
ABSTRACT

It has been known for a long time that certain controlla-
bility properties are more difficult to verify than others. This
article makes this fact precise, comparing controllability with
accessibility, for a wide class of nonlinear continuous time sys-
tems. The original contribution is in formalizing this compar-
ison in the context of computational complexity.

§1. Introduction.

The classical Kalman controllability condition allows one
to test in an algebraic manner if a (finite dimensional) lin-
ear continuous time system is controllable or not. The test
is based on simple linear algebra (Gaussian elimination) and
can be efficiently carried out in a digital computer. Just as
in the linear case, controllability is a central property to be
checked for nonlinear systems. Before any controller design is
attempted, it is important to know if one can steer any state to
any other state. Actually, in the nonlinear case, the properties
of local controllability about a state (“is it possible to reach
any state in a neighborhood of a given x0 from x0?”, or “is it
possible to control every state in a neighborhood of a given x0

to x0?”) are even more basic and not necessarily equivalent to
the respective global notions. Even more, there are variants
of the local notions, which have to do with the possibility of
controlling to (or from) nearby states in small time, or using
small control amplitudes, or without large excursions.

Briefly, the status of the nonlinear case is as follows. The
general problems of finding necessary and sufficient conditions
for deciding when a system is controllable (locally or globally,
in any of their variants) are still open, even if one restricts to
classes of systems with much extra structure, such as bilin-
ear systems. There has been substantial progress however in
finding either necessary or sufficient conditions, under the as-
sumption that the system is for instance described by analytic
differential equations (to be refered from now on as “analytic
systems”). One does know that local controllability can be
in principle checked in terms of linear relations between the
Lie brackets of the vector fields defining the system ([15]), and
isolating the explicit form of these relations has been a major
focous of research. It is impossible to even attempt here to
give a reasonably complete list of references to this very active
area of research. We give just the reference [16] as an example
and source of further bibliography.
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The simplest necessary condition for controllability is
(again with technical variants) that of accessibility, sometimes
also refered to as “weak controllability”. This is the property
that one should be able to reach a set of full dimension from
each state, –or for the local problem, from a fixed given state.
For (analytic) systems, this property turns out to be equiva-
lent to being able to steer each state to every other state us-
ing possibly “negative time” motions in which the differential
equation is solved backwards in time. Of course the latter mo-
tions are unrealizable in most physical systems, so the resulting
weak controllability notion is mostly of purely mathematical
interest. (However, under extra conditions such as the exis-
tence of suitable Hamiltonian structures, it is possible to prove
the equivalence of controllability and accessibility. For linear
systems, the concepts are also equivalent.) The advantage of
considering accessibility is that this is basically the property
that a certain group action be transitive, and therefore it can
be characterized precisely through a Lie rank condition. See
for instance [7], [15], or [8] for an introduction to the topic of
accessibility.

The experience with accessibility and controllability sug-
gests that the latter will be much more difficult to characterize.
Our objective is to make this relative difficulty precise in some
formal sense. In the spirit of computational complexity, we
pick a class of systems (“bilinear subsystems”) and show that
for this class the accessibility property can be decided in poly-
nomial time while controllability is NP-hard. Recall that NP-
hard problems are widely believed to be intractable, and one of
the main open problems in theoretical computer science is that
of establishing rigorously this intractability, the famous “P 6=
NP” question ([6], [9]). It could be argued that by proving
that controllability is NP-hard, we are not in fact establishing
precisely that this is harder than accessibility, only that this
is true provided that the above open question in computer sci-
ence is resolved. This is however the standard way in which
one “proves” that a problem is hard in combinatorics, opera-
tions research, theoretical computer science, or, in a control-
theoretic framework, [10].

The choice of a class of systems in order to quantify the
above relative difficulty is critical. A class which is too large
will contain systems for which even accessibility may be un-
decidable, while a small class (such as linear systems) may
be so that controllability itself is easy to decide. The next
two sections discuss this point and give some basic facts about
complexity. Then we state our results. The proof of the main
theorem is given in [14] and will not be repeated here, but the
last section provides the proof of a result not included in that
reference.



For other work dealing with difficulty of computation in
the context of control and system theory, see the remarks re-
garding bilinear systems in [3], and [12] regarding the unde-
cidability of the realization problem; more recently [10] (and
references there) dealt with the study of complexity of decen-
tralized control problems, while [13] characterized the complex-
ity of decision problems for an algebra used to study piecewise
linear control systems.

§2. Systems and basic complexity issues.

When applying computational complexity or, more gener-
ally computability techniques, one must clarify what it means
to “give” a system –and possibly also an initial state x0– and
what it means to “decide” if the system is controllable from
x0, reachable from x0, and so forth.

In its most general sense, given could be taken to mean
“given a recursive description” of the system, that is, one
should provide a computable real function f , as well as a com-
putable vector x0 if a fixed initial state is of interest. See
for instance [1] for a discussion of computable analysis. De-
cide should in that context mean provide a computer algorithm
which, when presented as an input with the description of f
(and x0), will answer “yes” or “no” after a finite number of
steps. The precise definition of “algorithm” is not very criti-
cal in this context; for instance multitape Turing machines as
in [2], or several types of abstract computer models. For this
and other related notions, we refer the reader to the standard
literature in complexity theory, which we shall not repeat here.



When using this general concept, controllability (as well
as accessibility) is undecidable for trivial reasons, even for lin-
ear systems. For example, the one-dimensional system ẋ = bx
is controllable if and only if b is nonzero. But it is impossible
to decide if a “given” real number is zero or not: see [1], the-
orem 6.1. On the other hand, when when talks about actual
systems, one has in mind a finite “explicit” representation of
the structure and of the parameters of the system, typically
obtained either from physical principles or from identification
data.

A good compromise between generality and expliciteness
of that of restricting to classes such as that of systems defined
by polynomial or rational equations, or more generally systems
involving finite algebraic descriptions (which could include for
instance trigonometric functions as those that appear naturally
in mechanical models), and to ask that all parameters be given
by rational numbers. For simplicity, we restrict here to the
polynomial case (and later, for the main result, to a subclass
of these). Thus we consider only systems

ẋ(t) = f(x(t), u(t)) (Σ)

where the state x(t) evolves in a nonsingular algebraic set
M ⊆ IRN , controls take values on an Euclidean space IRm,
and f is a polynomial function on IRN × IRm. An explicit
representation of M by equations is assumed given, that is, a
set of l polynomials with rational coefficients φi(x1, . . . , xN ),
i = 1, . . . , l with φi(0) = 0 and such that the Jacobian of

(φ1, . . . , φl)′

(prime indicates transpose) has constant rank, say equal to
N − n. Thus, M is a manifold of dimension n, and f is a



vector of N polynomials in N +m variables, which is tangent
to M at each point of M . This last condition means that the
Lie derivatives LXφi vanish identically on M , for each vector
field X of the type f(·, u). (Recall that LXφ, for a vector field
X and function φ, denotes the dot product

∇φ.X

where ∇φ is the gradient of φ.)

“Giving” the polynomial system Σ means specifying the
coefficients of the φi’s and of the polynomial entries of f ; we
assume that these coefficients are rational numbers expressed
in binary notation. By

size Σ

we denote the total size of the data in bits. A fixed data struc-
ture is assumed; the precise form is irrelevant up to constant
factors. When we say that a certain property is decidable for
a subclass of such systems, we mean that there is a fixed algo-
rithm which, when given the data describing a system in this
subclass, will eventually stop and answer whether this prop-
erty holds or not. The property can be decided in polynomial
time if there is in addition a polynomial P such that the al-
gorithm will stop after at most P (size Σ) computational steps.
In computational complexity, problems decidable in polyno-
mial time are considered “easy” compared to problems that
necessarily take as much, or more, time to compute as cer-
tain “hard” combinatorial problems (the “travelling salesman
problem”, the “Boolean satisfiability” problem). Such harder
problems are called NP-hard problems (see e.g. [6], [9]).

Using the Kalman controllability matrix, it is an easy ex-
ercise to prove that for the subclass of linear systems (for which



f is a linear map and M = IRN ), controllability can indeed be
decided in polynomial time.

§3. Controllability and accessibility.

We define the time-T accessible set AT (x) as the set of
states that can be reached from x in time exactly T ; when T is
negative, we mean states that from which x can be reached in
time −T . We take any reasonable family of controls: all mea-
surable locally essentially bounded controls, piecewise contin-
uous controls, or even piecewise constant controls; the results
to be given will be the same for either of these classes. The
union of all the sets AT (x), over all nonnegative T , is denoted
A+(x); this is the set of states reachable from x. Similarly,
A−(x) is the union over T ≤ 0, the set of states controllable
to x. With these notations, for instance, controllability from
x0 means that A+(x0) = M , controllability to x0 means that
A−(x0) = M , and local reachability in small time means that
for each T > 0, x0 is in the interior of the union of the sets
Aε(x0), 0 ≤ ε ≤ T .

The system Σ is accessible if intA+(x) 6= ∅ for each x ∈M .
It is controllable if A+(x) = M for all x. For simplicity, we deal
here only with (global) accessibility and controllability. The
paper [14] deals with local problems, providing results entirely
similar to the global ones to be given. This will be proved in
the next section:

Proposition. Accessibility is decidable for the class of
polynomial systems.



We don’t know if controllability is decidable, but we are
willing to risk a conjecture. The last part says that there must
exist an algorithm that enumerates all controllable systems.

Conjecture. Controllability is undecidable for the class
of polynomial systems, but the class of all controllable polyno-
mial systems is recursively enumerable.

For the main result, we consider the subclass of bilinear
subsystems. This consists of all polynomial systems with equa-
tions

ẋ = (A+
m∑
i=1

uiGi)x+Bu , (3.1)

where each of A,G1, . . . , Gm is a square (rational) matrix of
size N × N and B is of size N × m. That is, f is linear in
each of x and u separately. Recall that the system evolves
in an algebraic submanifold M . These are systems whose dy-
namics can be embedded algebraically into a bilinear system.
This is a rich enough class of systems for the purposes of this
paper, and in fact includes many subclasses of interest. For
instance, bilinear systems result when one takes all the φi ≡ 0
(so n = N,M = IRN ,) and in particular linear systems result
when also all the Gi are zero. Further, minimal realizations
of finite Volterra series are always of this type ([5]). The data
specifying such a system consists of the entries of the matri-
ces A,G1, . . . , Gm, B and the coefficients of the polynomials
defining M .

The main result is as follows; the proof is given in [14].

Theorem. For the class of bilinear subsystems, accessi-
bility can be decided in polynomial time but controllability is



NP-hard.

§4. Acessibility of polynomial systems.

We now prove the (easy) Proposition stated in the previ-
ous section.

Let F be the set of all polynomial vector fields on IRN

(with rational coefficients), thought of as a Lie algebra under
the standard Lie bracket operation,

[X,Y ] := Y∗X −X∗Y

(“∗” indicates Jacobian). Note that f(·, u) is such a vector
field, for each fixed control value u. Alternatively, we shall also
think of F as the free module Q[x1, . . . , xn]n of all n-tuples of
polynomials in x1, . . . , xn.

It is known that accessibility is equivalent to the property
that the accessibility Lie algebra L of Σ should have rank n =
dimM at each x ∈ M . This Lie subalgebra of F is defined as
follows.

We let Li, i ≥ 1, be the sequence of Q-linear subspaces of
F defined inductively by:

L1 := span {f(·, u), u ∈ IRm}

and

Li+1 := Li + span {[f(·, u), X] |u ∈ IRm, X ∈ Li} .



Then L is the union of all the Li. Note that L1 is in fact
finite dimensional, because f is also polynomial in u, so the
coefficients of the monomials in u give generators; it follows
that there is also a finite (and computable) set of generators
for each Li. For each fixed x ∈ IRN , we let

Li(x)

denote the set of values {l(x), l ∈ Li}. This is a (Q-)subspace
because Li is. Similarly we define the subspaces L(x). Then,
accessibility is equivalent to

dimL(x) = n

for all x ∈M . (Actually, one typically makes the statement in
terms of the IR-vector space spanned by L, but both statements
are equivalent.)

Finally, we let Ni be the Q[x1, . . . , xN ]-module of polyno-
mial vector fields obtained by taking all linear combinations of
elements of Li with polynomial coefficients, and we let N be
the union of all of these, or equivalently the module spanned
by L. By definition L ⊆ N , and since pointwise each element
of N (x) (defined analogously as above) is a linear combination
of elements of L(x), we have that in fact,

L(x) = N (x)

for all x.

From the definition of the Li’s, we know that Ni is gener-
ated by vectors of polynomials of degree at most

2i−1s



where s is the maximal degree in x among the entries of f . We
shall apply the following theorem (see [11]) with σ(j) := 2j−1s
and l = k = N :

Fact. Assume that σ : IN → IN is a given computable
function on natural numbers. Then there exists a computable
function γ : IN× IN→ IN with the following property. If

N1 ⊆ N2 ⊆ . . . ⊆ Nj ⊆ . . .
is any increasing sequence of submodules of Q[x1, . . . , xl]k such
that for each j the submodule Nj can be generated by polyno-
mials of degree at most σ(j) then t := γ(l, k) is such that

Nt = Nτ
for all τ > t.

Thus there is an algorithm giving an integer t so that
Nt = N , and therefore such that

Lt(x) = L(x)

for all x. Thus, it is only necessary in order to check accessi-
bility to decide if a matrix of polynomial functions (obtained
by listing the generators of Lt) has rank n at each point in an
algebraic set M . This can be expressed as a problem in the
first order theory of real closed fields and is therefore indeed
decidable ([4]).

Of course, decidability is a property of rather limited
“practical” interest; for instance determining the above rank
condition may easily take doubly exponential time in the size
of the data. In that sense, the result for bilinear subsystems is
much more interesting. Nonetheless, it seems to be of interest
to ask about the ultimate limitations of what can be checked
in control theory.
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