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Abstract

In the context of realization theory, conditions are given for the possibility

of simulating a given discrete time system, using immersion and/or

feedback, by linear or state-affine systems.

1. Introduction

A number of papers have been written recently on the topic of system simulation by simpler types of

systems, like linear and state-affine systems.  In particular, we shall be concerned here with the notion of

immersion introduced by M.Fliess, and more specifically, in regard to discrete-time nonlinear systems

(see [1,2,3]).

In this note we remark that the setup in [4], which deals with nonlinear realization, generalizes in an

almost immediate manner to deal with questions of immersion, resulting in conceptually simple

statements and proofs.  The approach resulting from this generalization should be compared to that in

[1,2,3], which relies on a theory for real-analytic (in fact, ’entire’,) systems and bases all proofs on

appropiate power series expansions.

2. Responses and Systems

We shall need a number of definitions. Except for the generalization from single responses to families

of responses, these are precisely as in [4].

A set U (input-value set) and a finite-dimensional vector space Y (output-value set) over a fixed field k

will be assumed fixed.  A response is a mapping f:U*→Y, where U* denotes the free monoid over U. A

family (of responses) Φ is any set of responses, which we write in a parametrized way as Φ = {fλ, λ∈Λ}.

The response f is of type J, where J = {δ0,⋅⋅⋅,δm} is a set of linearly independent functions U→k with δ0≡1,

iff for each t≥1 there are (finitely many) vectors aα in Y such that
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f(ω) = ∑ δα(ω)aα,

where the summation runs over Jt and, if α=(α1,⋅⋅⋅,αt) and ω=(u1,⋅⋅⋅,ut), then δα(ω) is the (’tensor’) product

δα1
(u1)⋅⋅⋅δαt

(ut). The family Φ is of type J iff each fλ in Φ is. The family Φ is affine iff U=km, Φ is of affine

type J0:= {δ0,⋅⋅⋅,δm} with δi = projection of U onto i-th factor, and the restrictions fλ|Ut are all affine; Φ is

uniformly affine if it is affine and the maps

fλlin(ω) := fλ(ω) - fλ(0)

are all the same (i.e. independent of λ), say f, (0 denotes here a zero input of length equal to length(ω),)

and f is a (time-invariant) linear i/o response, i.e., the restrictions of f to all Ut are linear, and f(0,ω) = f(ω),

for any input sequence ω and any constantly 0 input sequence.  Such families appear when dealing with

affine systems (see below).

A system Σ = (X,P,Q) consists of a set X and maps P:X×U→X, Q:X→Y. The system Σ is state-affine

if X is a k-vector space, and Q as well as each map P(⋅,u), u∈U are affine.  It is affine if U=km and P and

Q are affine maps (i.e., the system is basically linear in the usual sense, except that we do not a priori

impose any equilibrium state requirements), and is of type J (J as above) if there exist affine maps Pi

such that P(x,u) = ∑δi(u)Pi(x). Note that a finite-dimensional state-affine system is always of type J, for

some (finite) J. We use the notation P* for the recursive extension of P to input sequences: P*(x,ε):= x

(ε=empty sequence) and P*(x,ωu):= P(P*(x,ω),u).

For any state x∈X, fx is the response obtained when starting Σ at initial state x, i.e., fx(ω):= Q(P*(x,ω)).

The (response) family ΦΣ of Σ is the family {fx,x∈X}. When Φ⊆ΦΣ we say that Σ realizes the family Φ.

Note that if Σ is (state-affine) of type J, then ΦΣ is also of type J. And if Σ is affine, then ΦΣ is also

uniformly affine.

Finally, we need the notion of the observation space LΣ associated to Σ. This is the space of

mappings from X into Y obtained in the following way.  For each input sequence ω∈U* (possiby empty) let

Qω(x):= Q(P*(x,ω)) = last output that results from applying input sequence ω to initial state x.  The set of

all maps [X→Y] is endowed with a natural k-linear structure (pointwise operations); then LΣ is defined as

the linear span of {Qω,ω∈U*}.

3. Immersions and Morphisms

Let Σ and ~Σ be two systems, with response families Φ and ~Φ respectively. The system Σ is immersed

into the system ~Σ iff Φ⊆~Φ, i.e., ~Σ realizes Φ. Another way of saying this is that there is a mapping φ: X→~X

such that φ(x) and x give rise to the same response.  We call any such mapping an immersion, and

denote φ: Σ→~Σ. (The definition used in [1,2,3] for analytic systems requires that there be an analytic such

mapping, for a class of analytic systems.  We prefer the more abstract definition, together with the

remarks given below which insure that an immersion will necesarily have certain properties like analiticity

provided that Σ and ~Σ satisfy appropiate conditions.)
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Immersions are of course closely related to morphisms in the sense usual in system theory. A

morphism φ: Σ→~Σ is a mapping φ:X→~X such that

(1)
φ(P(x,u)) = ~P(φ(x),u) and Q(x) = ~Q(φ(x))

for each x∈X and u∈U. Then also φ(P*(x,u)) = ~P*(x,u) for all x,u.  Thus a morphism is necessarily an

immersion. A partial converse is given below.

A system Σ is observable iff fx≠fz for each pair of states x,z.  Equivalently, for each x,z in X there is a

ω∈U* such that Qω(x)≠Qω(z). It is linearly observable iff X is a k-vector space and there are an integer r,

input sequences ω1, ⋅⋅⋅, ωr in U*, and a affine map π: Yr→X such that

π(Qω1
(x),⋅⋅⋅,Qωr

(x)) = x (2)

for each x∈X. This is a particular instance of the notion of "algebraic observability" introduced in [5] for a

more general class of systems.  With a more general notion, relativized to any given subcategory of

systems (e.g. analytic,) some of the results to follow could be extended in a natural manner.  Note that

linear observability implies observability.

Proposition 1: Let φ: Σ→~Σ be an immersion and assume that ~Σ is observable.  Then φ is a morphism.  If

ψ: Σ→~Σ is any other immersion, φ = ψ.

Proof: Pick any x,u, and let z:= φ(x). Consider first Q(x).  This is fx(ε), which coincides with ~fz(ε),

and hence with ~Q(z), as desired.  Let ξ:= P(x,u) and ζ:= ~P(z,u). We need to prove that ~P(z,u) = ζ, or

equivalently, by observability, that for any ω∈U*, ~Qω(ζ) = ~Qωu(z). But ~Qω(ζ) = ~fζ(ω) = fξ(ω) = Qω(ξ) =

Qωu(x) = fx(ωu) = ~fz(ωu) = ~Qωu(z), as desired.  The uniqueness part is even easier: for all x, fφ(x) = fx = fψ(x)

implies by observability that φ(x) = ψ(x).n

When Σ is a finite-dimensional state-affine system, LΣ is finite-dimensional, since in that case all the

generators Qω are affine maps on a finite-dimensional space.  Further, for such systems the two notions

of observability coincide.  Indeed, a dimensionality argument implies that, if Σ is observable, then there

are finitely many sequences ω1, ⋅⋅⋅, ωr such that the affine map

x → (Qω1
(x),⋅⋅⋅,Qωr

(x))

is one-to-one, and hence admits a left inverse π as in 2.  If Σ is not observable, we can always find an

observable system ~Σ, state-affine of the same type, and a morphism (hence an immersion) φ: Σ→~Σ; this

is discussed for instance in [4].  Further, if Σ happens to be an affine system, also ~Σ is affine under this

reduction. Thus every state-affine [resp., affine] system can be immersed into a linearly observable

state-affine [resp., affine] system.  Since the immersion relation is transitive, we conclude that if a system

Σ can be immersed into a system ~Σ of one of these forms, we may assume without loss of generality that
~Σ is linearly observable.

In fact, the immersion itself is then analytic for systems defined by analytic equations, continuous for
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continuous systems, and so forth.  To make this precise, let LΣ# be the smallest space of maps X→k

including the constants and all compositions of an element of LΣ and a linear map Y→k. This is basically

the set of all coordinates of observables.  Call an immersion φ: Σ→~Σ, where ~X is a vector space, nice iff

for all linear θ: ~X→k the composition θ°φ is in LΣ#. That is, the coordinates of φ are given by linear

combinations of functions appearing as coordinates of observables (and constants).  Accordingly, Σ is

nicely immersed in ~Σ iff there is nice φ: Σ→~Σ.

Proposition 2: If Σ can be immersed in a finite-dimensional state-affine [resp., affine] system ~Σ, then it

can also be nicely immersed in such a system.

Proof: As remarked above, we may assume without loss that ~Σ is linearly observable.  Let π be as

in 2, for ~Σ, i.e. π(~Qω1
(x),⋅⋅⋅,~Qωr

(~x)) = ~x for each ~x∈~X. Because φ is an immersion, it holds that

(Qω1
(x),⋅⋅⋅,Qωr

(x)) = (~Qω1
(φ(x)),⋅⋅⋅,~Qωr

(φ(x))). Now apply π to both sides.  Then, for each x∈X, φ(x) =

π(Qω1
(x),⋅⋅⋅,Qωr

(x)). Since π is affine, φ is nice.n

In relation to the dimensionality of LΣ we note the following observation, which will be useful later:

Proposition 3: If Σ is immersed in ~Σ then there is a surjective mapping from L
~Σ onto LΣ. In particular, if Σ

is immersed in a finite-dimensional state-affine system then LΣ is finite-dimensional.

Proof: Let φ*: [X’→Y] → [X→Y] be the dual operator defined by the composition φ*(T):= T°φ. This

is a linear map, and its restriction to L
~Σ maps into (and in fact, onto) LΣ.n

4. Canonical Realizations

Let Φ = {fλ, λ∈Λ} be a fixed family as in the previous section.  We associate to Φ the "Nerode space"

LΦ defined as follows.  For each fλ and each ω∈U* let fλω be the response defined by fλω(ν):= fλ(ων) (i.e.,

’preset’ by input ω). The set of all responses is naturally a k-vector space under pointwise operations; LΦ
is then defined as the affine hull of

{fλω, ω∈U*, λ∈Λ}.

(We could use here instead the linear span; basically the same theory would result, except that

state-linear systems would appear at various points instead of state-affine ones.)

If Σ is a realization of Φ, there is a natural duality between LΦ and the observation space LΣ defined

earlier. Consider the pairing

( , ) : LΦ×LΣ → Y.

obtained by bilinearly extending the operation on generators

(fλω,Qν) := fλ(ων).
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It is necessary to see that this extension is well defined.  Assume then that

∑αωλfλω = ∑βωλfλω and

∑γνQν = ∑δνQν

where the first pair of sums are over a (finite) set of pairs (ω,λ) and the second over some (finite) set of

inputs ν. Then, ∑γν∑αωλfλ(ων) = ∑γν∑αωλfλω(ν) = ∑γν∑βωλfλω(ν) = ∑γν∑βωλfλ(ων) =

∑βωλ∑γνfλ(ων), and it is enough to prove that ∑γνfλ(ων) = ∑δνfλ(ων) for each fixed (ω,λ). But

realizability of Φ by Σ means that there is an x∈X such that fx = fλ. Let z:= P*(x,ω) for this x and the given

ω. Thus, fλ(ων) = Qν(z) for each ν, so ∑γνfλ(ων) = (∑γνQν)(z) = (∑δνQν)(z) = ∑δνfλ(ων), as desired.

Further, this pairing is nondegenerate in the first term, i.e., (∑αωλfλω,∑γνQν) = 0 for all ∑γνQν implies that

∑αωλfλω = 0.  It will also be nondegenerate in the second term iff the condition "∑γνQν = 0 on all elements

of the form P*(x,ω) such that ω is an input sequence and fx∈Φ" implies ∑γνQν = 0.  This happens in

various cases of interest, for instance if there is some kind of ’span-reachability’ for the system as in [4],

and in any case certainly when Φ = ΦΣ. We conclude that:

Proposition 4: If Φ = ΦΣ, then LΦ is finite dimensional if and only if LΣ if finite dimensional.

We now show how to construct a ’canonical’ realization ΣΦ of any given family Φ. This realization will

have the property that it is a finite dimensional state-affine system whenever LΦ is finite dimensional, and

is affine whenever Φ is also uniformly affine.

The state space of ΣΦ is by definition LΦ, seen as a vector space.  The maps P and Q are defined as

follows. For each u∈U, let P(⋅,u) be the (well-defined!) extension of P(fλω,u):= fλωu, and let Q be the

extension of the evaluation Q(fλω):= fλ(ω). This system is state-affine, by construction.  Applying

proposition 4 to Φ:= ΦΣ, and using proposition 3, we then conclude:

Theorem A. Σ can be immersed in a finite dimensional state-affine system if and only if its observation

space is finite dimensional.

This result can be made more precise in a number of ways.  Assume for instance that Φ is of type

J. Then ΣΦ is also of type J. Indeed, write, for any ω∈U* and u∈U,

fλ(ωu) = ∑ δα(ω)δi(u)aλ
αi.

Then, P(x,u) = ∑δi(u)Pi(x), where Pi is defined on generators by the formula

Pi(f
λ
ω):= ∑ δα(ω)aλ

αi.

The Pi are well-defined (use linear independence of the δi(u) to verify this) and are affine.  We then have:

Theorem B. The system Σ can be immersed into a [finite dimensional] system of type J if and only if ΦΣ
is of type J [and LΣ is finite dimensional].
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Now assume that Φ is uniformly affine, and consider its canonical realization ΣΦ. We claim that this is

an affine system.  Since ΣΦ has affine type J0, we only need to establish that all Pi, i = 1,⋅⋅⋅,m are

constant. Note that we may write

fλ(ωu) = ∑uiPi(f
λ
ω) + P0(fλω), (3)

f(ωu) = fλ(ωu) - fλ(00), (4)

where f is linear and independent of λ, and satisfies f(0,u) = f(u) as in the definition.  It follows from 4 that

fλω(u)-fλω(0) = f(ω,u)-f(ω,0) = f(0,u) = f(u), while from 3 this expresion equals ∑uiPi(f
λ
ω). Comparing

coefficients of each ui, the desired constancy is deduced.  Thus we conclude:

Theorem C. The system Σ can be immersed in a [finite dimensional] affine system if and only if ΦΣ is

uniformly affine [and LΣ is finite dimensional].

This is, with somewhat different terminology, the characterization given in [1,2,3] for immersions of

analytic Σ into finite dimensional systems.  The only difference is that the finite dimensionality condition

given there is not in terms of LΣ -which is natural in the general context treated here- but in terms of LΣ
0,

defined as follows.

Assume that U = km. The 0-input observation space LΣ
0 is the subspace of LΣ generated by the Qω

with ω = a sequence of the type 0 (all zero). In case ΦΣ is a uniformly affine family, for any observable we

have that

Qω(x) = fx(ω) = fx(0)+f(ω) = Q0(x)+aω,

where aω is a constant (vector in Y) depending only on ω. That is, LΣ is in that case included in the sum

of LΣ
0 and a finite dimensional space (constant functions), so that

LΣ is finite dimensional iff LΣ
0 is. (5)

5. Feedback

We give now some results on linearization under feedback.  These results are basically just

restatements of those in [1], proved in slightly more generality using a more abstract approach.  Further

work along these lines is in progress.

Fix a parameter set Λ; all families of responses will be parametrized by this set.  A system-like family

is one for which the following property holds:  for each λ∈Λ and u∈U there is a µ∈Λ such that fλ(uω) =

fµ(ω) for all ω∈U*. Such families appear when considering the families ΦΣ. We shall assume that all

families in this section are system-like.

An i/o family will mean a family Γ = {γλ, λ∈Λ} of maps γλ: U*→U* each of which is length preserving.

Given a family of responses Φ, and a Γ like this, we define the new family of responses ~Φ:= ΦΓ via the

compositions ~fλ:= fλ°γλ, and denote Φ ≤ ~Φ if ~Φ can be obtained in this way from Φ. We also denote ~Φ ~ Φ
if both ~Φ≤Φ and Φ≤~Φ hold. Consider the degree of the family Φ:
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d=d(Φ) := max{t s.t. fλ|Uj constant if j≤t and λ∈Λ},

and assume that d<∞ for the systems here considered.  For j≤d, vj(λ) denotes the common value of the

restriction of fλ to Uj. Since the elements of Γ preserve length, it is clear that if vj(λ) is like this and ~Φ = ΦΓ
then also

~fλ|Uj = vj(λ), (6)

and so

~d ≥ d. (7)

In particular, ~d=d when Φ~~Φ. Pick now any integer j and any ν∈U+, λ∈Λ, and ω1∈Uj. Then ~fλ(νω1) =

fλ(γλ(ν),ω’), for some ω’ of length j.  Since Φ is system-like, there is a µ, which depends only on ν, such

that fλ(γλ(ν),ω’) = fµ(ω’). If j≤d(Φ), this last expression equals fµ(ω2) for every other ω2 of length j, so that:

Lemma 5: Assume that Φ≤~Φ. Let j≤d(Φ), ν∈U+, λ∈Λ, and take ωi∈Uj, i=1,2.  Then ~fλ(νω1) = fλ(γλ(ν),ω2).

We shall be interested in a very particular class of linear systems. Call a family Φ special iff (it has

finite degree and) for some κ≤d(Φ) there are scalars {a } and a linear transformation D: U→Y such that

fλ(u0κ) = ∑a v (λ) + Du (8)

for all u∈U (sum is over =0,...,κ) and all λ∈Λ. Note that, since Φ is system-like and κ≤d(Φ), 8 is also the

form of fλ(uω) for all ω∈Uκ. It can be proved by induction that if this property holds with some κ<d(Φ) then

it also holds with κ=d(Φ). Such a family is necessarily uniformly affine and finite-dimensional realizable;

this can be seen directly by exhibiting an affine finite dimensional system realizing it, as done for the

analogous situation in [1].  For example, the linear system with state space X:= Yκ+1 and equations (in

Y-block form) xi’ = xi+1, i=0,⋅⋅⋅,κ-1, and xκ’ = ∑a x +Du, and output y = xo realizes such a family; more

precisely, fλ is the response associated to the initial state (v0(λ),⋅⋅⋅,vκ(λ)).

Note that if Σ = (A,B,C) is a linear system in the usual sense, then ΦΣ is special iff there is a κ such

that CA B = 0 for all = 0,⋅⋅⋅,d-1 and CAκ+1 is a linear combination of the CAj, j≤κ. A somewhat more

general definition of ’special’ could be given, in the style of [1], where the property is required of each

output channel separately; the results are analogous but notations become somewhat more involved.  Let

j≤d(Φ). Consider the following property for Φ and Γ as above:

For some linear D, scalars {a }, fλ(γλ(u),0κ) = ∑a fλ(0 ) + Du, all λ∈Λ, u∈U, (9)

the sum over = 0,⋅⋅⋅,κ.

Proposition 6: If there is an i/o family Γ such that 9 is satisfied then ΦΓ is special.

Proof: Let ~Φ:= ΦΓ. So ~d≥d≥κ. By lemma 5, ~fλ(u,0κ) = fλ(γλ(u),0κ), which is as in 9.  By 6, ~fλ(0 ) =
~v (λ) = v (λ); thus ~Φ is special.n

Let Φ = ΦΣ, for a given system Σ. We say that the i/o family Γ is feedback-like for Φ iff there exists a
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(’generating feedback’) map K: X×U → U such that K(x,⋅) is invertible for each fixed x, and each γλ is

defined as usual by the outputs of the system obtained from x’=P(x,K(x,u)) and y=K(x,u).  If this K is of the

form F(x)+G(x)u, with G(x) invertible, we say the feedback is affine. Note that the invertibility condition

insures that ΦΓ can be obtained, conversely, from [affine] feedback applied to Φ. We write Υ = {υλ} for

the inverse family to Γ; thus Υ consists of length preserving maps with υλ°γλ = identity for each λ.

(Somewhat less than invertibility is needed for the results to follow; also, a more general, input/output,

definition can be given of feedback-like Γ.)

Corollary 7: The feedback-like family Γ is such that ΦΓ is special iff condition 9 is satisfied.

Proof: Sufficiency is just Proposition 6. Conversely, assume that there is such a Γ. Then ~d = d

for the degrees of ~Φ = ΦΓ and Φ respectively (from 7).  By lemma 5, with the roles of Φ and ~Φ reversed,

fλ(γλ,0κ) = ~fλ(u0κ), which by assumption is as in 9.  Since, by 6, ~v (λ) = v (λ), 9 holds with the same κ,

{a }, and D.n

Assume now that there is an affine Γ with ~Φ:= ΦΓ uniformly affine.  Then the following property must

be satisfied:

there exist s,R such that fλ(v0d) = ~fλ(υλ(v),0d) = s(λ)+R(λ)v for all v∈U. (10)

This is because Φ = ~ΦΥ, so we may apply lemma 5 to this pair.  Since ~fλ(u0d) and υλ are each affine, their

composition also is.

Assume now that fλ(v0d) satisfies 10.  Then corollary 7 says that an affine Γ exists making ΦΓ special

iff there are F, G, and constants {a }, such that, (substituting the form γλ(u) = F(λ)+G(λ)u into the left hand

side of 9,)

R(λ)G(λ) = D = constant,

and

s(λ) + R(λ)F(λ) = ∑a v (λ).

Thus one recovers the conditions in [1], since clearly s(λ) = fλ(0d+1) and vj(λ) = fλ(0j).
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