such that V ⊆ A(x,λ) for each 0<λ<=Λ --in particular, (0,Λ] ⊆

N(x).

PROOF. The previous discussion shows that (b) implies (a).  Since O(x,λ) is a submanifold and A(x,λ)

is included in it, it follows that (c) implies (b).  It only remains to establish that (a) implies (d).

Let dimL (x) = n, so (1.1) is strongly accessible from x.  From the results in [4] --or as a corollary to theo

theorem in the Appendix,-- it follows that there exist a state y, positive numbers τ , ..., τ , T, and a1 r

sequence of control values u ...u (in int(U), if desired,) such that1 r

(2.3) F: R (T) → Mr
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has full rank differential at τ = (τ ,...,τ ), where R (T) = {(t ,...,t ) | σt = T}, and where1 r r 1 r i

(2.4) F(t ,...,t ):=1 r

[exp(t f(.,u )) ... exp(t f(.,u ))] (x)r r o o 1 1

and F(τ) = y.  Thus there are ngbds W and B of τ and y respectively such that F(W) = B. Furthermore,

there is a smooth map G: B → W such that F G = identity and G(y) = τ. We shall prove that there are ao

ngbd V ⊆ B of y and a Λ>0 such that V ⊆ A(x,λ) for all 0<λ<=Λ. Without loss of generality, take B to be

n(diffeomorphic to) a (closed) ball in R , centered at y and included in the interior of another such ball B’.

Pick a λ >0 which is less than all the τ ; we may then assume that all t in W satisfy λ < t for all i.o i o i

We shall now construct a family of continuous maps

(2.5) H : B → B, 0<λ<λλ o

such that (i) H converges uniformly to the identity as λ → 0, and (ii) H (B)∩int(B) ⊆ A(x,λ) for all λ. Itλ λ

follows from (i) by a standard homotopy argument that there is an open ngbd V of y in B and a Λ>0 such

that the image of H includes V for all λ less than Λ, proving the theorem.λ

For each i=1,...,r-1, let γ : [0,1] → P be a path connecting u and u . Pick any t in W and any λ<λ . Leti i+1 i o

(2.6) k =k [t,λ]:= max{k | λk <= t ’},i i i

for i=1,...,r, where t ’:= t +...+t for t in W. Denote k :=-1. Consider now the control v=v[t,λ] which is equali 1 i o

to

(2.7) u on [λ(k +1),λk )i i-1 i

for i=1,...,r, and

(2.8) γ ((t ’/λ)-k ) on [λk ,λ(k +1)),i i i i i

for i=1,...,r-1.  The control v is defined on [0,λk ]. Let v[t,0] be the control which assumes values u on ther i

intervals [t ’,t ’) and u on [0,t ).i-1 i 1 1

Note the following facts: (a) the measure of the set where v[t,λ] differs from v[t,0], or is undefined, is less

than rλ, and can therefore be made small uniformly on t, and further, the values of v[t,λ] all belong to a

fixed compact (union of the images of the γ ), and (b) continuity of the γ implies that v[t,λ] dependsi i

continuously on t, for fixed λ, provided that control functions are given a topology of uniform convergence

(for any metric for P).  Note that it is essential for (b) that the v[t,λ] have all the same length, for any fixed

rλ (true because all the t are in R (T)). Let p[t,λ] be the state reached in (1.1) using control v[t,λ].
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It follows from (a) that p[t,λ] converges uniformly to p[t,0] = F(t) as λ → 0. Since F(W) = B, we may

assume (taking a smaller λ if necessary) that all the p[t,λ] map into B’.  From (b) we conclude that p[t,λ]o

is continuous on t.  Let q: B’ → B be a retraction mapping B’-B into the boundary of B. The desired maps

H are then given byλ

(2.9) H := q(p[G(.),λ]).λ

This completes the proof. */

Since N is open, it also follows that, for any x for which dimL (x) = n, there are a Λ>0 and a ngbd V of xo

such that (z,λ) is normal for each 0<λ<=Λ and z in V. Thus (pick V connected) there are V and Λ such

that V ⊆ O(x,λ) for all such λ. We conclude that, for every connected compact K such that dimL (x) = no

for all x in K, there is a Λ>0 such that K ⊆ O(x,λ) for all x in K and 0<λ<=Λ (weak controllability on K).
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3. THE ONE-DIMENSIONAL CASE

For this section, M = R. Although elementary, this case provides some feeling for the kinds of

pathologies that may occur.  We let B:= complement of N in M×R .+

Call a point z in M invariant if f(z,u) = 0 for all u (i.e., L(z) = {0}).  In that case, both {x<z} and {x>z} are

invariant under the dynamics (1.1), so each of them gives rise to a new system (1.1) with state space

again (diffeomorphic to) R. Thus B is the union of the corresponding sets B’, B" obtained from each of

these, and of the set {(z,λ), λ>0}. We shall assume from now on, therefore, that (1.1) has no invariant

points. Call B trivial if B is empty or it equals M×R , and consider the λ-projection+

(3.1) C = {λ | (x,λ)∈B, some  x}.

These are the sampling periods for which (1.1) is not globally weakly controllable.  We shall prove:

(3.2) THEOREM.  (M=R and no invariant points.)  If B is nontrivial, then C is a discrete subset of R.

In particular, the system is globally weakly controllable for all small enough sampling times (if nontrivial).

Theorem (3.2) will follow from a more detailed study of the following sets.  For any two (complete) vector

fields X, Y, write

(3.3) B(X,Y):= {(x,λ) | exp(kλX)(x)=exp(kλY)(x), all integers  k}.

Take two vector fields of the form X = f(.,u) and Y = f(.,u’), u,u’ in U. Assume that (x,λ) is not in B(X,Y), so

k kthat φ (x,w;α) =/= φ (x,w’,α) for some k>0, where w=u , w’=(u’) , and α = sequence of k 1’s or k (-1)’s.d d

Since U is connected, the image of φ(x,.,α) contains a nontrivial interval.  Thus dimO(x,λ) = 1, and x is not

in B. Conversely, assume that (x,λ) belongs to all the B(X,Y) of the above form.  Then O(x,λ) is included

in the discrete set {exp(kλX)(x), k=integer}, for any fixed X, and so (x,λ) is in B. We conclude that

(3.4) B = ∩{B(X,Y), X=f(.,u),Y=f(.,v), u,v  in  U}.

It follows that it is sufficient to prove (3.2) for the sets of type B(X,Y).

(3.5) LEMMA.  Assume that B is nontrivial.  Then, for any X,Y as above, X(x)Y(x)>0 for all x.

PROOF. An x such that f(x,u)=0 for some u is an equilibrium point. Let x be any such point.  Since x is

invariant, f(x,v)=/=0 for some v in U. It follows that exp(λf(.,u))(x) = x =/= exp(λf(.,v)(x) for all λ>0, so (x,λ)

is not in B, for any λ>0. We claim that there are no equilibrium points.  Indeed, assume that f(x,u) = 0 for
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some (x,u), and replace U by a compact set which contains this u and is included in the closure of the

original U. Pick any non-eq.pt. y<x in M, and let Z:= inf{z>y | z eq.pt.}.  By compactness of U, z is itself an

eq.pt., so z=/=y.  Pick v,v’ such that f(z,v)=0 and f(z,v’)=/=0.  By definition of z, f(a,v)=/=0 and f(a,v’)=/=0

for all a in the interval [y,z).  Compare the trajectories exp(tf(.,v))(y) and exp(tf(.,v’))(y). Assume first that

f(y,v)>0. Then the v-trajectory converges to z, as t → ∞, while the v’-trajectory does not.  Same

conclusion for f(y,v)<0 if one takes the limit as t → -∞ instead. It follows that, for every λ>0, (y,λ) is not in

B(X,Y), for X=f(.,v) and Y=f(.,v’), and hence also for some v,v’ in the original U. A similar argument holds if

y>x. So the existence of an eq.pt. implies that B is empty, contradicting nontriviality.  So f(x,u)=/=0 for

each x and all u, and so (recall U is connected) the f(x,.)  indeed have constant sign.

We are thus led to the study of the sets B(X,Y) with, say, X(x)>0 and Y(x)>0 for all x.  Call such vector

fields "positive".  Conversely, any such pair {X,Y} gives rise to a system (1.1) with B = B(X,Y); this is a

consequence of the following characterization, which is easy to obtain but very useful:

(3.6) LEMMA.  Let X,Y be positive (analytic, complete) vector fields.  There is then an analytic function g:

R → R, with derivative (dg/dt)(t)>-1 for all t and such that, for some diffeomorphism b(.),

(3.7) g(t+kλ)=g(t) for all integers  k  iff  (b(t),λ)∈B(X,Y),

for any t in R and any λ>0. Further, g is constant iff X=Y.  Conversely, given any analytic g with derivative

bounded below, and any (strictly increasing) diffeomorphism b, there exists a system, and in particular

there are positive X,Y, such that B = B(X,Y) and (3.7) holds.

-1PROOF. Let a(t):= exp(tX)(0), b(t):= exp(tY)(0), both analytic and strictly increasing.  Let c:= a , d(t):=

c(b(t)). Define

(3.8) g(t):= d(t)-t.

-1Since c(.)  and d(.)  are increasing, g has derivative > -1.  Let x be any state, and t := b (x). Note thato

exp(tX)(x) = a(c(x)+t), exp(tY)(x) = b(t +t). So these two trajectories are equal at t iff g(t +t) = g(t ).o o o

Further, since g(0)=0, g is constant iff g=0, which happens iff a(t) = b(t) for all t.  This proves the first part

of the lemma.  Conversely, assume given g and a diffeomorphism b.  Multiplying g by a constant, we may

assume that (dg/dt)(t) > -1/2 for all t.  Let U = [0,1], and introduce for each u the function d (t) = ug(t)+t;u

-1note that the derivative of d is >1/2, for all u.  Thus a (t):= b(d (t)) is well defined (and analytic).  We mayu u u

-1then introduce f(x,u):= (da /dt)(a (x)). Let X:= f(x,0), X := f(x,u) for u>0, and Y=f(x,1).  Reversing theu u u
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previous argument shows that, for any u>0, exp(tX )(b(x)) = exp(tX)(b(x)) iff g(x+t) = g(x) (independent ofu

u). For this system, then, B(X,X ) = B(X,Y) for all u>0.  Thus B = B(X,Y), and (3.7) holds.u

Fix now a function g satisfying the properties in (3.6).  We shall denote by B(g) the set of pairs (t,λ) with

λ>0 such that g(t+kλ) = g(t) for all integers k.  Also, let C(g) be the projection of B(g) in the λ-coordinate.

(3.9) LEMMA.  Let (t,λ), (t’,λ’) be in B(g). Then,

(3.10) |g(t)-g(t’)| <= |hλ+kλ’|

for any integers h,k such that hλ+kλ’ =/= 0.

PROOF. Consider any such h,k, and let r:= |hλ+kλ’|. For suitable integers a,b, r = bλ’-aλ. Without loss

of generality, take m:= g(t)-g(t’) to be positive.  Assume that r<m; there is then some integer s such that

t’-t-m < -sr < t’-t.  Let c:=as, d:=bs.  We then have

(3.11) 0 < (t’+dλ’)-(t+cλ) < m,

and (by hypothesis)

(3.12) g(t+cλ)-g(t’+dλ’) = g(t)-g(t’) = m.

By the mean value theorem, this contradicts dg/dt>-1.

(3.13) COROLLARY.  If λ and λ’ are rationally independent, and if (t,λ), (t’,λ’) are in B(g), then g(t) = g(t’).

(3.14) COROLLARY. Assume that C(g) has a limit point in R. Pick (t’,λ’) and (t",λ") in B(g). Then g(t’) =

g(t").

PROOF. We shall use the following observation twice:  Assume that {a } is a converging sequence ofi

distinct real numbers, and let f be any nonzero real number.  There are then (i) a subsequence {a } of {a },j i

and (ii) sequences {b }, {c } of integers, such that the numbers e := b a + c f are all nonzero and {e }j j j j j j j

converges to zero.  [Proof: assume that a → a. Let b , c be integers such that b =/=0 and |b a+c f| < 1/i (ifi i i i i i

a=0 use just c =0, otherwise consider the group generated by a and f).  Now pick any a , j=j , such that thei j i

inequality is still satisfied and e =/=0.] Assume that {(t ,λ )} ⊆ B(g), with all λ distinct and converging to λj n n n

(which may be zero).  Applying the above observation with f:= λ’, we conclude --for a subsequence of the

(t ,λ )-- that the b λ +c λ’ are are all nonzero and converge to 0.  By lemma (3.9), |g(t )-g(t’)| alson n i i i i

converges to 0.  Taking in turn a subsequence of the {λ }, and f:= λ", we can also conclude that |g(t )-g(t")|i i
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converges to zero.  so g(t’)=g(t"), as desired.

(3.15) PROPOSITION.  If g is nonconstant then C(g) is discrete as a subset of R.

PROOF. Assume that there are infinitely many distinct λ <= K, with (t ,λ ) in B(g). By (3.14), there is ai i i

constant c such that g(t +kλ ) = c for all i and all integers k.  Let t ’ = t mod(λ ) such that t ’∈[0,K]. Thusi i i i i i

g(t ’) = c and {t ’} is bounded.  Since g is nonconstant and analytic, there are only finitely many t ’. Buti i i

then there are infinitely many t ":= t ’+λ --since there are infinitely many λ -- and these are also bounded,i i i i

with g(t ")=c. This again contradicts nonconstancy of g.i

Theorem (3.2) now follows from (3.15) and (3.6).  Actually, we can prove somewhat more.  Since B is

analytic, each subset with constant λ also is, so B is the union of a discrete set and a union of lines L :=i

{(x,λ ), x in M}. So g is periodic with period λ , for all i.  Since periods form a subgroup, g nonconstanti i

implies that the λ are integer multiples of some fixed λ>0. So the nondiscrete part of B is of the formi

(3.16) {(x,kλ), x  in  M, k = integer}.

The set C(g) may be rather complicated.  Consider the following example. Take a sequence of

numbers {a } such thatn

-1(3.17) σ (a ) < 1/π, andn

-n(3.18) cos(πx/a ) > 1-2 if x∈[-n,n].n

Now let g (x):= cos(πx/a ) and g:= (infinite) product of the g . This product is well defined because theren n n

is by (3.18) normal convergence on compacts, and g is indeed analytic.  Further, consider its derivative

(3.19) g’ = σ (g/g ).g ’.n n

Since |g/g |<1 and |g ’|<π/a , also |g’|<1.  The zeroes of g are those of its factors, i.e., the union of then n n

sets

(3.20) {(t +ka ), k = integer},n n

where t := a /2. So all a are in C(g). If (t,λ) is in B(g) and λ is not rationally dependent with some a ,n n n n

then (3.13) says that g(t) = 0, so λ= some a , a contradiction.  Thus C(g) contains all the a and no othern n

rationally independent numbers. For constructing sequences {a } as above, consider the followingn

-nargument: Let {b } be such that cos(πx/a) > 1-2 whenever x is in [-n,n] and a>b (just let b be such thatn n n

-ncos(πn/b ) > 1-2 ). Now pick any sequence {a } satisfying (3.17) and such that a >b for all n.  Note that,n n n n
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in particular, one could choose the a to be rationally independent.n
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APPENDIX

We provide here a (fairly straightforward) generalization of the theorem, given in [5] for continuous time

systems (see also [1] for a discrete time version) establishing that orbits (weak reachability sets) are

submanifolds in a natural way.  The following objects are assumed given ("smooth" = infinitely

differentiable or analytic, in all that follows):

(A.1) a smooth manifold  M,

(A.2) a set  A,

(A.3) an idempotent map  -: A → A, and

(A.4) for each a in A, (i) a manifold U , such that U = U , (ii) an open subset D of M×U , and (iii) aa a -a a a

smooth g : D → M, such that:a a

(A.5) (g (x,u),u) is in  D if (x,u) is in  D , anda -a a

(A.6) g (g (x,u),u) = x  for all such  (x,u).-a a

The following examples motivate the above: (a) Continuous time (not necessarily complete) systems;

here A is U×{1,-1} (U = control value set in (1.1)), "-" sends (u,α) to (u,-α), U = R , and g (x,t) =a + (u,α)

exp(αtf(.,u))(x), with D = domain of g . (b) Invertible discrete time systems: x(t+1) = f(x(t),u(t)), u(t) in aa a

manifold, f(.,u) invertible for each u; here A = {1,-1}, with obvious "-", all U = control value manifold, anda

-1g (x,u):= f(x,u) for a=1 and =[f (.,u)](x) for a=-1.  (c) Zero-time control for continuous time systems; herea

A is the set of all those sequences (a ,...,a ) of elements of the A in (a) such that σα = 0, with -(a ,...,a ) :=1 r i 1 r

(-a ,...,-a ), and the obvious choices in (A.4).  (d) An analogous zero-time discrete example.r 1

Let B be the free semigroup on A. If b = (a ,...,a ), -b is by definition the sequence (-a ,...,-a ); U is the1 r r 1 b

product of the corresponding U , a=a , and g : M×U → M is the induced (partial) action.  For the emptya i b b

word #, U has one element and g is the identity.  When b is clear from the context, we omit the# #

corresponding subscript. We shall use a concatenation notation to exhibit sequences in U . The sets Db b

are defined inductively as follows:

(A.7) (x,uw)∈D iff (x,u)∈D and (g (x,u),w)∈D ,ab a a b

~for u in U and w in U . These open sets are the domains of the maps g . For w = u ...u in U , let w:=a b b 1 r b

~u ...u (in U ). Then (g (x,w),w) is in D whenever (x,w) is in D , andr 1 -b b -b b

~(A.8) g (g (x,w),w) = x.-b b
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The main object of study is

(A.9) O(x) := {z | g (x,w) = z, some  b,w}.b

We introduce the following notations for differentials.  Let b be in B, w in U , b = (b’,c,b") any factorization,b

and w = w’vw" a corresponding factorization for w.  Then d g (x,w) is by definition the differential ofc b

g (x,w’(.)w") with respect to the variables in U , evaluated at the point v.  When c=b, we often omit theb c

subscript and write just dg (x,w) or even dg(x,w).  Differentials with respect to x will be written d . Theb x

main result is:

(A.10) THEOREM. Let x be in M. Then O(x) has a unique structure of smooth (immersed) submanifold of

M such that (i) the (restricted) maps g : (O(x)×U )∩D → O(x) are all smooth for b in B, and (ii) for any yb b b

in O(x), the dimension of O(x) is equal to

(A.11) r(x,y) = sup {rank dg (x,w)},b

where the sup is taken over all b and w such that (x,w) is in D and g (x,w) = y.b b

(A.12) REMARK.  For the systems considered in part 2, the control set was not required to be a manifold,

but the above theorem can still be applied to conclude that the orbits (denoted as O(x,λ) there) are

submanifolds. Indeed, note first that P may be assumed to be connected (because U is), and let O’(x,λ)

[resp., O"(x,λ)] be the orbit obtained when P [resp., int(U)] is used as the control value set.  The above

theorem gives that both of these orbits are submanifolds.  Say that O’(x,λ) has dimension k. Pick any z in

O’(x,λ). Since O’(x,λ) = O’(z,λ), there is a control sequence over P such that the rank in (A.11) --i.e., that

in (1.5),-- is k, for some dg (z,w). By analyticity --and P being connected,-- there is also a control v withb

values in int(U) giving rank dg (z,v) = k.  So O"(z,λ) contains a ngbd (relative to O’(z,λ)) of z, say V (thisb

uses part (i) of A.10).  Now assume that z is in also in O(x,λ). since U ⊆ clos(int(U)), z is also in the

closure of O"(x,λ) with respect to O’(z,λ). Pick a V as above; then V intersects O"(x,λ), and it follows that

z is in the latter.  In fact, the construction given below results in the same submanifold structures for both

O’(x,λ) and O"(x,λ). We conclude that O(x,λ) = O"(x,λ), so the former can be given the submanifold

structure of O"(x,λ).

(A.13) REMARK.  We prove now the statement in section 2 concerning the connected component C (x)λ

of O(x,λ) which contains x.  Consider first the following more general situation, for any setup as in

(A.1)-(A.6) for which the U are all equal, say to U, are connected, and all maps are total (D = M×U). Leta a
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A’ be the set of all pairs c = (b,-b), for b in B, and define manifolds V as follows.  Let b = da, with a inc

2 ~A. Then V := U ×U . For b=#, V has a single point.  Now let g (x,wuv):= g (x,wuvw), all total maps.c d # c (b,-b)

A new "system" is obtained, which satisfies the assumptions (A.1)-(A.6); let O’(x) be the corresponding

orbit of x.  Note that O’(x) is connected, because the images of the maps g , c in A’, are all connected andc

they all contain g (x,wuu) = x, and the same holds for iterates of the g . So O’(x) is included in thec c

connected component C(x) of O(x) at x.  Further, both manifolds have the same dimension.  Indeed, pick

a b,w such that g (x,w) = x and dg (x,w) has full rank.  Thus the tangent space to O(x) at x is generatedb b

by the image of dg (x,w), i.e., by the images of the differentials d g (x,w), for all factorizations b = (e’,a,e)b a b

and corresponding factorizations w = v’uv, with a in A. For any such factorization, write c:= (-e,-a,a,e)

~--this belongs to A’-- and consider w’:= v uuv. Then, d g (x,w’) is equal to d g(x,w). But the image of thea c a

former is in the tangent space of O’(x) at x, so O(x) and O’(x) have the same dimension.  We may repeat

the argument at each z in C(x), concluding that O’(z) is a ngbd of z in C(z) = C(x).  A connectivity

argument gives then that indeed O’(x) = C(x), as wanted --the normal subgroup generated by the

transformations in (1.6) gives the transformations indexed by A’.

In order to prove the theorem, we shall need some more notation. For b in B, m (or just m) will be theb

map g (x,.), with domain L := {w | (x,w)∈D }. We also make the convention that a statement like "g (x,w)b b b b

= y" will mean "(x,w) is in D and g(x,w) = y".b

Fix an x in M, and let O = O(x).  We establish first that r(x,y) = r(x,z) for any y,z in O. Pick b,c in B and

~w,w’ such that g (x,w) = y, g (x,w) = z, and rank[dg(x,w)] = r(x,y).  Introduce e:= (b,-b,c) and v:= www’.b c

~ ~Since g(x,ww) = x, it follows that g(x,v) = z.  So rank[dg(x,v)] <= r(x,z).  Let F:= g (.,ww’) --with domain(-b,c)

~the open set {x | (x,ww’) ∈ D }. Since d F(p) is a linear isomorphism for all p in the domain of F, it(-b,c) x

follows that r(x,y) = rank[dg(x,w)] = rank[d F(y) dg(x,w)] = rank[d g(x,v)] <= rank[dg(x,v)] <= r(x,z).  Ax o b

symmetric argument concludes the equality.  Let r be the common value of the r(x,y).

Consider now the set S of all triples s:= (b,Q,h), where b is in B and:

(A.14) Q is an r-dimensional embedded submanifold of  L ,b

(A.15) m |Q: Q → M is injective and has differential of constant rank  r,b

r(A.16) h: Q → R is a diffeomorphism with an open subset  h(Q).
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Fix one such s, and consider the set m(Q); this is a subset of O. The bijection m|Q induces a canonical

-1manifold structure on this set, for which both m|Q and φ:= h (m|Q) are diffeomorphisms (and such that φo

is a chart).  We now prove that, for this structure, (a) the inclusion i: m(Q) → M has injective differential at

every point, and (b) for any smooth structure C for O for which the theorem holds, the subset m(Q) is

open --relative to C,-- and the identity map provides a diffeomorphism between the two structures.

-1The inclusion i factors as m j (m|Q) , where j is the embedding of Q in L . Property (a) follows fromo o b

the corresponding properties for its factors (for m, the properties hold on Q, which is sufficient).  We now

prove (b).  Consider m as a map from L into O (with structure C); this map is smooth (property (i) inb

theorem: m is a restriction of g).  So m|Q is also smooth into (O,C).  Since the latter is a submanifold of M,

and rank[dm|Q] = r (constant) as a map into M, this rank is also r as a map into (O,C). But this

submanifold has dimension r, by part (ii) of the theorem.  Thus m(Q) is indeed open rel to C, and m|Q is a

diffeomorphism between (m(Q),C) and Q, so (b) follows.

We now prove that the family of all such charts (m|Q,φ) defines a smooth (r-dimensional) manifold

structure on O, and that property (i) holds.  It will then follow from (a) above that this structure makes O

into a submanifold of M, and the uniqueness statement follows from (b).

The sets m(Q) cover O: Pick any y in O and let b,w be such that g (x,w) = y and dm(w) = dg(x,w) hasb

rank r.  Thus dm has maximal rank at w, so there is an r-dimensional embedded submanifold Q of L ,b

containing w, such that (A.14), (A.15) are satisfied; replacing Q if necessary by an open subset of Q, a

suitable h can be found for (A.16).

Compatibility: Pick any two charts (m(Q),φ) and (m’(P),β) corresponding to (b,Q,h) and (c,P,k)

respectively. Let V:= m(Q)∩m’(P). We need to establish (a) that φ(V) is open in φ(m(Q)), and (b) that

-1β φ is smooth on V. Pick an arbitrary y in V; thus there are w,w’ in Q,P with y = m(w) = m’(w’). Let e:=o

~(b,-c,c) in B, and take v:= ww’w’. Note that rank[dm(v)] >= rank[d g(x,v)] = rank[dg(x,w’)] = r.  Sincec

dm(v) always has rank at most r, it has maximal rank at this v.  So there is an open subset Z of L whiche

contains v and such that m (Z) is an r-dimensional embedded submanifold of M. Introduce the open sete

~ ~W [resp., W’] consisting of those u in L [resp., L ] such that uw’w’ [resp., ww’u] is in Z. Then w is in Wb c

and w’ is in W’.  Let P’:= P∩W’, Q’:= Q∩W. Since Q is an embedded submanifold of L , and W is open inb
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L , also Q’ is open in Q, and similarly for P,P’.  Note that m|Q’ maps into m (Z), and is injective withb e

differential of constant rank r.  Thus m establishes a diffeomorphism between Q’ and an open subset C of

m (Z). Similarly for m’|P’ and an open D in m (Z). Note that C∩D ⊆ V. Also, w’,w are in P’, Q’e e

-1 -1respectively, so y is in C∩D. Since m|Q is injective, (m|Q) (C∩D) = (m|Q’) (C∩D), which is then open in

Q, because C∩D is open in C. So φ(C∩D) is open in h(Q) = φ(m(Q)). Thus φ(z) has a ngbd included in

φ(m(Q)), and (a) follows.  To prove (b), note that φ maps C∩D (embedded submanifold of m (Z))e

diffeomorphically onto φ(C∩D), which is open in h(Q) and contains φ(y). A similar statement holds for β.

-1So β φ gives a diffeomorphism between φ(C∩D) and β(C∩D), and (b) follows.o

Property (i) of the theorem: We first establish that the maps m are smooth.  Pick w in L , z = g(x,w).b b

~Since r(x,z) = r, there are a c and a w’ in L with g(x,w’) = z and dg(x,w’) = r.  Let e:= (b,-c,c) and v:= wwc

’w’. It will suffice to prove that m is smooth on some ngbd of v, because m is (in a suitable ngbd of w) ae b

~restriction of m . Note that r >= rank[m(v)] >= rank[d g(x,v)] = rank[dg(x,w’)] = r (this uses that m(ww’) =e c

x). So m achieves maximal rank at v. There is then a chart C of L , centered at v, and diffeomorphic to ae

s r rcube in R ×R , such that, if Q is the embedded submanifold corresponding to the factor R , then

rank[dm(v)] is constantly r on Q and m is injective on Q. Let h give the corresponding diffeomorphism ofe

rQ with R . Then (e,Q,h) gives rise to a chart (m(N),φ). So m |C is then the composition of the projectione

onto Q and of m|Q, and is therefore smooth.  To prove now that g is smooth as a map into O, pick anyc

(z,w) in D , z in O. Let (b,Q,h) give a chart around z.  For (g,v) in a ngbd of (z,w) in (O×U )∩D ,c c c

-1(A.17) g (y,v) = m ((m|Q) (y),v),c (b,c)

so g is indeed smooth.  This completes the proof of the theorem.c
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