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This paper provides further results about the equilinearization method of
control design recently introduced by the author. A simplified derivation of
the controller is provided, as well as a theorem on local stabilization along
reference trajectories.

1 Introduction

Recent papers by Rugh and Baumann, and by Reboulet, Champetier, and others, (see for
instance [2], [4]) has emphasized the idea of studying families of linearizations of nonlin-
ear systems around different operating points, and in particular the problem of obtaining
compensators with the property that all closed-loop linearizations have the same dynamic
behavior. In a similar spirit, we started in [5] and [6] the study of linearizations along
more arbitrary trajectories of nonlinear systems. This work is closely tied to the standard
approach in engineering practice, where an open-loop trajectory is preplanned (using for
instance nonlinear optimal control techniques,) and a servo is built using linear control the-
ory in order to regulate along this reference motion. The regulated system then corrects
for (small) disturbances and measurement errors. What these papers showed was how to
build offline a nonlinear controller which, when presented with the particular motion to be
followed, in effect behaves as a regulator along that motion. The design consists of two parts.
In the first, one shows that any nonlinear controllable plant, under mild technical conditions,
admits a precompensator with the following property: along control trajectories joining pairs
of states, the composite system (precompensator plus plant) is, up to first order, isomorphic
to a parallel connection of integrators. Systems along all possible such trajectories admit
then the same linearization, hence the term equilinearization. The second part consists of
closing the loop using the alternative cooordinates in which the system is an integrator, and
expressing the resulting system in terms of the original plant states.

The above methodology results in a computational approach to control design. One
objective of the present paper is to provide a very explicit and simplified form for the com-
pensator, as well as the proof of a theorem showing that the closed-loop design indeed
provides asymptotic stability along all reference motions.
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2 Fixed Time-Varying Systems

We shall consider first the problem of stabilization for a fixed time varying linear system; later
we shall show how this construction can be made universal for finite-dimensional families of
trajectories. The time-varying construction is closely related to those usual in the theory of
systems over rings, as developed by the author and others, and more specifically to the pole
shifting techniques introduced in [3] for discrete-time linear systems.

Consider thus a fixed time varying linear system

ẋ(t) = A(t)x(t) + B(t)u(t) . (1)

Here A(t) is an n by n matrix for each t ∈ IR and B(t) is an n by m matrix for each t. Take
first an as illustration the case in which n = m and det B(t) 6= 0 for all t. One can always
stabilize this system by the trivial (“computed-torque”) feedback law

u(t) = B−1(t)(−A(t)− αI)x(t) ,

with α > 0 arbitrary. This results in the decoupled closed-loop system ẋ(t) = −αx(t) . The
above argument does not generalize to the nontrivial case when n 6= m, but the following
alternative method will. Introduce first a new variable ξ through the transformation

Φ(t)ξ(t) = x(t) , (2)

where Φ is a fundamental matrix solution

Φ̇(t) = A(t)Φ(t) (3)

with initial condition Φ(0) = I. In terms of the ξ variable, the original differential equation
is transformed into

ξ̇(t) = Φ(t)−1B(t)u(t) ,

and the uncontrolled term dissappears. This transformation is standard in the realization
theory for time-varying linear systems, and is also standard in the context of the calculation
of Volterra expansions for bilinear systems. Now, still for the trivial case n = m, B invertible,
we can stabilize in the ξ coordinates, using

u = −α(Φ−1B)−1ξ = −αB−1x ,

which results in ξ̇ = −αξ. (Except where needed for emphasis, we will drop the t arguments
from now on.) In terms of the x coordinates, the closed loop system can be described by the
equation

ẋ = (A− αI)x .

If Φ is bounded, or if it has (at worst) exponential growth, as will be the case in later
applications, it is possible to choose α large enough so that ξ will decrease exponentially at
a rate fast enough to insure that x itself decreases –for instance for A constant, choose α
larger than the real parts of all the eigenvalues of A.

The above construction can be generalized to the much less trivial case m < n. The neces-
sary change of variables will be similar to that in equation (2), except that integral (dynamic)
feedback will be added through the construction of a precompensator. For simplicity of ex-
position, we shall restrict attention here to the single input case, m = 1. Comparing with the



material in the paper [5], which does not make this restriction, it should be straightforward
for the reader to modify the formulas of the simplified controller to the most general case.
We write B simply as b.

Assume first that we have found an integer k, a k × n time dependent matrix R = R(t),
and k + 1 time dependent n× n matrices

Ei, i = 0, · · · , k,

with E0 ≡ I (identity) and Ek ≡ 0, such that the following differential equations hold for
each i = 1, · · · , k:

Ėi = AEi − EiA− Ei−1 + bRk−i+1 , (4)

where Rj denotes the j-th row of R. (Note that the last term is an n× n rank one matrix,
the product of a column n-vector by a row n-vector, and not an inner product.) Assume
also given k + 1 real numbers α1, · · · , αk+1. Now introduce k + 1 new vector functions

z1, · · · , zk, v,

each of them an n-vector, so that together they satisfy the differential equations

żi = Azi + zi−1 (5)

for i = 2, · · · , k and

ż1 = Az1 +
k∑

i=1

(αiI − αk+1Ek−i+1) zi + αk+1x + v . (6)

Finally, consider the differential equation (1), with u substituted by

u =
k∑

i=1

Rizi , (7)

together with the differential equations for the zi’s, seen as a time varying system with state
space IR(k+1)n and new external control v.

This can be interpreted as a system obtained by applying the time-varying linear feedfor-
ward control law (7) to the original system, where the zi are states of a dynamic compensator.

The control system can be implemented digitally, by solving numerically the linear dif-
ferential equations for the zi, and feeding (7) to the plant. Note that z1 has a feedback term
αk+1x, linear time invariant in the state x. The differential equations are time-varying, since
A as well as R and the Ei are time dependent matrices. The term v is there in order to
provide if desired for further design objectives; it will be identically zero below, since in this
paper we shall be interested only in stabilization, which is going to be achieved by a suitable
choice of the numbers αi.

The reason for the above construction is as follows. Consider the controlled closed-loop
system, having state variables

(z1, · · · , zk, x) .

We introduce new variables ζi, i = 1, · · · , k and ξ via

Φζi = zi



and

Φξ = x−
k∑

i=1

Eizk−i+1 , (8)

where Φ is again a solution of the fundamental equation (3) for A; compare with equation
(2). We differentiate both sides of (8) with respect to time, and substitute into Ax+Bu the
expression for x obtained from (8) and the law (7) for u. Then,

AΦξ + Φξ̇ =

A

(
Φξ +

k∑
i=1

Eizk−i+1

)
+

k∑
i=1

bRizi

−
k∑

i=1

(Ėizk−i+1 + Eiżk−i+1)

from which it follows because of (4), (5), (6), and the conditions E0 ≡ I and Ek ≡ 0, that

ξ̇ = ζk, ζ̇k = ζk−1, · · · , ζ̇2 = ζ1,

and

ζ̇1 =
k∑

i=1

αiζi + αk+1ξ + ν ,

where ν = Φ−1v is the external control in new variables. Thus in the ψ := (ζ1, · · · , ζk, ξ) and
ν coordinates for states and control we have a parallel connection of n systems in control
canonical form, a system of the form

ψ̇ = Ãψ + B̃ν ,

where Ã, B̃ are constant matrices and the characteristic polynomial of Ã is

(
sk+1 − α1s

k − · · · − αks− αk+1

)n
. (9)

Note that the composite state
(z1(t), · · · , zk(t), x(t))

is bounded in norm by cγ(t)‖ψ(t)‖, where c is a constant (dependent only on n, k) and γ(t)
is any upper bound for the absolute values of all the entries of Φ(t) and the Ei(t). Thus
if γ(t) grows at worst exponentially, there is a choice of the coefficients αi which insures
that, for ν ≡ 0, ‖ψ(t)‖ decays at a faster rate, and hence that the composite state of the
precompensator and plant also decays exponentially. This is clarified by theorem 3 below.

The whole point of the nonlinear design is that it will be possible to precompute the
general form of the matrices Ei, R as symbolically dependent on the coordinates of the
reference state and control trajectory. We next address this point.

3 Nonlinear Design

Assume that we want to regulate along trajectories of the nonlinear smooth (i.e., infinitely
differentiable,) system

ẋ(t) = f(x(t)) + u(t)g(x(t)) , (10)



where x(t) ∈ IRn for all t, and where we consider again for simplicity only the single input
case u(t) ∈ IR and systems linear in the control (see [5] for the more general situation). More
specifically, we restrict our interest to those trajectories that are obtained as follows. We
assume given a smooth open-loop control generator:

η̇(t) = P (η(t)), u(t) = Q(η(t)) , (11)

where η(t) ∈ IRl for some l, for all t, and where Q : IRl → IR may be thought of as an output
map. Typically, we may have an equation such as η̇ = 0, u = η (controls of interest are
step signals,) η̇1 = 0, η̇2 = η1, u = η2 (controls are ramps,) or a general second-order linear
equation to produce all of the above plus periodic controls.

The design method starts with the assumption that an integer k is given and that a
k × n matrix W is also given such that the matrix equality (14) (see below) holds. The
entries of W are functions of the variables (η, x), defined on some open subset O of the space
Rl+n (a significant improvement over the design in [5], where these were functions defined
on Rl+n(n+1)). The design will be valid along those trajectories of the composite system

η̇ = P (η), u = Q(η) (12)

ẋ = f(x) + ug(x) (13)

such that (η(t), x(t)) ∈ O for all t. The interval of definition may be finite or infinite. In the
infinite case, we prove a stability result later.

Both k and W can be themselves computed in principle in ways described in [5] and
[6]; see theorem 2 below. The computational complexity involved in the calculation of k
and W by a general purpose computer-aided design method could however be huge, since
techniques from symbolic algebra are involved. (Of course, that is an unavoidable fact about
nonlinear systems.) Once these are found, however, the rest of the design is relatively simple,
as illustrated now. Further, approximate solutions of the equation for W will probably be
sufficient for regulation purposes. This is illustrated by the example detailed in [8], where the
equilinearization methodology is applied to the control of the angular velocity of a satellite
through a single pair of opposing jets.

In order to describe the equation that W must satisfy, we introduce the following vector
functions on Rl+n with values in the same space (equivalently, vector fields in Rl+n):

A(η, x) :=
(

P (η)
f(x) + Q(η)g(x)

)
, b(η, x) :=

(
0

g(x)

)
.

Recall that adAc is the vector field obtained as the Lie bracket [A, c], where

[A, c] := c′A− A′c ,

and prime indicates Jacobian. We ask that k and W satisfy the right-inverse equation

(b, adAb, · · · , adk−1
A b)W = I . (14)

We then have the following main result, whose proof we omit since it follows easily from the
main result in [5].

Theorem 1 The matrices R, Ei constructed by the algorithm described below have the fol-
lowing property. If (η(t), x(t)) remains in the set O for all t, then the system (A(t), b(t))
obtained by

A(t) = f ′(x(t)) + Q(η(t))g′(x(t)), b(t) = g(x(t)),



is such that the matrices

Ei(t) := Ei(η(t), x(t)), R(t) := R(η(t), x(t)),

solve the requirements E0 ≡ I, Ek ≡ 0, and (4).

The interpretation of all this is that one will apply to the plant at time t the control

u(t) +
k∑

i=1

Ri(η(t), x(t))zi(t) ,

obtained by adding a linear correction to the reference input. And in formula (6), the
variable ’x’ to be multiplied by the gain αk+1 really means now the observed error in x, that
is, the difference between the actual state of the plant and the reference x(t). For small
enough perturbations, one may the expect that the actual state trajectory will approach
asymptotically the desired reference state trajectory, if the gains αi are chosen properly.
This is established below.

We now describe the algorithm in pseudo-macsyma code. It was implemented in various
MACSYMA environments, including a Sun-3 workstation. The entire algorithm takes only
a few lines of code. First we define k × k matrices Dl, l = 0, · · · , k − 1 by the formulas:

Dl[i, j] := if l = i + j − k − 1 then (−1)j−1

(
j − 1

l

)

else 0.

Now let L be the operator on matrices

L(M) := LAM + M(f ′ + Q(η)g′) ,

defined on matrices M with n columns whose entries are functions of (η, x), and where
LA applies componentwise as a Lie derivative, that is, LAφ = ∇φ.A for functions φ(η, x).
Finally, we let

R :=
k−1∑
i=1

DiLi(W ) ,

Ek : 0 (an n× n matrix) and, recursively on i = k − 1, · · · , 1
Ei := (f ′ + Q(η)g′)Ei+1 − L(Ei+1) + bRk−i .

(Note that the last product is an n× n matrix.) This completes the construction.

For completeness, we now quote a consequence of the results in [5] and [6], restated in
terms of the solvability of (14).

Theorem 2 Assume that the system (10) is analytic and completely controllable. Further,
assume that either there is some equilibrium state f(x0) = 0 or that the system is complete.
Then, for each compact subset C of the state space Rn there are an integer k, an open-loop
control generator as in (11), and a matrix W , such that the following property holds: for
each pair of states x1, x2 ∈ C there is some initial condition η(0) of (11) and a time T such
that, solving (12) with initial condition (η(0), x1) results in a trajectory with x(T ) = x2, and
further, the trajectory is contained in the domain of W for all t, and the matrix equation
(14) holds there.



More is true, in fact. If the original system is “algebraic” in a suitable sense (for instance,
all functions appearing are rational functions, or even in other finite algebras, like trigono-
metric polynomials,) and if an open-loop generator is also given which is also algebraic in
this sense, then it is possible to prove that there is a global solution W , in the sense that
W is defined, and the equation (14) holds, for all trajectories along which there is linear
controllability, with no need to restrict to compacts. See [7] for details.

4 A stability theorem

We prove in this section that the coefficients αi can be chosen so that there is asymptotic
stability of the closed-loop system, along all trajectories corresponding to the given finite-
dimensional control generator, as long as these trajectories remain in a bounded set. We first
need a result about time-varying systems. Denote by ‖a‖ the Euclidean norm of a vector a,
and by ‖A‖ the associated matrix norm. Recall that a solution z(·) of an equation

ż(t) = F (t, z(t)) (15)

is said to be asymptotically stable (a.s.) if the following two properties hold:

1. There is a function δ : (0,∞) → (0,∞) such that, for each ε > 0, if z(·) is any other
solution of (15) with ‖z(0) − z(0)‖ < δ(ε) then necessarily ‖z(t) − z(t)‖ < ε for all
t ≥ 0, and

2. there is a δ0 > 0 such that each solution z(·) of (15) for which ‖z(0)− z(0)‖ < δ0 must
satisfy ‖z(t)− z(t)‖ → 0 as t →∞.

Proposition 4.0.1 Let C(t) be a continuous n × n matrix function, and let γ(t, z) be an
n-vector of functions, continuous on t and smooth on z, which satisfies

‖γ(t, z)‖ ≤ c1‖z‖2 (16)

for all t and all z ∈ IRn. Assume that T (t) is a continuous n× n matrix function, invertible
for each t ≥ 0, such that

max{‖T (t)−1‖, ‖T (t)‖} ≤ c2e
λt ∀t ≥ 0 (17)

for some λ > 0 and so that the matrix

P := T (t)−1C(t)T (t)− T (t)−1Ṫ (t) (18)

is constant and each of the eigenvalues of P has real part < −µ, where µ ≥ 3λ. Here, c1, c2

are constants. Then, the solution z ≡ 0 of

ż(t) = C(t)z(t) + γ(t, z(t)) (19)

is asymptotically stable.

Proof. Introduce the vector function

β(t, y) := T (t)−1eµtγ(t, e−µtT (t)y) .



Note that because of the assumptions on γ, T, T−1,

‖β(t, y)‖ ≤ c̃e(3λ−µ)t‖y‖2 ≤ c̃‖y‖2 . (20)

Consider the differential equation

ẏ = (P + µI)y + β(t, y) . (21)

The eigenvalues of the linear part of this equation all have negative real parts, because of
the assumption on the eigenvalues of P . Thus this linear part is uniformly asymptotically
stable, while the nonlinear part is, because of (20), of order o(y) uniformly on t. Thus (see
e.g., [9], page 188,) the solution y ≡ 0 of (21) is asymptotically stable. Let δ(·), δ0 be as in
the definition of stability given above, and introduce δ̃(ε) := δ(ε)/c2, δ̃0 := δ0/c2. Pick now
any ε > 0, and consider any solution z(·) of (19) for which ‖z(0)‖ < δ̃(ε). It follows that

y(t) := eµtT (t)−1z(t)

is a solution of (21), and satisfies that

‖y(0)‖ ≤ ‖T (0)−1‖ ‖z(0)‖ ≤ δ(ε) ,

and therefore also
‖z(t)‖ ≤ e−µt‖T (t)‖‖y(t)‖ ≤ ‖y(t)‖ < ε

for all t ≥ 0. Finally, if ‖z(0)‖ < δ̃0 then also ‖y(0)‖ < δ0 and hence z(t) → 0.

Theorem 3 Assume that the integer k and the matrices R, Ei, i = 1, · · · , k are as in the
statement of theorem 1. Let K be any compact subset of O. Then, there exist real numbers
α1, · · · , αk+1 such that the following holds. Assume that the trajectory (η(t), x(t)) of (10)-(11)
is included in K for all t ≥ 0, and consider the closed loop system

ż1 = A(t)z1 +
k∑

i=1

(αiI − αk+1Ek−i+1(t)) zi + αk+1(ξ − x) (22)

żi = A(t)zi + zi−1, i = 2, · · · , k (23)

ξ̇ = F ( ξ(t) , Q(η(t)) +
k∑

i=1

Ri(t)zi(t) ) , (24)

where, for notational simplicity, we introduced the function F (ξ, w) := f(ξ) + wg(ξ), and
where again

A(t) = f ′(x(t)) + Q(η(t))g′(x(t)) (25)

(Jacobians), and
Ei(t) := Ei(η(t), x(t)), R(t) := R(η(t), x(t)),

all evaluated along the chosen trajectory. Then, the conclusion is that

z1(t) ≡ 0, · · · , zk(t) ≡ 0, ξ(t) = x(t)

is an a.s. solution of (22)-(24).



Proof. By continuity of f , g, R, and all the Ei, and by compactness of K, there are positive
constants λ, d1, d2 such that

‖f ′(b) + Q(a)g′(b)‖ < λ , (26)

‖R(a, b)‖ < d1 , (27)

and
‖Ei(a, b)‖ < d2, i = 1, · · · , k, (28)

for all (a, b) ∈ K. Also, since F is twice continuously differentiable, there is a function

γ0 : IRl+n+n+1 → IR

and a constant d3 such that

‖γ0(a, b, ξ, w)‖ ≤ d3‖(ξ, w)‖2 (29)

for every (a, b) ∈ K, and so that, for each such (a, b), F (ξ, w) equals

F (b,Q(a)) + Fξ(b,Q(a))(ξ − b) + Fw(b,Q(a))(w −Q(a)) + γ0(a, b, ξ − b, w −Q(a)) . (30)

In particular, (26) insures that ‖A(t)‖ < λ for any possible matrix as in (25). Elementary
estimates on the solutions of ẋ = A(t)x and ẋ = −A(t)x, (see for instance [9], p.67ff.,) imply
therefore that

max{‖Φ(t)‖, ‖Φ(t)−1‖} ≤ eλt (31)

for the fundamental solution associated to any such matrix A(·). Let µ := 3λ.

Pick the coefficients α1, · · · , αk+1 such that all the roots of (9) have real part less than
−µ.

Now consider any fixed reference trajectory, as above, and introduce the n-vector of new
variables zk+1(t) := ξ(t) − x(t). In terms of these variables, the last term in (22) becomes
αk+1zk+1, and (24) becomes

żk+1 = A(t)zk+1 +
k∑

i=1

Ri(t)zi(t)g(x(t)) + γ0(η(t), x(t), zk+1,
k∑

i=1

Ri(t)zi(t)) . (32)

Thus we wish to show that (z1 ≡ z2 ≡ · · · ≡ zk+1 ≡ 0) is an a.s. solution of the system (22),
(23), (32). We write this system in terms of the variables z := (z1, · · · , zk+1) ∈ IR(k+1)n as

ż(t) = C(t)z(t) + γ(t, z(t)) ,

with γ(t, z) being the function which is identically zero except for its last n coordinates,
which equal

γ0(η(t), x(t), zk+1,
k∑

i=1

Ri(t)zi(t)) .

Note that γ satisfies because of (29) and (27) an estimate as in (16). By the constructions
of R and of the matrices Ei, it follows that (18) is satisfied with P = Ã,

T (t) =




Φ(t) 0 · · · 0 0
0 Φ(t) · · · 0 0
...

...
. . .

...
...

0 0 · · · Φ(t) 0
Ek(t) Ek−1(t) · · · E1(t) Φ(t)




.



Observe that also

T (t)−1 =




Φ(t)−1 0 · · · 0 0
0 Φ(t)−1 · · · 0 0
...

...
. . .

...
...

0 0 · · · Φ(t)−1 0
−Φ(t)−1Ek(t) −Φ(t)−1Ek−1(t) · · · −Φ(t)−1E1(t) Φ(t)−1




.

Note that an estimate as required for (17) holds because of (28) and (31). The conclusion
then follows from proposition 4.0.1.
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