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Abstract

We continue here our investigation into the preservation of structural properties under the sampling of nonlinear

systems. The main new result is that, under minimal hypothesis, a controllable system always satisfies a strong

type of approximate sampled controllability.

Introduction

The papers [4],[3] began the study of the following type of question.  Let

(1) x⋅ (t) = f(x(t),u(t)

describe a nonlinear system which satisfies a certain system-theoretic property (e.g., weak controllability,

controllability); one then asks if then same property is still satisfied by (1) when one restricts the controls to be

sampled at a constant rate δ. Recall that a δ-sampled control is one which is constant in intervals [kδ,(k+1)δ);

this is the type of control usually available under digital regulation.  For the results that follow, system (1) has to

satisfy certain technical conditions: states x(t) evolve in a smooth n-dimensional manifold M, controls u(t) take

values in a subset U of a smooth manifold P, and f:M×P→TM is a smooth map such that each vector field

Xu=f(⋅,u) is complete; further, int(U) must be connected, with U included in the closure of its interior (relative to

P) -see [3] for details, in particular, any convex subset of Rm satisfies the requirements.

Call (1) controllable if for each pair of states x,y there is some admissible control u(⋅) driving x to y; for

definiteness, take here "admissible" to mean piecewise constant (but, of course, not necessarily sampled).  A

sampled controllable system (1) is one which satisfies the following property: given any compact subset K of M,

there exists some δ>0 such that, for each pair x,y of states in K, there is a δ-sampled control sending x to y.
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We shall need a few technical concepts and notations.  The T-time orbit OT(x) is the set of states of the form

(X1
t1...Xr

tr)(x),

with the ti real (possibly negative), and with σti=T, and each Xi a controlled vector field of the form Xui
. (Here Xt

denotes the flow exp(tX).)  For any δ>0, the subset Oδ
k(x) of Oδk(x) is the set of time-k sampled orbits: as above,

but with all ti now integer multiples of δ, adding to δk. The Oδ
k [resp., OT] are connected submanifolds of M,

diffeomorphic to each other for different k,T.  Let d(x) be the dimension of O0(x). If M is controllable, d(x) is

independent of x (the flow induced by any control sending x into y gives a diffeomorphism between O0(x) and

O0(y)); we denote in that case by d the common value of the d(x).  Introduce also the notation Aδ(x) for the set of

states reachable from x using sampled controls, i.e. the set of all X1
t1...Xr

tr(x) with the ti positive multiples of δ.

One of the main results of [3] (theorem 4.5) states that controllability of (1) plus a certain Lie-algebraic condition

("d*=n" in the notation used there) implies sampled controllability.  In fact, the technical condition can be

weakened considerably: d*=n was used only to insure that a suitable "normal 0-time controllability" property be

satisfied. But a recent result of Grasse (see [2],[5]), applied to the system obtained by extending (1) with a trivial

equation dz/dt=1, implies that the needed condition is automatically satisfied if the system (1) is (weakly)

controllable and d=n. Now, the latter condition is necessary for sampled controllability, since for any x the

δ-sampled orbit is the union of the (countably many) Oδ
k(x). Thus, the former having nonempty interior implies

that every Oδ
k(x), hence O0(x), has dimension n. In conclusion, the result in [3] can be strenghtened to:

controllability plus d=n is equivalent to sampled controllability.  Further, it is easy to see that the result in [1], for

analytic systems, establishing that controllability implies d*=n when the fundamental group of M has no

elements of infinite order, can be extended to the general smooth case (the proof in [6], for example, extends

directly). Thus, for instance for simply connected manifolds one concludes that sampled controllability is

equivalent to controllability. Similar generalizations are immediate for weak controllability.

The case of weak controllability of one-dimensional analytic systems was considered in some detail in [4].  It is

easy to see that analiticity was not used in the proof of the existence of global sampling periods in [4].  The

same proof works in the smooth case.  But it is false in general that the set of "good" δ is a discrete set: with the

notations of [4], it is only necessary to choose a nonzero smooth g:R→R with g(t)=0 if 0<t<1.  Then, for

sampling times δ>1 there are states whose orbits have dimension 0.  The controllability case, incidentally, is



easier than transitivity (weak controllability): any δ>0 provides sampled control if the system is controllable. This

is proved as follows.  Let x be any state, and pick δ>0. Let y be the sup of the set of states δ-reachable from x,

assumed finite. By controllability, there is some X=Xu such that X(y)>0.  Thus, X(z)>a>0 in some ngbd I of y.

Let z in I be δ-reachable from x.  Then the sequence {Xkδ}, k>0, is δ-reachable from x and is eventually to the

right of y, contradicting its choice.  So the above sup=+∞, and similarly for the inf=-∞. The desired result now

follows from the fact that (because U is connected) the sets of states δ-reachable from x in k steps are intervals,

increasing with k.

The simplest case in which sampled controllability is not a consequence of controllability is that of the system

x⋅=1 in the unit circle.  No δ provides sampled controllability in this example. But if δ/π is irrational, then at least

the controllable states from any x form a dense subset of M. This motivates the following definition and result.

Definition. The system (1) is approximately sampled controllable (a.s.c.) if the following property holds: For each

compact subset K of M there exists a δ>0 such that, for every x in K, K is included in clos(Aδ).

Theorem. If (1) is controllable then it is approximately sampled controllable.

A proof is outlined below.  Only the case d=n-1 has to be considered, since for d=n one has (exact) sampled

controllability. Note that the result is of course not a simple consequence of the continuity on control values of

solutions of (1): such an argument would only provide, for each fixed tolerance ε, a δ such that for each x, any

other y is at distance (choose any metric) less than ε from Aδ(x); the result claims that δ can be chosen

independently of ε. The above example on the circle is a good illustration of this.

The proof will show that, in fact, there is for each K a ∆ such that a "random" δ<∆ will satisfy the desired

property. (More precisely, it will hold for any δ<∆ not in a fixed countable set.)



Details

We assume from now on that (1) is a given controllable system with d=n-1, X is an arbitrary vector field Xυ,

υ∈U, K is a compact in M, and T any fixed real number. Further, we let K’ be any compact which contains {Xt(x),

x∈K, |t| <= T}, and let e:=T/4. Note that X has no singular points X(x)=0, since that would imply d=n.  The

following easy fact is needed later.

Lemma 1.  For any state y there exist a ngbd Uy of y, a real c>0, and a diffeomorphism g:Q(c)→Uy, Q(c) =

{(s1,...,sr)∈Rn s.t. |si|<c}, g(0)=y, such that:

(a) Vy:=g(s1=0) is an open ngbd of y in O0(y) (endowed with the usual manifold structure),

(b) Xt(Vy)=g(s1=t) is an open ngbd of Xt in Ot, and

(c) Xt(g(0,s2,...,sr)= g(t,s2,...,sr).

Proof. Let x be any other state. By the results in [5],[2], y is normally reachable from x, i.e., there is an integer r,

controls u1,...ur, and positive t0i, such that the map

(2) h:t=(t1,...,tr)→(X1
t1...Xr

tr)(x)

has h(t0)=y at t0=(t01,...,t0r) and has rank n differential at t0. We may assume that X1=X: if this were not the case,

extend h to Rn+1, with h(to,t):=Xto(h(t)); this still satisfies all properties, at (0,t0). The lemma is now just the

implicit function theorem: pick integers ij, j=1,...,n such that, in local coordinates, the partials δ/δti are linearly

independent. Since X(x) =/= 0, we may assume that i1=1. Now map (s1,...,sr) into (ti), where

t1 := s1 - σi=/=1si + t01,

tij
:= sj + tij

, j=2,...,n,

and all other ti=t0i. Take g as the composition of this map with the above h, restricted to an appropiate cubical

ngbd Q(c).  For constant s1=t, g(s) is in Ot(y) by construction.  Further, g restricted to (s1=t) must have rank at

least n-1, so dimOt(y)=n-1 implies that the image of this restriction is open in the latter.  (In fact, g restricted to

(s1=t) provides a typical coordinate chart.)



For further reference, we note that t1 above could be assumed to be as large as wanted, say t1>α. This can be

accomplished by letting y’:=Xα, and obtaining next a normal control from x to y’; the concatenation of the latter

with υ for length α is as desired.

Let G(x) be the set of times t for which Ot(x)=O0(x). By controllability, G=G(x) is independent of x.  It is easy to

verify that G is a subgroup of R and that Os(x) and Ot(x) can intersect only if they coincide, which happens iff

s-t∈G. Observe that G is nontrivial: given any t>0, there is some control sending x to X-t(x) in (positive) time s.

Thus s=-t mod G, or t+s =/= 0 is in G. In fact, G is countable: A=g(s1=t) is disjoint from B=g(s1=t) for t,s small

and distinct, and A,B are open subsets of Ot(y) and Os(y) respectively.  If G were uncountable, there would be

an uncountable set of t’s with -c<t<c and O0(y)=Ot(y), so the correponding A’s would constitute an uncountable

set of pairwise disjoint opens in O0(y), contradicting second countability of the latter submanifold.

The proof of the theorem will be a consequence of the following lemma.

Lemma 2. There exists a real ∆, 0<∆<e, such that the following property holds for each 0<δ<∆. For any z,y in K’

there is a real h, 0 <= h <= δ, such that X-t(X
h)(y) is in Aδ(X

-t(z)) for each 0 <= t<δ.

We shall show first how the theorem follows from this result. Let Q(G) be the rational vector space generated by

G; this is again countable.  Pick any δ<∆ which is not in QG. Fix any x,y in K. We want to show that y is in the

closure of Aδ(x). Let z:=XT(y). Apply lemma 2 to this pair (z,y).  Let S be the set

{Xt(y), h-δ<t<T-δ}.

It follows from another application of lemma 2 that there is some α<δ such that x*:=Xα(y) is in Aδ(x); thus we

may assume without loss of generality that x=x* is in S.

Note that z=XT(y) and y is in Okδ-h(z), for some positive integer k (by lemma 2).  Thus -T is congruent to kδ-h

mod G, or T-h = -kδ mod G, with -kδ<0<T-h. It follows that T-h and δ cannot be rational multiples of each other.

Let tk := [kδ+α], k=0,1,2..., where [s] denotes the residue of s mod (T-h) in I := (h-δ,T-δ]. Then {tk] is dense in

I. Let xk := Xtk(y). So x0=x, and the set of xk is dense in S. The result will be proved once we establish that each

xk is in Aδ(x).



But this is easy to see by induction on k:  if kδ+α is not larger than T-2δ then xk+1=Xδ(xk). Otherwise, xk+1 =

X-tXh(y), for t=T-tk-δ, which by lemma 2 is δ-reachable from X-tXT(y) = Xδ(xk), so that xk+1 is again reachable

from xk.



Proof of lemma 2.

Let x,y be in K’.  Obtain as in lemma 1 Uy, Vy, and t01,...,t0r, with t01>3e, with the state "x" in the proof being the

chosen x.  Apply now lemma 1 to x, obtaining in turn cubical ngbds Ux and Vx of x in M and O0(x) respectively.

Let

Q’(c):={t s.t. s(t)∈Q(c)}.

Without loss, assume cx=cy=c, and that c is small enough so that |t01-t1|<2e for t∈Q’(c) and c<e.  Consider the

map

φ(z,t):=Xt1-εX2
t2⋅⋅⋅Xr

tr(z),

defined for t in Q’(c) and z in Ux, where ε=ε(z) is that real for which z is in Xε(Vx). For any t=(t1,...,tr), denote

#(t):= t1+...tr. Then, φ(z,t)∈X#(t). Consider the restriction of φ’ of φ(z,t) to the set of t with #(t)=T=#(t0). Since φ’ is

continuous in z,t, its image is in Uy for t close to t0 and z close to x. Redefining Ux if necessary, we may assume

that φ’(z,t)∈Uy when t∈Q’(c) and z∈Ux. Since Imφ’ is connected, it contains y=φ(x,t0), and Imφ’⊆O0(y), it follows

that φ’(z,t)∈Vy for the above (z,t), and in fact φ’ is continuous into Vy (embedded submanifold of Uy). Let Uy’, Vy’

be cubical ngbds of y for which |si| <= c’.

Pick any δ>0 and t with #(t)=T.  Let u[t,ε,δ] be the δ-sampled control obtained from

X1
t1-εX2...Xr

tr

as in [4], theorem 2.2 (this was denoted "v[t,δ]" there). Note that its length is d[T-ε,δ], where d[r,δ]:= largest

multiple of δ not larger than r.  Let v[t,ε,δ] be the above control followed by the constant control υ applied for time

T-ε-d[T-ε,δ]. (This is "ur*" in [3].)  Thus v[t,ε,δ] has lenght T-ε (independent of δ).

Let Hδ,z:Vy’→Vy be defined as follows:  Hδ,z(y’) is the state reached when applying the control u[t,ε,δ] to z, where

ε=ε(z) is as above, and g(t’)=y’.  By an argument as before, this is well defined into Vy, for δ small enough.

Further, each Hδ,z is a continuous map, and Hδ,z converges uniformly to the identity of Vy’ as δ→0 and z→x.

So, by a reasoning as in [4],[3], there are new cubical ngbds Uy", Vy" such that

Vy" ⊆ Hδ,z(Vy’)

for z∈Ux (redefine Ux again, if necessary) and 0<δ<∆. Redefine now Uy, Vy (and c) so that these are the

Uy",Vy"; further, assume without loss that ∆<c/2.



Pick now any y’∈Uy, and any 0<δ<∆. Then y’=Xα(y"), for some α and some y"∈Vy. Let h=h(α,δ) be 0 if T+α

divides δ, and

d[T+α,δ]+δ-T-α

otherwise. So 0 <= h<δ.

Now pick any z∈Ux, and ε=ε(z) as before. Since y"∈ImHδ,z, there is some control v[t,ε,δ] which applied to z

results in y". Let y*:=Xα+ε+h(y"). This is in Aδ(z), because v[t,ε,δ] is the concatenation of u[t,ε,δ] (δ-sampled) and

υ with length T-ε-d[T-ε,δ], so y* is obtained by concatenating u[t,ε,δ], with total length

δ+d[T+α,δ]-d[T-ε,δ].

(Note that, since t1>3e and each of α, ε, δ have magnitude <e, this is always a true, positive time, control).

Further, y*=Xε+h(y’).

Now cover K’×K’ by sets (Ux/2)×(Uw/2), where the notations indicate the use of c/2 in place of c.  Pick a finite

subcover, and a ∆ smaller than all the corresponding ∆x,w. Pick now any z,y and any 0<δ<∆. Say that (z,y) is in

an element (Ux/2)×(Uw/2) of the subcover, and z=Xr(x). Let y’:=X-r(y). Since |r|<c/2, y’ is in Uw. Let h:=h(α,δ)

correspond to this y’. Let z’:=Xs(z), for any given |s|<δ. So z’∈Ux, and ε(z’)=r+s. Apply now the above

argument to these (z’,y’).  It follows that Xs+h(y) = Xr+s+h(y’) is in Aδ(z’), for any such z’, as wanted.
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