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Abstract: This note studies the preservation of controllability (and other properties) under sampling

of a nonlinear system.  More detailed results are obtained in the cases of analytic systems and of

systems with finite dimensional Lie algebras.

1. Preliminaries. When a system is regulated by a digital computer, control decisions are often

restricted to be taken at fixed times 0,λ,2λ,...; one calls λ>0 the sampling time. For a (continuous

time) plant, the resulting situation can be modelled through the constraint that the inputs applied be

constant on intervals of length λ. It is thus of interest to characterize the various controllability

properties when the controls are so restricted. This problem motivated the results in [KHN], which

studied the case of linear systems; more recent references are [BL], [GH].  For nonlinear systems, it

appears that the problem has not been studied systematically. The recent paper [SS] began such a

study, using tools of geometric control theory.  We continue that study here.  Reasons of space

prevent us from repeating the material in [SS], which will be needed in a few places.  The definitions

and statements of results, however, will be self-contained.

The systems σ to be considered are those described by differential equations

(1.1) (dx/dt)(t) = f(x(t),u(t)), x(t)∈M, u(t)∈U,

where M is a smooth (Hausdorff, second countable) n-dimensional manifold, U is a subset (see

below) of a smooth manifold P, f:M×P→TM is smooth, and Xu:=f(⋅,u) is a complete vector field on M

for each u.  "Smooth" means either infinitely differentiable or analytic; in the latter case, σ is an

analytic system. The control set U can be very general; we shall only assume that V:= int(U) is

connected and that the following (local) condition is satisfied at each u∈U: there exists a smooth path

g:[0,1]→P with g(0)=u, g([0,1])⊆U, and g(t)∈V for almost all t.  ("Smooth" meaning: defined and

smooth in a ngbd of [0,1].)  In particular, then, U must be path connected and it must satisfy

U⊆clos(V); the former is the essential property for most results.
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We shall use the notations TpN or Np for the tangent space at p to the manifold N. For a smooth

map f:A×B→C, [dxf(x,y)](v) denotes the differential of f(⋅,y), evaluated at x and applied to v∈Ax. If f

depends only on x, we omit the subscript. Submanifold means throughout immersed second

countable submanifold.  For any (complete) vector field X, Xt:= exp(tX)(x) denotes the flow generated

by X.

We introduce now certain groups and semigroups of diffeomorphisms of M associated to the

system σ. Let S [resp., Sλ] be the semigroup generated by all the diffeomorphisms Xt
u, t >= 0, u∈U

[resp., Xλ
u, u∈U], and let G [resp., Gλ] be the group generated by these.  Consider also, for each t∈R

[resp., t >= 0] the set Gt [resp., St] consisting of all compositions Xu1

t1o...oXur

tr such that σti = t [resp.,

such that, further, all ti >= 0].  Similarly, for each k∈Z (=integers) [resp., k∈N (=nonnegative integers)]

the subset Gk
λ of Gkλ [resp., Sk

λ of Skλ] is obtained from the compositions Xu1

k1λo...oXur

krλ with each ki= +-

1 [resp., all =1] and σki = k.  Note that G0 [resp., G0
λ] is the normal subgroup of G [resp., Gλ]

generated by all the compositions Xt
uoXv

-t [resp., all Xλ
uoXv

-λ], and its cosets are the sets Gt [resp., Gk
λ].

The identity of G is e = identity map.  To emphasize the system, we may write S(σ), etc.

Compositions goh in G will be denoted simply as gh, and evaluations g(h), for x∈M, as g.x; these

notations will be extended to sets: H.N:= {h.n, h∈H, n∈N}. In particular, we shall be interested in the

following sets:  O(x):= G.x (often called the "weakly controllable set from x"), O0(x):= G0.x (the "zero

time orbit of x", A(x):= S.x (the "accessible" or "reachable" set from x), Oλ(x):= Gλ.x, O0
λ(x):= G0

λ.x,

Aλ(x):= Sλ.x, Ar
λ(x):= Sr

λ.x, Or
λ(x):= Gr

λ.x, At(x):= St.x, and Ot(x):= Gt.x. We use primes: Ar
λ’, etc., to

indicate the corresponding concept obtained when controls are restricted to V = int(U). It is well-

known (see for instance [SU1], [LO]) that O(x) and O0(x) are, in a natural way, connected

submanifolds of M, for each x.  It is possible to also give natural submanifold structures to Oλ(x) and

O0
λ(x). With these structures, O0

λ(x) becomes the connected component of Oλ(x) at x, and Oλ(x)

[resp., O0
λ(x)] is a submanifold of O(x) [resp., O0(x)]; see the appendix to [SS] for details (see also

[JA]). In fact, Oλ(x) = Oλ’(x), so that it is only necessary to define a submanifold structure for the

latter. This equality is proved as follows.  We must show that for each x∈M and each u∈U there is an

h in Gλ’ with Xλ
u(x) = h.x, and similarly for Xu

-λ. Let g be a path as in the first paragraph, and let D:=

g([0,1)), E:= D∩V. Since u∈D, it will be enough to prove that Oλ
E = Oλ

D, the orbits which result when

the control space is restricted to E or D respectively.  Now let Q be the manifold (-1,1)⊆R, and

consider the map α:Q→P, α(a):= g(a2). This is smooth and has image D. Consider the following two

systems: σQ has control space Q, state space M, and system map f(x,α(a)), and σ’Q with the same

equations but with control space Q’:= α-1(E) (open, hence seen as a submanifold of Q). It will be
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then enough to prove the equality of Oλ(x) and O’λ(x), where these denote now the orbits of x under

the systems σQ and σ’Q, respectively. By the assumptions on g, Q’ is open dense in Q. The equality

then follows as in [SS], remark A.12, with Q’ = "U" there.  The analiticity assumption needed in that

argument is replaced by the density of Q’. The same proof also implies that Ok
λ coincides for both

input sets, for each k:  this follows easily by induction, once we observe that the above "h" can be in

fact taken in (G1
λ)’ (see proof in [SS]).  Thus, we also conclude that O0

λ is the same, whether using U

or V.

We shall denote by d(x), d0(x), and dλ(x) the dimensions of O(x), O0(x), and Oλ(x) (or O0
λ(x))

respectively.

We also consider certain Lie algebras of smooth vector fields on M which are associated to σ.

These are: L:= Lie algebra generated by {Xu,u∈U}, L0:= ideal of L generated by {Xu-Xv, u,v∈U}, and

Lλ, defined as follows for any λ>0. Pick any g∈Gλ, u∈V, a∈TuP, and r= +- 1.  Associate to these the

smooth map β:M×V→M given by β(x,v):= (g-1Xv
-λXλ

ug)r(x). Then Lλ is the Lie algebra generated by

{φ(x):= [duβ(x,u)](a), (g,u,r,a) as above}.  The algebras L and L0 are well known; the algebra Lλ

coincides (at least for bilinear systems) with the algebra introduced in [CF] for "invertible" discrete

time systems.  Call σ finite if dim L (equivalently, dim L0,) is finite.  Denote by L(x) the subspace {Y(x),

Y∈L} of TxM, and analogously for L0 and Lλ. Then, L(x)⊆TxO(x) and L0(x)⊆TxO
0(x) (well-known), and

Lλ(x)=TxO
0
λ(x) (see [SS]).  Let d*(x):= dim L0(x) <= d0(x). We call x∈M nice if d*(x) = d0(x). If σ is

either analytic or finite, every x is nice --the proof is analogous to that of the similar statement for

O(x), for which see for instance [LO].  In those cases, d0 can be calculated algebraically, by

computing L0. Note that the condition d*(x)=n always implies that x is nice. Regarding Lλ, note that

dλ(x)=n is equivalent to Oλ(x) being a ngbd of x.

The main properties which we wish to study are the following.  A subset K of M is λ-ST (sampled

transitive) if K⊆Oλ(x) for each (equivalently, for some) x∈K; it is ST if it is λ-ST for some λ. The

system σ is ST if every compact K⊆M is. If K=M is λ-ST for some λ, then σ is GST (globally ST).

The set K is SC (sampled controllable) if K⊆Aλ(x) for all x∈K; it is SC if this happens for some λ.

Again, σ is SC if every compact is, and GSC if M is λ-SC for some λ. The purpose of this paper is to

relate the above to the more standard notions: σ is controllable if M=A(x) for all x, transitive if M=O(x)

for all x, and strongly transitive if M=O0(x) for all x.  (The last two are often refered to as the

accessibility and strong accessibility properties.) Finally, we shall say that a property P(λ) holds for
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almost all λ when P(λ) is true for each λ>0 in the complement of a discrete set C of [0,∞) --i.e., C is

discrete in R+ and C includes every λ small enough.

2. Some Technical Facts. We collect here some results to be used later.  The following is a

fixed-time version of the normal controllability concept in [SU2], relativized to zero-time orbits.  Let σ

be a given system.  For any r∈N and any T>0, let Rr(T):= {t=(t1,...,tr) | all ti>0 and σti=T}, and for any

u=(u1,...,ur)∈Ur, T>0, and x∈M, consider F:Rr(T)→M given by F(t):= (Xt1u1
o...oXtrur

)(x). For any y in the

range of F, F can be seen as a (smooth) map into the submanifold O0(y), and d0(y) = d0(x). Assume

that d0(x)=k. Let FT(x):= {y | ∃u, ∃r, ∃t∈R(T) with F(t)=y and rank dF(t)=k}; as before, (FT)’(x) is the

corresponding set when V is used as the control set.  Note that (1) FT(x) is open in O0(y), (2)

FT(x)⊆AT(x), (3) FT(x)⊆clos[(FT)’(x)], (4) FT(AS(x))⊆FT+S(x), and (5) AS(FT(x))⊆FT+S(x). Furthermore,

if y∈FT(x), then for the reversed system σ- [with dynamics f-(⋅,u):= -f(⋅,u)] it holds that x∈FT(y).

(2.1) LEMMA.  Assume that x is nice (i.e., d*(x)=d0(x)). Let B be any ngbd of x.  Then (FT)’(x)∩B is

nonempty, for some T.

PROOF. This is basically (the "positive form" of) Chow’s theorem (for which see e.g. [KR]).

Consider the system σ# on M#=M×R, which consists of (1.1) plus a scalar equation dz/dt=1.  Let

x#=(x,0), and pick a ngbd B# of x# of the form B×B’. If d0(x)=k, then d(x#)=k+1, because α(x,t):=

(Xt
v(x),t) gives a diffeomorphism between O0(x)×R and O(x#) (orbit in σ#), for any fixed v.  As in [SJ,

p.103], one calculates directly that dim L(x#)=k+1. Thus there is a finite set {u1,...,ur} such that the

subalgebra generated by the corresponding Xui
is still L(x#) at x#; since U⊆clos(V), these ui may be

taken in V. Viewing σ# as a system on the manifold O(x#), there is by Chow’s theorem a set C, open

in O(x#), contained in A(x#)∩B#, and A(x#) is now the set reachable using controls in {u1,...,ur}. Note

that (a,t)∈A(x#) iff a∈At(x). Pick v in V, and consider the corresponding map α as above.  Then,

α-1(C) is open in O0(x)×R, and hence contains a set D×{T}, for some D open in O0(x) and some T>0.

Note that then Xv
T(D)⊆AT(x)∩B. Consider now all the possible maps F as above (for this fixed T),

corresponding to the possible sequences out of the controls ui. The (countable) union of their images

contains AT(x), and hence contains the open subset Xv
T(D) of O0(Xv

T(x)); thus one of these images

intersects Xv
T(D) with nonzero measure.  The result then follows from Sard’s theorem.

(2.2) LEMMA.  Let d*(y)=n. The following statements are equivalent:  (a) y∈FT(x) for some T, (b)

y∈int[AT(x)] for some T, and (3) y∈int[A(x)].
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PROOF. [a⇒b] If d*(y)=n, then O0(y) is a ngbd of y.  Thus y ∈ int[FT(x)] ⊆ int[AT(x)]. [b⇒c] Trivial.

[c⇒a] Let y∈B⊆A(x), B open. Applying 2.1 to the reverse system σ-, we conclude that there is a z∈B

such that y∈FT(z). Say that z∈AS(x). Then y∈FT+S(x).

Note that, for analytic or finite systems, (b) already implies d*(y)=n.

(2.3) PROPOSITION. Let y∈FT(x). There are then open ngbds A and B of x in O0(x), C of y in O0(y),

a Λ>0, and for each λ∈(0,Λ] a ngbd Bλ of x in O0(x), such that the following properties hold for each

such λ:

(a) (∃s∈N)(∃g∈Gsλ)[B⊆g-1Ss
λ.z for each  z∈A];

(b) (∃s∈N)(∃g∈Ss
λ)[Bλ⊆g-1Ss

λ.z for each  z∈A];

(c) [∃s∈N s.t. λs=T] ⇒ [C⊆Ss
λ.z for each  z∈A];

(d) d0(x)=n ⇒ [∃s∈N s.t. C⊆Ss
λ.z for each  z∈A].

[Note that (a) and (b) do not involve y, and hence depend only on FT(x) being nonempty; in

particular, they must also hold for (FT)’(x).]

PROOF. The proof is a refinement of that of theorem 2.2 in [SS].  Let W, B, B’, F, G, q, λ0, ui, T, t,

and all the ki[t,λ] and v[t,λ] be as in that reference, except that B, B’ are now ngbds relative to O0(y).

Let g[t,λ] be the element of Ss
λ corresponding to the control v[t,λ], where s = s(λ) = kr[t,λ]. Consider

the constant control ur*, of length h = h(λ) = T-λkr[t,λ], equal to ur, and let g1 = Xh
ur

be the

transformation associated to ur*. Finally, let v’[t,λ] be the concatenation of v[t,λ] and ur*. Thus, all the

controls v’[t,λ] have the same length T, and as in [SS], v’[t,λ] differs from v[t,0] on a set of measure

less than rλ (independently of t∈Rr(T)). Further, v’[t,λ] depends continuously on t, for any fixed λ.

For such t,λ, let p’[t,λ,z]:= (g1g[t,λ]).z (=state reached using v’[t,λ]). We consider p’ as a function on

W×[0,λ0)×D, with values in O0(y), where D is a ngbd of x in O0(x) chosen small enough so that the

image of p’ is included in B’.  Consider the maps Hλ,z:= q(p’[G(.),λ,z]): B→B. These are all

continuous, and they converge uniformly to the identity of B as (λ,z)→(0,x). Thus there are a Λ>0, a

ngbd A of x in O0(x), and a ngbd C of y in the interior of B, such that C is included in Hλ,z(B) for each

λ∈(0,Λ] and each z∈A. Thus C⊆g1Ss
λ.z for all z∈A. Note that s=s(λ) is by construction the integer

part of T/λ, so (c) follows from this (since then h(λ)=0). Let g2∈ST be the transformation

corresponding to v[t,0], and let B:= g2
-1.C. Since g2 gives a diffeomorphism between O0(x) and O0(y)

sending x into y, B is a ngbd of x in O0(x); then (a) follows by taking s=s(λ) and g:= g1
-1g2. For any
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given λ, pick any g∈Ss
λ such that y=g1g.x; this g gives (b) with Bλ:= (g1g)-1.C. Finally, (d) is proved

using v[t,λ] instead of v’[t,λ]; the proof is in that case analogous to that in [SS], except for the

dependence of H on z, which is treated as above.

We shall also use the following remark; it is stated directly for the case d0=n, since this is the only

instance where we shall need it.  Fix a sequence a=(a1,...,as), each ai= +- 1, and a λ>0. Denote by

Ja
λ:M×Us→M the map Ja

λ(x,w):= gs...g1.x, where w=(u1,...,us) and gi:= Xui

aiλ.

(2.4) PROPOSITION.  Assume that dwJa
λ(x,w) has rank n for some w∈Vs, for some λ and a as above.

There are then ngbds C of y=Ja
λ(x,w), A of x, and E of λ, such that C⊆Ja

α({z}×Vs) for all z∈A and α∈E.

PROOF. There are B⊆B’ diffeomorphic to closed balls centered at y, a ngbd W of w in Vs, and a

G:B→W with G(y)=w and J(x,⋅)oG = identity.  Let p:(0,∞)×M×W→M, p(α,z,w):= Ja
α(z,w). Restricting to

a compact ngbd of (λ,x,w), we may assume that p is uniformly continuous; in particular, the maps

p(α,z,⋅) are all continuous and converge uniformly to p(λ,x,⋅) as (α,z)→(λ,x). Further, we may assume

that each p(λ,z,⋅) maps into B’. Let q’:B’→B be a retraction mapping B’\B to the boundary of B. Let

Hα,z:= q[p(α,z,G(⋅))]. These are all continuous and converge uniformly to the identity of B. The proof

is completed as before.

3. Sampled Transitivity. In this section we include some general results on ST; section 5 will

include further refinements for the cases of group and finite systems.

(3.1) LEMMA. If x is nice, there is a ngbd A of x in O0(x) and a Λ>0 such that A⊆O0
λ(x) for all λ∈(0,Λ].

PROOF. By lemma 2.1, there is a y as required in 2.3.  Pick A and Λ as there.  By part (b), x∈O0
λ(z)

for all z in A and λ∈(0,Λ]; equivalently, z∈O0
λ(x).

(3.2) LEMMA. Assume that σ is analytic.  Pick x∈M. Then for almost all λ there exists an s∈N and a

g∈Ss
λ such that g-1Ss

λ.x is a ngbd of x in O0(x). In particular, O0
λ(x) is a ngbd of x in O0(x), for almost

all λ.

PROOF. Apply 2.3, with control set V (c.f. remark following statement).  There are then λ,s,g with

Ss
λ.x being a ngbd of g.x in O0(g.x), and this holds for λ in a ngbd of 0.  Pick any such λ,s,g. With all
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ai=1, Ja
λ(x,⋅): Vs→O0(y) has rank k=d0(x) at some w∈V (by Sard’s theorem, because dimO0(y)=k).

Now fix w but let λ be a variable.  Let E be the set of α for which dwJa
α(x,w) has rank >= k as a map

into M; E is the complement of an analytic set, and it is nonempty because λ∈E. So its complement

is discrete in (0,∞). If α∈E, then g:=Ja
α(⋅,w) is as desired.  Thus the property holds for α∈E as well as

for α near 0.

Note that, while we know from 3.1 that there is for λ small a common ngbd A of x as desired, 3.2

only adds that for almost all λ there is some such ngbd.  We turn now to the ST property itself.  The

following deals with the behavior of this property under perturbations; we provide a proof which

generalizes readily to the case of controllability (4.3 below).

(3.3) PROPOSITION.  If K is compact with nonempty interior, the set N(K):= {λ | K is λ-ST} is open.

PROOF. Pick any λ∈N(K). Consider any (x,y)∈K×K. By assumption, Oλ(x) includes K, and hence

contains a nonempty open subset B of K. Consider, for the given λ and x, the maps Ha:Ps(a)→M,

Ha(w):=Ja
λ(x,w). Let Da be the critical set of Ha, and Fa its complement.  Finally, let F be the union of

the (countably many) sets B∩Ha(Us(a)∩Fa), and D the union of the B∩Ha(Us(a)∩D(a)). By Sard’s

theorem, D has measure 0.  Since B=F∪D, F is nonempty.  Pick a,s, and z∈B such that z=Ha(v) and

dHa(v) has rank n.  By continuity, we may assume that v∈Vs. Since K⊆Oλ(z) (=O0
λ’(z)), there are a

sequence b and a v’∈Vs(b) such that Jb
λ(z,v’)=y. Thus Jλ

ab(x,w)=y, with w=vv’, and rank Jλ
ab(x,w) is

again n.  We are thus in the situation of 2.4, and there are open ngbds Axy of x, Cxy of y, and Exy of λ

such that Cxy⊆Oα(z) for all α∈Exy and z∈Axy. Pick E:= intersection of the Exy corresponding to a

finite subcover of K×K by the Axy×Cxy; then E is a ngbd of λ in N(K).

(3.4) THEOREM.  Assume that d*(x)=n for every x∈M. Then σ is sampled transitive.

PROOF. Note first that the hypothesis implies that O0(x)=M for each x (strong transitivity).  Now

pick a compact K, as in the definition of ST.  We may assume that K is connected (since M is). For

each x∈K there is an open ngbd Ax of x in O0(x)=M and a Λx as in (3.1).  Cover K by these Ax, and

pick a finite subcover.  Let Λ be smaller than all the Λx in this subcover. Take any λ∈(0,Λ]. Each z in

K is in some Ax, hence in the interior of O0
λ(x)=O0

λ(z). Thus the disjoint sets O0
λ(x)∩K cover K;

connectedness implies there is only one.
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(3.5) COROLLARY.  Assume that σ is either analytic or finite.  Then, d*(x)=n for all x iff σ is ST.

PROOF. it is only necessary to prove the "if" part.  Since σ is sampled transitive, there is for each x

a λ such that O0
λ(x) is a ngbd of x.  Since this is included in O0(x), we conclude that d*(x) = d0(x) = n.

4. Sampled controllability. The study of controllability is of course known to be very difficult in

comparison with that of transitivity (weak controllability).  Sampled controllability implies controllability,

so the most that one can hope for is to state results which conclude ST from controllability (or from

conditions known to imply it) plus other conditions.  Locally, we can state:

(4.1) PROPOSITION.  Assume that d*(x)=n and A(x) is a ngbd of x.  Then there are a ngbd B of x and

a Λ>0 such that B is λ-SC for all λ∈(0,Λ].

PROOF. Since x∈int(A(x)), it follows from 2.2 that x∈FT(x) for some T. Take then A, C, Λ as in

2.3(d), and B:= A∩C.

(4.2) COROLLARY.  Let σ be analytic of finite.  Then, the following statements are equivalent: (a)

d*(x)=n and x∈int(A(x)), (b) x∈int(AT(x)) for some T, (c) x∈int(Aλ(x)) for some λ, and (d) there is an

SC ngbd of x.

This last result is of interest especially in view of the recent results in [SU3], which show that a

certain algebraic condition (the "Hermes controllability condition") is sufficient, for a large class of

systems, for (b) to hold.  (More precisely, this condition implies that x∈int(A(x)), and that x is an

equilibrium point, so (b) indeed holds.)  Some global statements follow; see section 5 for others.  First

note the following "stability" result on λ; the proof is analogous to that of 3.3 and it is therefore

omitted. (We assume that U is a manifold because the equality Oλ=Oλ’, used in the proof of 3.3,

does not apply to this case.)

(4.3) PROPOSITION.  Assume that U=P. If K is a compact with nonempty interior, {λ | K is λ-SC} is

open.

(4.4) LEMMA.  Assume that d0(x)=n for all x∈M and that, for each x,y∈M there is a T with y∈FT(x).

Then σ is SC.
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PROOF. Take K compact.  By 2.3(d), there are for each (x,y)∈K×K an open ngbd A×C, and a Λ>0,

with b∈Aλ(a) whenever a∈A, b∈B, λ∈(0,Λ]. Pick any positive Λ less than all the Λxy corresponding to

a finite subcover.  For each λ∈(0,Λ], K is SC.

(4.5) THEOREM.  If d*(x)=n for all x∈M, then σ is controllable iff it is sampled controllable.

PROOF. We apply 4.4.  Note that d0(x)=n for all x. Pick x,y∈M. By 2.1, there is a z in some FT(x).

But controllability gives that y∈A(z). Thus y∈FS(x), for some s.  Alternatively, we could have used 4.1

on a (possibly larger) connected K.

Since SC implies d0(x)=n for all x, it also implies that d*(x)=n if x is nice.  This gives corollary 4.6,

while 4.7 is an immediate consequence of theorems 4.9 and 4.10 of [SJ], which conclude that under

those hypothesis, d*(x)=n for all x if σ is controllable.

(4.6) COROLLARY.  Let σ be analytic or finite.  Then σ is controllable with d*(x)=n for all x iff σ is SC.

(4.7) COROLLARY.  Let σ be analytic.  Assume that either M has a compact covering space or that

the fundamental group of M has no elements of infinite order (e.g., M=Rn). Then σ is controllable iff it

is sampled controllable.

(4.8) REMARK.  Two cases often singled-out in the controllability literature are those of "symmetric"

systems (for each u∈U there is some v∈U with Xv=-Xu) and of "homogeneous" systems (where f(x,u)

= u1X(1)+...+usX
(s) and U is a ngbd of 0 in Rs). As in the usual (non-sampled) case, the theory is

considerably simplified in these cases.  For homogeneous systems, d*(x)=n for all x is equivalent to σ

being GSC; in fact, M is λ-SC for all λ. To establish this, it is enough to prove that, for all λ,u,t, there

exist a r∈N and a v∈U with Xt
u = Xv

rλ. For these systems, Xat
u/a = Xt

u for all a =/= 0, so it is only

necessary to pick r and v with (rλ)v=tu. This is always possible because U is a ngbd of 0.  Regarding

symmetric systems, it is clear that Oλ(x) = Aλ(x) for all x, so λ-ST and λ-SC become the same notion.

5. Group and finite systems. A group system will be by definition an analytic system for which M=G

is a (connected) Lie group and all the vector fields Xu are right invariant.  In order to simplify

notations, we shall assume as part of the definition of group system that the Lie algebra L(G) of the

group G coincides with the Lie algebra of the system L(σ). (If this were not to hold, we may always
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restrict attention to the connected Lie subgroup of G with algebra L.) Let σ be a group system.  The

evaluation g→g(1) (1=identity of G) allows us to identify G(σ) with G (and, in particular, 1 with e).

Under this identification, the action g.x becomes just the product gx in G, and G0:=O0(e) equals G0,

Gλ:=Oλ(e) = Gλ, G0
λ:=O0

λ(e) = G0
λ, Sλ:=Aλ(e) = Sλ, and S:=A(e) = S. Further, G0 is then the

(connected) normal Lie subgroup associated to L0. Since Gλ and G0
λ are submanifolds, they are also

Lie subgroups.  The vector fields in Lλ are right invariant:  let Rx be the right translation by x; then

β(x,v) = Rx(β(e,v)), for the β in the definition of Lλ, so φ(x) = [dRx(β(e,u))oduβ(e,u)](a) = dRx(φ(e)).

Since Lλ(e) = TeG0
λ, it follows that Lλ is here a subalgebra of L (in fact, the one corresponding to the

Lie subgroups G0
λ and Gλ).

Many control problems can be usefully modelled using group systems; see for instance the

examples dealing with control system design, rigid body control, and electrical networks, in [BR1].

Note that group systems are in particular finite (to be treated below).  We must still study them

separately, both because some of the results do not generalize and, more importantly, because the

results for finite systems will be obtained employing those for group systems. Let σ be a fixed group

system, wih M=G.

(5.1) LEMMA.  For almost all λ, (a) there exists a g∈Sλ such that g-1Sλ is a ngbd of e in G0, and (b)

G0=G0
λ.

PROOF. part (a) is just lemma 3.2, applied at x=e.  Since g-1Sλ⊆G0
λ, it follows that G0

λ is a

subgroup of the connected group G0 which contains a ngbd of the identity.  Thus (b) follows from

topological group theory.

(5.2) THEOREM.  The following statements are equivalent: (a) L0=L, (b) σ is ST, (c) σ is GST, and (d)

G is λ-ST for almost all λ.

PROOF. Since (a) is equivalent to G=G0, (a)⇒(d) follows from 5.1(b); the rest is easy.

(5.3) LEMMA.  Assume that σ is controllable.  Then there is a λ>0 such that G0⊆Sλ.

PROOF. By 2.1, FT(e) is nonempty.  Say z∈FT(e). By controllability, e∈A(z), so we conclude that

e∈FT(e) for some (maybe different) T. By 2.3(c), there is a ngbd C of e in G0 such that C⊆Sλ. Since
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G0 is connected, G0 = ∪{Ck,k >= 1} ⊆ Sλ.

(5.4) THEOREM. σ is GSC ⇔ σ is controllable and L0=L.

PROOF. [⇒] Trivial.  [⇐] Since G0=G (by the Lie algebra assumption), we may apply 5.3 to

conclude that G=Sλ. We deduce that Aλ(g) = Sλg = G for each g∈G, as wanted.  Alternatively, we

could apply (a)⇒(d) from 4.2 (at x=e) to again conclude that Sλ is a ngbd of e and hence that Sλ=G

(for all λ small enough: see 4.1).

When G is compact, the assumption that L0=L is sufficient to conclude GSC.  This is because L0=L

implies controllability for compact groups; see [JS].  Although not a corollary of that result, one may

still apply basically the same argument as in that reference in order to prove that the closure of the

semigroup Sλ includes the subgroup Gλ generated by Sλ; this establishes the following result, which

will be useful later.

(5.5) LEMMA. Let G be compact and let λ be such that G0=G0
λ (c.f. 5.1).  Then G0⊆clos(Sλ).

Our study of finite systems (dimL<∞) relies upon the theory of Palais (see [PA], esp. chapter IV; for

other applications of this theory to control problems, see for instance [HI]).  We summarize those

results of Palais that we need, using our notations.  There is in this case a group system σG whose

state space is G=G(σ), input space is U (=input space for the original σ), and having equations dx/dt =

f$(x,u) with the property that each flow Xu
$t --as an element of G, via the identification with Xu

$t(e),-- is

equal to Xu
t --as diffeomorphism on M. Thus G(σG), and its subgroups and subsemigroups introduced

earlier, identify naturally with the corresponding objects in G(σ). Finally, one also identifies L(G) and

L(σ) in the following way.  Let evx:G→M be the evaluation evx(g):=g.x. Define αx: TeG=L(G) → TxM

by αx(L):= devx(e)(L) and α:L(G)→TM via α(L):= vector field x→αx(L). Then α is an isomorphism

between L(G) and L(σ). We shall then identify L(σ), L(σG), and L(G) where there is no danger of

confusion.

When L0=L, results for a finite system σ are immediate from the corresponding results for σG, since

G0=G in that case.  But the property L=L0 is too restrictive in practice (for instance, not even linear

systems satisfy this, in general).  Thus we must work with G0 itself. That is the reason for our having

presented previous results relativized to O0(x). For the rest of this section, σ is a finite system and G
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its associated Lie group.

(5.6) THEOREM. σ is GST ⇔ d*(x)=n for all x∈M.

PROOF. [⇒] Trivial. [⇐] Apply 5.1 to σG. Then G0=G0
λ for almost all λ. Pick any such λ. Take

any x∈M. The assumption d*(x)=n for all x implies that G0 acts transitively on M. Thus G0
λ.x = G0.x =

M, as desired.

(5.7) LEMMA.  Assume that d*(x)=n for all x.  Then for almost all λ, int[Aλ(x)] is nonempty for all x.

PROOF. Pick any λ and g as in 5.1(a), for the system σG. The action of G0 is again transitive.

Thus we may apply Theorem I.2.5 of [HO] to conclude that evx is an open map, for each x.  Since

g-1Sλ has interior, evx(g
-1Sλ) = g-1Aλ(x) also does.  So Aλ(x) contains an open set itself.

(5.8) THEOREM.  Assume that G is compact.  Then σ is GSC ⇔ d*(x)=n for all x∈M.

PROOF. [⇒] Trivial.  [⇐] Apply 5.7 to the reversed system σ-, and recall 5.1 and 5.5. We conclude

that, for almost all λ, the following properties hold:  (a) G0⊆clos(Sλ), and (b) for each y∈M there is an

open set B such that y∈Aλ(z) for each z∈B. Pick any x,y∈M. Since G0=M, it follows that Aλ(x) is

dense. Pick B as above.  Then B intersects Aλ(x); thus y∈Aλ(x).

We end this section with the following lemma, and an example of how it may be applied.

(5.9) LEMMA. Lλ is a subalgebra of L.

PROOF. Let (g,u,r,a) be as in the definition of L. Consider the induced vector fields φ and φ$ on M

and G respectively, as well as the corresponding maps β and β$. Since β(x,v) = evx(β
$(e,v)),

calculating differentials (and using that β$(e,u)=e) results in φ = α(φ$). Thus α(Lλ(σG)) = Lλ(σ). Since

α establishes an isomorphism between L(σG) and L(σ), the result is a consequence of the group case

treated earlier.

(5.10) REMARK.  Consider the case of (continuous time) polynomial systems ([BA]). Since L

consists then of polynomial vector fields, the same is true of Lλ, by the above result.  Finite
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polynomial systems result in particular as the canonical realizations of a wide class of input/output

behaviors, namely, those described by finite Volterra series (see [CR]).  Bilinear systems are also a

class of finite polynomial systems.  The fact that Lλ consists of polynomial vector fields allows for the

use of algebraic-geometric techniques.  As a simple illustration, consider the following proof of the

fact that ST implies GST (c.f. 5.6 above).  Let B(λ):= {x | dλ(x)<n}; this is then an algebraic set, for

each fixed λ. Pick any λ>0, and consider the family of sets Bn:= B(λ/2n). Then Bn is a descending

sequence of algebraic sets, and hence is finite.  Let BN be a minimal element of this chain. For any

given x∈BN, there is by ST a Λ>0 such that x is not in B(λ) for any λ∈(0,Λ]. Pick n>N with λ/2n<Λ.

Then Bn is a proper subset of BN, contradicting minimality.  So BN must be empty; equivalently, M is

λ/2N-ST.

6. Remarks and examples. Since many of the sampled notions have been proved to be equivalent

to the corresponding non-sampled versions plus an algebraic condition (d*(x)=n for all x), most

examples in the literature can be used to illustrate the above results, provided that one calculates d*.

Thus we shall give only one example, and concentrate after that on counterexamples to a few

conjectures which would seem a priori to be true.

(6.1) EXAMPLE.  Euler’s equations for the angular momentum vector of a rotating rigid body, subject

to a controlled torque along a non-necessarily principal direction, are given by dx/dt = X(x)+uY(x),

where states belong to M=R3, u∈U=(say)R, and X(x) = (a1x2x3) δ/δx1 + (a2x1x3) δ/δx2 + (a3x1x2) δ/δx3,

and with Y(x) = constant vector field (b1,b2,b3)’. Such a system provides a model of a satellite

steered by a pair of opposing jets; see for instance [BR2].  The quantities ai can be expressed in

terms of the moments of inertia with respect to the principal axes.  Since X is Poisson stable, d(x)=n

for all x∈M is a necessary and sufficient condition for controllability.  But since M=R3, corollary 4.7

applies. Thus σ is in fact SC iff this condition holds.  This, in turn, happens precisely when the above

coefficients satisfy: aibj
2 =/= ajbi

2 for i =/= j; see [BA] or [BO] for the corresponding calculations.  Thus

one has a simple algebraic condition for the sampled controllability of the satellite model.

(6.2) REMARK.  The orbits Oλ are integral manifolds for the Lie algebras Lλ of vector fields on M.

However, the situation is very different from that in the "classical" (non-sampled) case.  For instance,

Oλ(x) may (and often does) fail to be connected, and may even be dense but proper (e.g., dx/dt=1 on

M=S1, with λ/2π irrational). Further, the forward reachable set Aλ(x) may not be connected even if

Oλ(x) is (e.g., dx/dt = 4x+ux on M=R+ and |u| <= 1; here Oλ(x) is always connected and Aλ(x) has 3
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components, including one, {x}, without interior). Thus many of the arguments in the classical case,

based on connectedness, have no analogue under sampling.

(6.3) EXAMPLE. A system for which Lλ fails to be a subalgebra of L. Take M:=R×R+, U=R, and

f(x,u):= (-x+uh(y)) δ/δx + y δ/δy. Let λ=1. For h take for example the function h(y):= -(1+y)-2. Then L

consists of linear combinations of -x δ/δx + y δ/δy and of vector fields of the form k(y) δ/δx, where each

k(y) is rational with denominator (1+y)-s, s >= 2.  Consider the element φ of Lλ corresponding to g=e,

u=0, r=1, a=1.  Then φ(x,y) = q(y) δ/δx, where q(y) is rational with denominator (1+y)(1+ey).  Thus φ is

not in L.

(6.4) EXAMPLE.  One of the most useful tools in the usual theory is (the positive form of) Chow’s

theorem, which implies for analytic systems that A(x) has nonempty interior whenever O(x) does.

Here, however, it may happen that Oλ(x) has interior (i.e., is a submanifold of dimension n,) but Aλ(x)

does not.  We construct an example with M=R, using the method in [SS, lemma 3.6].  We first obtain

an analytic function g:R→R whose derivative is bounded below, and for which a pair (x,λ) satisfies the

condition [g(x+kλ) = g(x) for all k∈Z] iff it satisfies [x=2rπ, λ=2sπ, r,s∈Z and s does not divide r].  As in

the above reference, this gives rise to a system for which dλ(x)=0 iff (x,λ) is of this form.  Further,

assume that this g is such that, with x0=2π, g(x0+2kπ) = g(x) for all positive integers k.  In that case

we can conclude both that O2π(x0) has interior and that A2π(x0) = {2kπ, k >= 1}. An example of a g

like this is g(x):=(sin x)/x. This example can be modified to obtain one where even Oλ(x)=M for all

(x,λ) but such that still Aλ(x0) has empty interior for some x0. For this, take the above g and introduce

a g1(x):= σ2-ng2(x+2πn), the sum over n >= 0.  Again x0=λ=2π serves as a counterexample.
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