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ABSTRACT

This paper introduces a subclass of Hamiltonian control systems motivated by me-
chanical models. Some problems of time-optimal control are studied, and results on
singular trajectories are obtained.

1 Introduction

We deal here with time-optimal control and some other questions for multivariable sys-
tems for which a certain Hamiltonian structure is present. The main results characterize
regions of the state space where singular trajectories cannot exist, and provide high-
order conditions for optimality. This work was motivated by previous studies ([5], [6])
on robotic manipulators. Pursuing further the ideas expressed in [6], we identify a class
of Hamiltonian systems which includes many mechanical models, particularly those in
which the energy is at most quadratic in the momenta.

This work is only preliminary, in that more questions are left open than are answered.
We believe that the further study of the class of systems identified here, –or of some
variant,– for instance in the direction of realization theory and algebraic properties,
would be very fruitful and might be the “right” level of generality for many results on
nonlinear mechanical systems (as opposed to dealing, for example, with the class of all
Hamiltonian systems).

2 A Class of Hamiltonian Systems

The Appendix reviews some of the basic terminology about symplectic manifolds and
Hamiltonian vector fields. We start here with the definition of Hamiltonian control
system as in [4], but not introducing outputs. The systems that we consider are of the
type

ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)gi(x(t)) (Σ)

where f, g1, ..., gm are smooth vector fields on the n−dimensional manifold M . A control
u(·) is a measurable locally essentially bounded function u : [0, T ] → IRm. We will only
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be interested in Hamiltonian systems. The system (Σ) is called Hamiltonian if M is a
symplectic manifold and there exist smooth functions

H0, H1, · · · , Hm : M → IR

so that the vector fields of Σ are those associated to these functions:

f = XH0 , gi = XHi , i = 1..m .

It may be of interest to weaken this definition and allow f to be only locally Hamilto-
nian as done in [4], or to consider what are sometimes called “Poisson systems” (see e.g.
[3]). But we wish here to instead restrict this class further by imposing five conditions,
the first four of which follow and the last of which will be given later. We assume from
now on:

(A1) 2m = n

(A2) {Hi, Hj} = 0 ∀ i, j ≥ 1

(A3) dH1 ∧ dH2 ∧ · · · ∧ dHm 6= 0 everywhere

(A4) {Hi, {Hj, {Hk, H0}}} = 0 ∀ i, j, k ≥ 1

All the axioms are satisfied, for instance, when dealing with robotic manipulators for
which each link can be separately controlled. Condition (3) can be dropped for a few of
the results, but is essential otherwise; it corresponds to the requirement that each control
act freely on one of the degrees of freedom of the system. It would be of great interest to
study how far one can go without this assumption, which would allow studying failure
modes.

2.1 A natural gradation

We introduce the following sets of smooth functions on M . Let Fk := 0 for k < 0, and
for k ≥ 0:

Fk := {F : M → IR | ad k+1
H F = 0}

where H is the set of functions {Hi, i = 1..m}, and where ad l
HF is the linear span of the

set of functions of the form
ad a1 · · · ad alF

over all possible sequences of elements a1, · · · , al in H.

Note that, directly from the definition of the Fk’s, it follows that {Fi,Fj} ⊆ Fi+j
for all i, j. This is because for each smooth functions F ∈ Fi and G ∈ Fj, and for each
sequence a1, · · · , ai+j+1 of elements of H, repeated applications of the Jacobi identity give
that

ad a1 · · · ad ai+j+1
{F,G}

2



is a linear combination of terms of the form

{ad b1 · · · ad brF, ad c1 · · · ad csG}
with the b1, · · · , br, c1, · · · , cs in H and r + s = i + j + 1. This last equality implies that
either r > i or s > j, which in turn implies that each such term must vanish. Under the
assumptions (A1) to (A4), one can in fact prove an inclusion in Fi+j−1:

Lemma 2.1 The following properties hold:

1. 0 = · · · = F−1 ⊆ F0 ⊆ F1 ⊆ · · ·

2. Hi ∈ F0, i = 1..m

3. H0 ∈ F2

4. {Fi,Fj} ⊆ Fi+j−1 for all i, j.

Proof. The first of this properties is immediate from the definition of the Fk’s, while the
second and third follow from (A2) and (A4) respectively. To prove the last property,
note that by the Darboux/Lie Theorem and using property (A4), locally we may assume
that each Hi = qi (in some set of canonical coordinates), which implies that Fk consists
of those functions that can be expressed as polynomials of degree at most k on the pi’s
(and arbitrary on the other coordinates). From this, property (4) follows.

Note that using canonical coordinates as in the above proof, property (A4) says that
H0 is at most quadratic on the “generalized momenta”.

We now introduce

E := Poisson algebra generated by Hi, i = 0..m .

The algebra E completely characterizes the control theoretic properties of the system,
since the associated vector fields do. If we now let

Ei := Fi ∩ E
then E is graded in the same manner as the set of all functions, in the sense that all the
properties in the above Lemma hold with El replaced for Fl.

2.2 Strong Accesibility Condition

Locally, each F ∈ F0 is a smooth function of H1, · · · , Hm,

F (x) = h(H1(x), · · · , Hm(x)) ,

again by the characterization in terms of degree with respect to momenta. Thus, by
(4) in the Lemma, also for each i, j ≥ 1 it holds that {Hi, {H0, Hj}} is a function of
H1, · · · , Hm.

We let
Aij := {Hi, {H0, Hj}}

and let A be the m by m matrix {Aij}. The remaining axiom is:
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(A5) rankA = m everywhere

Note that, for mechanical systems, A is typically the inverse of the inertia matrix. Under
this condition (which we assume from now on):

Lemma 2.2 The following holds everywhere on M :

dH1 ∧ · · · ∧ dHm ∧ d{H0, H1} ∧ · · · ∧ d{H0, Hm} 6= 0

Proof. In local canonical coordinates, we can write

{H0, Hj} = bj(q) +
m∑
i=1

Aij(q)pi

(for some functions bj) so when computing the expression in these coordinates there
results

(detA) dp1 ∧ · · · ∧ dpm ∧ dq1 ∧ · · · ∧ dqm
and the determinant is nonzero by hypothesis.

Equivalently, the set of vector fields

{g1, · · · , gm, [f, g1], · · · , [f, gm]}

forms a field of n-frames on M , which implies that the original system is strongly acces-
sible.

3 Time Optimal Control

We now restrict controls to satisfy |ui(t)| ≤ 1 for all i, t. Other constraints sets could be
used, in which case the material to follow would have to be modified accordingly.

The time-optimal problem is: given states x1, x2, find a controlled trajectory that
steers x1 to x2 in as small time as possible. A pair (u(·), x(·)) of functions defined on
some interval I = [0, T ] and satisfying the equations of Σ on that interval, will be called
an optimal trajectory if u is a control with |ui(t)| ≤ 1 for all i, t and for each other solution
(u′(·), x′(·)) on any interval [0, T ′] for which x(0) = x′(0) and x(T ) = x′(T ′) necessarily
T ′ ≥ T .

Among the questions one wishes to understand for such problems are those dealing
with the existence of bang-bang and/or singular optimal trajectories, the possibility of
Fuller-like phenomena, and the feedback synthesis of controls. Lie-theoretic techniques
have proved very useful, but mostly for single-input systems. Our goal here is to show
how some conclusions can be drawn for multiple input systems if (A1)-(A5) are assumed.
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3.1 Pontryagin’s Maximum Principle

In order to elegantly state the PMP, we introduce first the Hamiltonian extension (or
lift) Σ∗ of the system Σ (see e.g. [4] for more details).

The state space of Σ∗ is T ∗M seen as symplectic manifold. Note that in our applica-
tions, M is itself a symplectic manifold, but for now we do not use that fact.

With each vector field X on M one associates a Hamiltonian

HX : T ∗M → IR

as follows:
HX(λ, x) := 〈λ,X(x)〉, x ∈M,λ ∈ T ∗xM

and the notation (λ′X)(x) is used instead of HX(λ, x).

When M happens to be itself a symplectic manifold and X,Y are Hamiltonian vector
fields, X = XH , Y = XK , and H,K : M → IR are smooth, one has the formula

{λ′XH , λ
′XK} = λ′X{H,K} (1)

where the brackets on the left indicate Poisson product on T ∗M but in the right they
indicate the Poisson bracket on M . In particular, given the vector fields f, g1, · · · , gm
defining Σ, we introduce the Hamiltonians

ϕ := λ′f , γi := λ′gi, i = 1..m

From (A2) and (1), it follows that

{γi, γj} = 0 (2)

for all i, j.

Now the Hamiltonian extension of Σ is defined as the control system

ξ̇ = f ∗(ξ) +
m∑
i=1

uig
∗
i (ξ) (Σ∗)

where f∗ (respectively, g∗i ) is the Hamiltonian vector field associated to ϕ (respectively
γi) under the symplectic structure of T ∗M .

In local coordinates (x, λ) for T ∗M , the equations of the Hamiltonian extension are
the usual ones

ẋ = f(x) +
m∑
i=1

uigi(x)

λ̇ = −(f +
m∑
i=1

uigi)
′
xλ .

Pontryagin’s Maximum Principle (PMP) states that if (u(t), x(t)), t ∈ I is an optimal
trajectory then it must be an extremal, i.e. there exists an absolutely continuous curve
ξ : I → T ∗M so that for each t:

ξ(t) = (x(t), p(t))

with p(t) ∈ T ∗x(t)M , the pair ξ, u satisfies the equations of Σ∗, and the following properties
hold:
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1. p(t) 6= 0 for all t

2. for almost all t,

max
|vi|≤1

m∑
i=1

viγi(t) =
m∑
i=1

ui(t)γi(t)

3. ϕ+
∑m
i=1 uiγi is constant and ≥ 0 along the trajectory.

4 Singular Trajectories

Note that for each t and i for which γi(t) 6= 0, property (2) in the PMP implies that

ui(t) = sign γi(t) .

If the set of zeroes of γi is discrete in I, it follows that ui is piecewise constant, equal to
±1, with finitely many switchings. We say in that case that the control is ui-bang-bang.
The worst case in this regard is when γi ≡ 0 on I; we say then that the trajectory
(x(·), u(·)) is ui-singular. We now want to say something about singularity.

If H is any Hamiltonian on M , we may consider the value α(t) of the Hamiltonian
λ′XH evaluated along any trajectory of Σ∗. A calculation shows that its derivative
becomes

α̇(t) = {α(t), ϕ(t)}+
m∑
i=1

u(t){α(t), γi(t)} (3)

(bracket here is in T ∗M), or equivalently, using equation (1),

α̇(t) = λ′X{H,H0} +
m∑
i=1

u(t)λ′X{H,Hm} (4)

where the right hand side functions are also evaluated along ξ(·). In particular, taking
H to be any of the Hi’s, i ≥ 1, and using (A2), there results

γ̇i = λ′X{Hi,H0} = {γi, ϕ} (5)

along any trajectory.

Now observe that along an extremal trajectory and corresponding lift there cannot
be any τ where

γ1(τ) = · · · = γm(τ) = {γ1, ϕ}(τ) = · · · {γm, ϕ}(τ) = 0

because the existence of a nonzero λ ∈ T ∗x(τ)M so that

λ′g1(x) = · · · = λ′gm(x) = λ′[f, g1](x) = · · · = λ′[f, gm](x) = 0

would contradict Lemma (2.2).

Proposition 4.1 There cannot be any optimal trajectory which is ui-singular for all i.
Moreover, if for some i an extremal is uj-singular for all j 6= i, then ui is bang-bang.

6



Proof. If the result were false, there would exist some common accumulation point of
zeroes of all γk’s on the interval I. It follows from formula (5) that there is also a
common zero of all the γk’s as well as all the {γk, ϕ}’s, contradicting what was proved
above.

5 m− 1 Singular Trajectories

Now we ask what possibilities are there regarding trajectories for which m − 1 control
coordinates are simultaneously singular. For notational simplicity, we will assume that
these are the coordinates 1, · · · ,m− 1.

Since {Hi, {H0, Hj}} ∈ F0, locally there are functions αijk so that

dAij = d{Hi, {H0, Hj}} =
m∑
k=1

αijkdHk ∀ i, j ≥ 1

The same must then hold for the corresponding Hamiltonian vector fields, hence also
after evaluating by any λ ∈ T ∗xM , so

{γi, {ϕ, γj}} =
m∑
k=1

αijkγk

for each i and j. By the Jacobi identity and (2), this is also the same as {γj, {ϕ, γi}}.
For any given extremal, we consider γi, for each fixed i. Since γ̇i = {γi, ϕ} along

the extremal, this derivative is itself absolutely continuous and we can take a further
derivative, which is almost everywhere equal to, using again formula (3):

γ̈i = {ϕ, {ϕ, γi}}+
m∑
j=1

{γi, {ϕ, γj}}uj(t)

= {ϕ, {ϕ, γi}}+
m∑
k=1

βikγk

where

βik(t) :=
m∑
j=0

αikj(x(t))uj(t) .

If the extremal is ui-singular for all i 6= m, then γ1 = · · · = γm−1 ≡ 0 on I, so

{ϕ, {ϕ, γi}}+ βimγm ≡ 0 (6)

for all i between 1 and m− 1, and still for such i,

γi ≡ {ϕ, γi} ≡ 0 .

Let Sm be that set (possibly empty) where

dH0, · · · , dHm, d{H0, H1}, · · · , d{H0, Hm−1}, · · · ,
d{H0, {H0, H1}}, · · · , d{H0, {H0, Hm−1}}
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span the cotangent space. So for x ∈ S, and any nonzero λ ∈ T ∗xM ,

ϕ, γ1, · · · , γm, {ϕ, γ1}, · · · , {ϕ, γm−1}, · · · ,
{ϕ, {ϕ, γ1}}, · · · , {ϕ, {ϕ, γm−1}}

cannot vanish simultaneously. Given any singular trajectory as above, and any τ so that
x(τ) ∈ S, we claim that γm(τ) 6= 0. Indeed, if this were not the case then γm = 0 would
imply by (6) that also all {ϕ, {ϕ, γi}} vanish, contradicting the choice of the set Sm. We
conclude:

Proposition 5.1 For an extremal which is ui-singular, i = 1, ...,m − 1, necessarily the
bang-bang control um is constant (has no switches) on Sm. 2

Analogously one defines the sets Si interchanging the roles of i and m. Note that the
definition involves 3m−2 differentials in a space of dimension n = 2m, so we may expect
that each set Si be large.

Furthermore, one can typically say more about the singular controls while on this set,
as follows. For k = 1..m let

Λk := (αijk), i, j = 1 · · · k̂ · · ·m

and
Rk := Sk ∩ {det Λk 6= 0} .

While on the set Rk, the control um is constant, equal to either 1 or −1. For each of these
choices, and since γm is nonzero, equation (6) provides a nonsingular set of m− 1 linear
equations for the m − 1 remaining controls, with matrix Λ. Substituting back into the
Hamiltonian extension, this provides a set of simultaneous differential equations. From
this we can conclude for example:

Theorem 1 Assume that the system is real analytic (that is, the manifold M is analytic
and all the Hamiltonians are). Then, for every a trajectory that is ui-singular for all
i 6= k and such that x(t) ∈ Rk for all t, it follows that u(·) is analytic as a function of
time.

In fact, in this case, one can find Riccati-type equations for controls, as discussed for
manipulators in [5].

It could be the case, of course, that everything degenerates. For instance, when det
Λk ≡ 0 then Rk = ∅. This can happen in turn if some row of Λk, say the ith one,
vanishes identically. In that case, however, it will follow from (6) that second derivatives
also vanish identically, and this allows a third derivative condition to be imposed.
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5.1 Example

For a 2-link rotational manipulator (see equations in [6]), one computes (using a symbolic
system):

αij1 ≡ 0 ∀i, j
(so Λ1 ≡ 0) and

Λ2 = ∆2 = α112 = µ(θ2) sin 2θ2

as well as
S2 = {x | ν(θ2)(θ̇1 + θ̇2) sin θ2 = 0}

for some everywhere negative functions µ(θ2), ν(θ2), where θ1 and θ2 are the joint angles.
We conclude:

There are no u2-singular extremals on an open dense set.

This is a “degenerate case” in the discussion in the previous section. On the other
hand, for k = 1 one has

R2 = {x | θ2 6=
kπ

2
and θ̇1 + θ̇2 6= 0}

and therefore
For u1-singular trajectories, there are no switches on R2.

Moreover, one can prove as in [5] that indeed there do exist such trajectories, through
each point in R2.

One can also apply higher-order tests for optimality, in order to eliminate singular
trajectories which are not necessarily optimal. We illustrate this with the 2-link manipu-
lator. Along trajectories that are u1-singular, we already know that u2 must be constant
while on the large open set R2. Thus, we can reduce the problem to one for single-input
systems, and the Legendre-Clebsch type conditions apply, namely

{γ1, {ϕ, γ1} ≥ 0

must hold along optimal trajectories. But this equals γ2. det Λ2 so we conclude:

u2(t) =
{

+1 if sin 2θ2 < 0,
−1 if sin 2θ2 > 0

6 Comments

Clearly there is a tremendous amount of work to be done even in the 2-link manipulator
case, in determining optimal trajectories. But our goal was to illustrate that with extra
structure, something of interest can be said in the multiple input case. More broadly,
many questions other than optimal control can be studied for our subclass of Hamiltonian
systems.
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7 Appendix

We review here some basic terminology regarding Hamiltonian systems. Our main refer-
ences are [1] and [2]. A symplectic manifold consists of a differentiable manifold together
with a closed (dω2 = 0) nondegenerate 2-form ω2. This form induces a skew-symmetric
pairing on the tangent bundle of M , which allows the identification of tangent vectors
with one-forms. Under this identification, the set of exact differentials dH of smooth
functions H : M → IR is in one-to-one correspondence with the Hamiltonian vector
fields. We denote by XH the vector field associated with the function or “Hamiltonian”
H; observe that XH = XH′ if and only if H and H ′ differ locally by a constant.

The set of all Hamiltomian vector fields is a Lie subalgebra of the set of all vector
fields on M with the standard Lie bracket. In fact,

[XH , XH′ ] = −X{H,H′}

where {H,H ′} denotes the Poisson bracket of the functions H and H ′, defined by

{H,H ′}(x) :=
d

dt
|t=0H

(
etXH′ (x)

)
.

This definition also implies that for all t where the flow etXH′ (x) is defined,

d

dt
H
(
etXH′ (x)

)
= {H ◦ etXH′ , H ′}

and also that
d{H,H ′} = {dH, dH ′}

(see [1], section II.3.3).

The Poisson bracket satisfies the Jacobi identity:

adH{H ′, H ′′} = {adHH
′, H ′′}+ {H ′, adHH

′′} ,

where one denotes adHK := {H,K}.
Darboux’ Theorem says that locally about each x ∈ M there is a choice of local

“canonical” coordinates (p1, · · · , pn, q1, · · · , qn) for M (which must necessarily have even
dimension) so that, in these coordinates,

ω2 = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn .

Given a Hamiltonian H, in canonical coordinates the equation ẋ = XH(x) takes the
familiar form

ṗ =
∂H

∂q

q̇ = −∂H
∂p
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and the Poisson bracket of H and H ′ becomes

{H,H ′}(x) =
n∑
i=1

∂H ′

∂pi

∂H

∂qi
− ∂H ′

∂qi

∂H

∂pi
.

A more general version of Darboux’ Theorem can be obtained from a result due to Lie (see
[1], Corollary II.5.3.31), and it says that if H1, · · · , Hk are functions whose Hamiltonian
flows commute, that is, so that {Hi, Hj} = 0 for all i 6= j, and if their differentials
dH1, · · · , dHk are pointwise linearly independent, then, provided that 2k ≤ dimM , there
exist local coordinates as above so that Hi = qi, for i = 1, · · · , k. We shall refer to this
as the “Darboux-Lie Theorem”.
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