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ABSTRACT 

This paper describes how notions of input-to-state stabiliza- 
tion are useful when stabilizing cascades of systems. 

1 Introduction 
Consider a cascade as follows: 

where f and g are smooth, z and y evolve in R” and R”’ re- 
spectively, and f ( 0 , O )  = g(0,O) = 0. The input U takes values 
in Rk. It is natural to ask: If the system x = f ( z , y )  is stabi- 
lizable (with y thought of as a control) and the same is true for 
y = g(y,u), what can one conclude about the cascade? More 
particularly, what can be said if the “zero-input,’ system 

x = f(2,O) (1) 

is already known to be asymptotically stable? There are many 
reasons for studying these problems; see the tutorial paper [7] 
for motivations and references. 

The sihplest result along these lines is local, and i t  states 
that a cascade of locally asymptotically stable systems is again 
asystable. More precisely, if (1) has the origin as a locally asys- 
table point, and if in (CAS) the second equation is independent 
of 21, 9 = dy), and 

Y = g(Y) (2) 
also has 0 as locally asystable, then the same is true for (0,O) 
in (CAS). This follows from classical “total stability” theorems, 
and was proved for instance in  (111 and in a somewhat different 
manner in [6] using Lyapunov techniques. (An elementary proof 
is indicated below.) The local stabilization of (CAS) can then be 
achieved if (1) is already stable and the y-subsystem of (CAS) 
is stabilizable. 

It is easy to  see that the same result is not true for global 
stability, since there is no reason for the first system in (CAS), 
seen as a system with input y, now denoted “U”: 

x = f(z, U) (3) 

to satisfy the following “converging input converging state” con- 
dition: 

CICS: For each control U(.) on [0, +00) such that limtAoo u(t) = 
0 and for each initial state 20, the solution of (3) with 
z(0) = 2 0  eGsts for all t 2 0 and converges to 0. 
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“Control” means any measurable function into R“‘, though for 
our application just smooth controls would be enough. Clearly 
if CICS holds then (0,O) is a global attractor for the cascade, so 
together with the local result one can conclude global asymptotic 
stability. 

For instance, consider the one-dimensional system 

x = -2 + (2 + 1)u 

which is globally asymptotically stable when u G 0. With 

1 
u(t)  = - -7 20 = d5 

there results the unbounded trajectory z ( t )  = m. This 
is not a t  all a “pathological” example; it is in fact one of the 
simplest systems that are linearizable by feedback. This example 
does not even satisfy the following weaker “converging input 
bounded state” property: 

CIBS: For each control U(.) on [O, $00) such that limt+= u(t) = 
0 and for each initial state zo, the solution of (3) with 
z(0) = zo exists for all t 2 0 and is bounded. 

Nor, of course, does it satisfy the stronger property that the 
system be “bounded-input/bounded-output” or “BIBS” stable, 
where the boundedness property is required to hold for each 
bounded control U. 

Interestingly, property CIBS is the only obstruction. If i t  is 
assumed, there is indeed a global version: 
Theorem. Assume that both (1) and (2) have the origin 
as a globally asymptotically stable state and that property 
CIBS holds. Then the cascade (CAS) has (0,O) as a globally 

\asymptotically stable state. 
Thus, if one can in any way insure that solutions of the first 

system do not blow up for small controls, then the cascade’s 
global asystability follows from that of its components. This 
was proved in [6] using a stronger property than CIBS, “input to 
state stability (ISS)” (see [5] for the definition of the concept of 
ISS). Comparisons between ISS and BIBS stability are discussed 
in [6]. Here we show that the same result follows under the 
weaker hypothesis. The proof is basically the same as in that 
reference, but i t  seems appropriate to  provide a separate proof 
that does not involve the terminology used there (“functions 
of class KL”) and the use of Lyapunov inverse theorems, but 
only elementary notions. Observe also that under extra (and 
fairly restrictive) hypotheses on the first system, such as that f 
be globally Lipschitz, the CIBS conditions can be relaxed -the 
paper [3] provides a detailed discussion of this issue, which was 
previously considered in [lo] and [4]. 

CH2642-7/89/0000- 1376$1 .OO @ 1989 I EEE 1376 



If the system (3) does not satisfy the CIBS property, it can 
be modified under feedback so that this becomes true. We will 
discuss that result and its implications for the stabilization of 
(CAS) in the last section. 

2 Proof of the Theorem 

It will be enough to  establish the following lemma. 
Proposi t ion.  If 0 is a globally asymptotically stable state for 
(1)  then CIBS and CICS are equivalent for (3). 
Prooj We will denote by single bars ''I.1'' norms on Rn and R", 
and we will use double bars "(I.II" for the sup norm on the spaces 
of controls (essentially bounded measurable functions from in- 
tervals into R") and state trajectories (absolutely continuous 
functions into R"). We also let 4(*,zo, U ) ,  or just z(.) if 20 and 
U are clear from the context, be the solution of (3) with control 
U ( - )  and initial condition zo. Note that the CIBS property in- 
sures that this solution is defined for all t > 0, because on each 
finite interval [0, T ]  it coincides with the solution for a control 
that converges to  zero (namely, truncate U ( - )  at  T, and continue 
with zero). 

Assuming CIBS, we first show that for each E > 0 there are 
some SO, p > 0 with the following property: 

( P )  If lzol < SO and if \lull < p is a control on [O,+m) then 
Iz(t)( < E for all t 2 0. 

This will be needed later, but it is also of interest in that it triv- 
ially implies the local stability theorem for cascades mentioned 
in the introduction. 

Take any E > 0. From the assumption that (1) is (at least 
locally) asymptotically stable, there are some T ,  So > 0 so that 

t E p 6 0  * I4(t,I,o)l < & / 2  Vt E [O,TI and I+(T,t,O)l < SOP. 

Necessarily, 6o < E .  Consider the map 
- 

a T :  B60 x L"([O,T],R") + Co([O,T],R") , (z ,u)  - 6 ( . , Z , U )  

where B, denotes the closed ball of radius c. This map is con- 
tinuous (and defined on the whole domain as remarked above). 
For each [ E Bbo there is then an open neighborhood V, of ( 
and a p, > 0 such that 

E v, and llwll < PE =+ IlaT(z,w) - %4t ,O) I l  < S O P  

where we use w to  denote controls on the interval [O,T]. We 
cover B6, with the Q's and extract a finite subcover; let p be 
smaller than all the corresponding pels. Then, for each zo E BtO, 

and also 
IdJ(t,zo,w)l < E 

for each t E [O,T], provided that llwll < p. 
We now prove (P). With these So, p, assume that z o  and U are 

as in the property. Then, applying the above arguments using 
the restriction w of U to  (0, TI we know that z ( t )  remains in the 
&-ball. But a t  time T ,  z ( T )  is again in ph0, so we can repeat the 
argument on [T, 2T], and an induction gives the desired fact. 

We now prove the Proposition. Pick any trajectory z(.) cor- 
responding to a control u(t)  + 0. Pick any E > 0. We wish to  
show that there is some T, so that Ilz(t)ll < E for all t 2 T,. 

Let K be a compact set so that z ( t )  E K for all t 2 0 (CIBS 
assumption) and let SO, p be as in property (P), for the given E .  

Using the global asymptotic stability of the origin for ( l ) ,  
there is some T > 0 so that 14(T,I,O)l < 60 for all I E K .  By 
a compactness argument identical to the one used to  prove (P), 
we know that there is some Y > 0 so that 

I4J(T, I ,  w)l < 80 
whenever I E K and w is a control on [0, TI with llwll < v. Pick 
T' such that lu(t)l < min{v,p} for all t 2 T'. 

Consider the original trajectory z(.). At time 

T, := T + T' 

this equals +(T,z(T') ,w) where w is the restriction of U to 
[T',T,], and therefore Iz(T')I < bo. For any t > T, the control 
remains bounded in norm by p, so z ( t )  remains with Iz(t)l < E ,  

I as desired. 
Remark. It is sometimes of interest to study asymptotic sta- 
bility of compact invariant sets different from the origin. The 
exact same proof, but with distance to the set S used in place 
of the norm of states, shows that if S is any such set with re- 
spect to (l), and if the CIBS property holds, then also every 
trajectory corresponding to convergent controls will converge to  
S. In terms of cascades, S x (0) is then a stable attractor for 

I the system (CAS). 

3 Stabilization 

In [GI we proved a stronger version (the one there is for ''input 
to state stability") of this fact: 

If the system (1) has the origin globally asymptotically sta- 
ble, then there exists an everywhere nonzero smooth function 
p : IR" 4 R such that the system 

i: = f(z7 P(.).) (4) 

is CIBS (and hence also CICS) stable. 
A sketch of the proof is as follows. Let V be  a Lyapunov 

function for (I), that is, a smooth positive definite and proper 
function 

V:R"+R 

such that VV(t).f(I,O) < 0 for all nonzero I. Then there exists 
some function P : R" --+ R, smooth and everywhere nonzero, 
such that, for each p > 0 there is some K so that 

V V ( t M I 7  P(0. )  < 0 

whenever 1.1 5 p and 
a simple continuity argument, because 

> K .  (The existence of follows from 

VV(I) . f ( t ,  w )  < 0 

for all IwI < v(I) for some function 7 ;  see Lemmas 3.1 and 3.2 
in [6].) 

If u(.).is any control converging to 0 and z(0) = 20 is given, 
we need to prove that z ( t ) ,  the trajectory for (4), cannot diverge. 
Let p be  a bound on U, and pick K as above. Without loss of 
generality, assume that lzol < K .  

Let c be the largest value of V on the closed ball of ra- 
dius K ,  and consider the absolutely continuous function V(z(t)). 
For those t so that z ( t )  is outside that closed ball, V ( z ( t ) )  has 
derivative (which exists almost everywhere) negative, and when 
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x ( t )  is inside, the value of V is bounded by c. I t  follows that 
V ( x ( t ) )  is everywhere bounded by c, and thus that z ( t )  remains 
bounded, since V is proper. Thus the system (4) is CIBS stable, 
as claimed. 

Now we show how this can be iised to  stabilize systems that 
appear in what is called the “relative degree one” situation in 
zero-dynamics studies. Here we assume that g(y ,u )  = U in 
(CAS) and that the system (3) is smoothly stabilizable, that is, 
that there exists some k : IR” -t Et’” smooth, with k ( 0 )  = 0, so 
that 

i: = f ( x ,  k(z)) 
has the origin globally asystable. The claim is that the cascade 
is again smoothly stabilizable; in other words, integrating the 
control does not destroy smooth stabilizability. This result was 
proved before by [2], in the context of “PD control” of mechan- 
ical systems, as well as [9] and [l]. In [8], an application to rigid 
body control is given. Here we wish to show how the existence of 
P gives a very natural, and alternative, stabilization technique. 

Applying the above-citedfact (applied to  i = f ( x ,  k ( z ) $ u ) ) ,  
there is then a smooth everywhere nonvanishing p so that 

2 = f(Z, k ( z )  + P(.)u) 

is CIBS. We make in (CAS) the change of variables 

y = k(z) + P(Z)% 

so we can write 

i. = f ( z , k ( z ) + P ( x ) z )  
1 

where h is some smooth function. Then the control law 

2 = - [h ( z , z )+u]  
P ( 4  

U := -P(z). - h(x ,  z )  

stabilizes the %-subsystem, and thus also the cascade, because 
the first system is a CICS-stable system, which is asymptotically 
stable when z z 0. 

Take for instance the system 

x = x2y 
y = u  

€or which k(z) = -z and p E 1 can be used (since 3 = -z3+z2u 
is BIBS, as the cubic term dominates for large z). Then with 
the change of variables y = -x + z ,  the equation for z becomes 
i. = U + x2y, and therefore 

U := -% - x2y = -x - y - 2 y  

stabilizes the cascade globally. 
The fact that in the example we could choose ,LJ G 1 is no 

accident. In general for systems linear in controls that will be 
possible, as follows from the main result in [5]. 

For another example, take the system 

4 

1. 

2. 

3. 

4. 

5. 

6 .  

7. 

8. 

9. 

10. 

11. 

considered in [I]. The first system is already BIBS and asystable 
for y = 0, so the control law U := -2’ - y stabilizes the cascade. 
(This is simpler than the solution given in that reference. Yet 
another illustration is the satellite with two controls in that same 
reference, which can easily be brought into a cascade using the 
same k as there; a simpler control law again results.) 
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