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ABSTRACT

Coprime right fraction representations are obtained for nonlinear systems defined by
differential equations, under assumptions of stabilizability and detectability. A result is
also given on left (not necessarily coprime) factorizations.

1 Introduction

There has been some interest in problems related to parameterizations of controllers for
nonlinear systems, and this has motivated the search for coprime factorization conditions;
see e.g. [6], [8], [2], [21], [20], [1], as well as our paper [18]. In the latter reference, we
showed how the existence of right coprime factorizations for the input to state mapping
of systems linear in controls

ẋ = f(x) +
m∑
i=1

uigi(x) (1)

is very closely related to the problem of smooth stabilization for such systems. This
relation is of course not surprising, since the “classical” way to obtain such factorizations
for linear systems is indeed through the use of state feedback stabilization (see [12], as
well as [7] and [2] for related and previous work in the nonlinear case.)

In trying to extend these results to more general systems

ẋ = f(x, u) (2)

where x(t) ∈ IRn, u(t) ∈ IRm, f is a differentiable function from IRn+m into IRn not
necessarily affine in u as in (1), and 0 is an equilibrium point for the system, f(0, 0) = 0,
it was noted in [16] and [17] that a weaker notion of coprimeness, which we called “weak
coprimeness”, seems to be needed, analogous to the various notions of coprimeness used
e.g. in [14], [20], [21]. (Weak coprimeness is not necessarily equivalent to the stronger
notion from [18], which we shall call here a “Bezout” factorization.) When adding an
output map

h : IRn → IRp, x(t) 7→ y(t) = h(x(t)), (3)
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to (2), the problems become even harder, since observers must be used. (The independent
work [9] does not employ observers, but the relation to our work is not very clear, since
the definitions of stability are very different, in addition to the fact that [9] works in
discrete time.)

In this paper, we show how to employ a state feedback combined with an observer
construction in order to obtain factorizations. Again, this is not a particularly original
idea, since it is standard for linear systems. Our contribution here in that regard is at
most to clarify what type of observer is needed and to state explicitely some “theorems”
which are basically tautological once the definitions have been given and the results in
our previous papers are used. Nonetheless, we hope that this will serve to motivate
further work into the construction of observers of the type needed here, as well as into
the smooth state stabilization problem, which has attracted considerable attention lately
on its own.

Part of what follows could be stated more abstractly, in terms of axiomatic notions
of stability, as for instance done in [21]. However, the interesting results will have to do
with stability in the sense of differential equations and “bounded-input bounded-output”
behavior. From now on, we use the notations and terminology from [18]. For the reader’s
convenience, these are summarized in an appendix.

2 Coprime Fractions

Consider an operator P : D(P )→ Lp∞,e, where D(P ) ⊆ Lm∞,e. A pair of IOS operators

N : Lm∞,e → Lp∞,e, and D : Lm∞,e → Lm∞,e

such that D is causally invertible, D(D−1) = D(P ), and

P = ND−1 (4)

will be called a right (fractional) factorization of P . If there exists some IOS operator

Q : Lm+p
∞,e → Lm∞,e

so that

Q

[
D
N

]
= I (5)

where the second term in the left-hand side of this equation indicates the map into Lm+p
∞,e

that sends v 7→ (Dv,Nv ) and I denotes the identity in Lm∞,e, the factorization (N,D)
will be said to be a weakly coprime right factorization.

The Appendix compares this definition with that used in [18]; we use the term “weak”
coprimeness to distinguish it from that reference, though a better terminology would
probably be simply “coprime” for that used here and “Bezout” in [18].

A left factorization for P is a pair (Ñ , D̃) of IOS operators with D causally invertible
and so that

D̃P = Ñ . (6)
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Note that this equality forces P to be defined everywhere, since Ñ is. So when studying
left factorizations we shall assume that D(P ) = Lm∞,e.

Coprime right factorizations, if they exist, are unique in the following sense. Given
two fractional representations N1D

−1
1 and N2D

−1
2 of P , assume that Q1 and Q2 are the

respective one sided inverses as in (5). If v = D−1
2 D1u then D2v = D1u and therefore

also
N2v = PD2v = PD1u = N1u

which implies that
D−1

2 D1u = v = Q2(D1(u), N1(u))

and thus that M := D−1
2 D1 = Q2(D1(·), N1(·)) is an IOS operator. Similarly, M−1 =

D−1
1 D2 is also IOS, so one may write

D1 = D2M

with M causal, stable, and with an inverse that is also causal and stable. This uniqueness
is entirely analogous to e.g. Theorem 3.11 in [8] or the corresponding results in [21].

3 Stabilizability and Observers

The system (2) is (smoothly) stabilizable if there exists a smooth map K : IRn → IRm

with K(0) = 0 such that the zero state for ẋ = f(x,K(x)) is GAS. In [18] we defined the
system (2) to be “smoothly input to state stabilizable” if there is such a K so that the
system

ẋ = f(x,K(x) + u)

becomes ISS. As pointed out in [16] and [17], this last notion cannot be expected to give
a satisfactory theory for systems (2) that are not affine in controls as in (1). Instead we
suggested there a definition more in accordance with the standard practice in nonlinear
control, namely control laws of the type

u = K(x) +G(x)v (7)

where G is an n × n matrix of smooth functions invertible for all x, not necessarily the
identity, and K is as above. One of the main results from [16] is as follows:

Theorem 1 from [16]: If (2) is stabilizable, then there exist K,G as above so that
the new system

ẋ = f(x,K(x) +G(x)v) =: fcl(x, v) (8)

is ISS.

The proof in fact shows more, namely that if K makes ẋ = f(x,K(x)) GAS then the
same K works for the ISS property, and only G needs to be obtained.

Analogous definitions and results could be given that do not require K to be ev-
erywhere smooth; the tutorial paper [19] discusses that point and provides extensive
references to the problem of smooth stabilizability.
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From now on, we fix a pair (f, h) specifying a system with outputs consisting of (2)
together with a K-bounded mapping (3), and we let

Ps : Lm∞,e → Ln∞,e

be its (partially defined) input to state operator (initial state zero) and

P : Lm∞,e → Lp∞,e : u 7→ h(Ps(u))

be its (partially defined) input/output operator. We wish to construct factorizations for
P.

We now turn to observers. In this paper, a state observer for the given system (f, h)
will be an i/o operator

P̃s : Lm+p
∞,e → Ln∞,e

such that
P̃s(u,P(u)) = Ps(u) (9)

for each u ∈ D(Ps). That is, P̃s causally reconstructs the state of the system ẋ =
f(x, u), x(0) = 0, using input and output observations. Of course, unless more is assumed,
the zero initial state on the plant makes the observer concept trivial (and useless), since
one could define P̃s(u, y) := Ps(u). What makes the concept interesting is the following
assumption:

(O1) P̃s is an IOS operator.

For example, if P is in fact the input to state map, i.e. h(x) ≡ x, then we can
take P̃s(y) ≡ y, which is stable. More interestingly, for linear detectable systems ẋ =
Ax+Bu, y = Cx, the input to state map of any Luenberger observer

ż = (A+ LC)z +Bu− Ly, z(0) = 0 (10)

is an observer and, having chosen L so that A+LC is Hurwitz, is stable. (A similar argu-
ment can be used for systems that can be linearized by output injection and coordinate
changes.) The fact that the Luenberger observer functions correctly (but only asymp-
totically) even for nonzero initial states will not appear in our nonlinear generalizations,
though it is essential in understanding abstract issues of input/output stabilization for
nonlinear systems ([15]).

Motivated by the linear situation, we shall say that (f, h) is detectable if it admits
an observer satisfying (O1). It means essentially that small observed inputs and outputs
should result in small state estimates.

We will prove:

Theorem 1 If (f, h) is stabilizable and detectable then P admits a coprime right factor-
ization.

In order to obtain left fractional representations, two more assumptions are needed;
we let P̃ := hP̃s.
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(O2) y 7→ P̃(0, y)− y is causally invertible.

(O3) u 7→ P̃(u, y)− P̃(0, y) is stable uniformly on y.

By (O3) we mean precisely the following. The i/o operator

∆(u, y) := P̃(u, y)− P̃(0, y)

is so that D(∆) = Lm+p
∞,e and there exist a function β of class KL and a function γ of

class K such that, for each pair of times 0 ≤ T ≤ t,

|∆(u, y)(t)| ≤ β(‖uT‖, t− T ) + γ(‖uT‖) (11)

for each (u, y) ∈ Lm+p
∞,e . For instance, if it were the case, as it happens for linear systems,

that there is a decomposition

P̃(u, y) = P̃1(u) + P̃2(y), P̃1(0) = P̃2(0) = 0, (12)

then (O3) follows from (O1), since stability of P̃ implies stability of each of P̃1 and P̃2,
and ∆ = P̃1. Property (O2) is satisfied for instance if P̃s is “strictly causal” in any of
the usual senses, as discussed in a later section on dynamic observers. In particular, it is
satisfied for Luenberger observers.

For example, the input to state map Ps admits an observer satisfying (O1-O2); now
we cannot take P̃s(y) ≡ y, but

ż = −z + y + f(y, u), z(0) = 0 (13)

does satisfy all assumptions. Note that stability follows from the fact that P̃s is in this
example the composition of the memoryless map (u, y) 7→ y + f(y, u) with an i/s map
of a linear stable system. That this is really an observer follows from the fact that
ẋ = f(x, u) implies that x satisfies also (13) when y ≡ x, and property (O2) follows from
strict causality. Unfortunately, obtaining property (O3) seems harder even in this case.
The only obvious example is that in which one can write

ẋ = f0(x) + f1(x, u), f1(x, 0) ≡ 0,

and |f1(x, u)| ≤ γ(u) for some function of class K . In that case, the operator ∆(u, y) is
the input to state operator for

ż = −z + f1(x, u)

and is therefore stable uniformly on y = x.

The main fact about left factorizations is

Theorem 2 If (f, h) admits an observer satisfying (O1) to (O3) then P has a left fac-
torization.
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4 Proofs of Results

As we said earlier, the proofs of the two theorems are essentially trivial, given the defi-
nitions and previous results.

For the first theorem, we first apply Theorem 1 from [16] to get K,G as in equation
(8). If µ is the memoryless operator induced by the mapping

M : IRm+n → IRm : (υ, ξ) 7→ G−1(ξ) [υ −K(ξ)]

then we define
Q(u, y) := µ(u, P̃s(u, y)) (14)

which is IOS since it is a composition of stable operators. The operators N and D are
chosen basically in the same manner as in [18], as follows. First let Ns be the i/s mapping
of the closed-loop system (8), and let

N = hNs (15)

be the i/o map of (8)-(3), stable by construction. Finally, let µ∗ be the memoryless
operator induced by

M∗ : IRm+n → IRm : (ν, ξ) 7→ K(ξ) +G(ξ)ν

and define
D := µ∗(·, Ns(·))

which is IOS since it is a composition of IOS operators.

The closed-loop solution Ns(v) of (8) with initial condition x(0) = 0 and input v is
the same as the solution of (2) with the same initial condition and with u = µ∗(v,Ns(v)),
that is,

Ns = PsD
which will imply (4) once that D is shown to be invertible. (The same argument also
shows that the range of D coincides with the domain of Ps, and hence of P.) On the
other hand, from the definitions of µ and µ∗ it follows that

v = µ(Dv,Nsv) = µ(Dv,PsDv) (16)

for all v, so D is indeed causally invertible (since µ,Ps, D are causal). Property (5)
follows from:

Q(Dv,Nv) = µ(Dv, P̃s(Dv,Nv))
= µ(Dv, P̃s(Dv, PDv))
= µ(Dv, PsDv)

= v

where the last equality is a consequence of (16). This completes the proof of Theorem 1.
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The mappings in the proof are interpreted as follows in terms of the system connection
in which v is fed as an external output and u = K(x) + v: N : v 7→ y, D : v 7→ u, and Q
is obtained using the maps (u, x) 7→ v and the observer output (u, y) 7→ x.

The proof of the second Theorem is even easier. It is only necessary to take

D̃ : y 7→ P̃(0, y)− y (17)

which is IOS by assumption (O1) and causally invertible by (O2). The composition

Ñ := D̃P

is then equal to ∆(·,P(·)) and is therefore stable too. (Note that uniform stability
independently of the last factor is needed because P will in general not be stable.)

5 Comparison With the Linear Case

In this section we show how the coprime factorization derived here reduces, for linear
systems, to the one well-known in the literature. We first recall the standard formulas
for coprime right factorizations of linear systems (left factorizations are simply obtained
from these by duality). These formulas first appeared in the paper [12], and have since
been rediscovered by other authors. (Unfortunately, the fact that the formulas were given
in far more generality, in the context of factorizations of “systems over rings”, originally
obscured the fact that they were significant even for linear finite-dimensional systems.)

Given a strictly proper transfer function W (s), then, one wishes to obtain a factor-
ization

W = ND−1

where N and D are stable and proper, D is square and invertible as a rational matrix,
as well as stable proper transfer matrices S and T so that the Bezout equation

SN + TD = I

holds. This is done as follows. We first find a minimal state space realization

W (s) = C(sI − A)−1B

and a feedback law F so that A+ BF is a Hurwitz matrix and an L such that A+ LC
is Hurwitz. In [12], equation (3.12), we choose the Luenberger observer solution (over
arbitrary rings, the context of that reference, Luenberger observers do not always exist,
as discussed in [10], but it is the obvious choice over fields), so that

[
(sI − A− LC)−1 − (sI − A− LC)−1L

] [ sI − A
B

]
= I

(there is a missprint in equation (3.12), in that the roles of “M” and “N” are interchanged
there) and from this

S = F (sI − A− LC)−1L, T = I − F (sI − A− LC)−1B
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using [12], line after equation 5.12. Finally, using [12], equation (5.9), we pick:

D :=
(
I − F (sI − A)−1B

)−1
= I + F (sI − A−BF )−1B

and therefore N = WD is also determined; explicitely,

N = C(sI − A)−1B
(
I − F (sI − A)−1B

)−1

= C(sI − A−BF )−1B .

The matrices S, T,N,D given above are the same as those called respectively
−Ỹ , X̃,M,N in the book [4], which should be consulted for more details.

We now turn to showing why our formulas indeed reduce to these for the linear case.
Using a Luenberger observer (10) together with a linear feedback stabilizer u := Fx+ v
in (7), N in formula (15) is the i/o map of ẋ = (A + BF )x + Bv, y = Cx, and hence
its transfer matrix is C(sI − A − BF )−1B as in the standard linear case. From here it
follows that D must also be the same. On the other hand, equation (14) says that

Q(u, y) = u− Fz

where z is the solution of (10), and thus it is of the form Q1(u) + Q2(y), where Q1 and
Q2 have transfer matrices T and S respectively. For left factorizations, the operator D̃
in (17) has transfer matrix

I + C(sI − A− LC)−1L

which is precisely the transfer matrix obtained by duality in the linear case (last para-
graph before section VI in [12], and the matrix “M̃” in the book [4]).

6 Some Remarks

Often one obtains observers which are themselves given by differential equations (see e.g.
[5], [13], [11]). In this case, there is a system

ż = F (z, u, y), z(0) = 0 (18)

together with an output map H(z), so that the i/o operator of this system is the desired
observer P̃s. For linear systems, for instance, Luenberger observers (10) correspond to
models like this with H(z) = z and F linear.

Assumption (O2) is automatically satisfied for such observers. Indeed, more generally,
a map of the type u 7→ y := H(z)− u, where z satisfies

ż = f(z, u) , z(0) = 0

is always causally invertible, since its inverse can be computed using a negative feedback
loop. That is, y = H(z)− u if and only if u is the output of

˙̃z = f(z̃, H(z̃)− y), z̃(0) = 0, u = H(z̃)− y .
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Techniques for obtaining observers satisfying all the desired properties should be
the object of much further research. In some simple cases, however, such as linear
systems with bounded controls or some classes of bilinear systems, observers can be
easily constructed, and only the smooth stabilizability problem presents an obstruction.

The emphasis on smooth stabilization was only for simplicity. Various types of con-
tinuous or even discontinuous feedback laws could be used, provided that at least local
existence and uniqueness can be guaranteed for the various differential equations in-
volved. However, using discontinuous feedback means that the notion of stability may
have to be relaxed, since “K-bounded” maps are used in the construction of the various
memoryless operators that appeared in the proofs.

In our definition of stability (IOS) we require that the operator be everywhere defined.
Possibly it is better to relax this requirement, and to ask for instance that Q in the
definition of coprimeness only need to be defined on all the pairs (Dv,Nv). This might
give a more interesting theory, in that more operators may be factorizable, but it will
affect parameterization questions.

7 Appendix: Stability Notions

In this appendix we recall some of the terminology and basic results from [18], as well as
some of the notations used.

A function γ : IR≥0 → IR≥0 is of class K if it is continuous strictly increasing and
satisfies γ(0) = 0; it is of class K∞ if in addition γ(s) → ∞ as s → ∞. Note that if γ
is of class K∞ then the inverse function γ−1 is well defined and is again of class K∞ . A
function β : IR≥0× IR≥0 → IR≥0 is of class KL if for each fixed t the mapping β(·, t) is of
class K and for each fixed s it is decreasing to zero on t as t→∞.

For any vector ξ in Euclidean space, |ξ| is its Euclidean norm. For measurable func-
tions u taking values in such a space, ‖u‖ is the sup norm

‖u‖ := ess.sup. {|u(t)|, t ≥ 0}.

This may be infinite; it is finite when u is essentially bounded.

The system (2) is input to state stable (ISS) if there is a function β of class KL and
there exists a function γ of class K such that for each measurable essentially bounded
control u(·) and each initial state ξ0, the solution exists for each t ≥ 0 and furthermore
it satisfies

|x(t)| ≤ β(|ξ0|, t) + γ(‖u‖). (19)

In particular, when u ≡ 0, ISS is equivalent to global asymptotic stability (GAS).

For each integer m, Lm∞,e denotes the set of all measurable maps

u : [0,∞)→ IRm

which are locally essentially bounded, that is, such that the restriction of u to each finite
subinterval of [0,∞) is essentially bounded, and Lm∞ is the set of all essentially bounded
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u, that is the set of all u with ‖u‖ < ∞, thought of as a Banach space with this norm.
Given any u ∈ Lm∞,e and any T ≥ 0, the truncations uT and uT are defined as follows:

uT (t) :=
{
u(t), if t ∈ [0, T ],
0, if t ∈ (T,∞)

and

uT (t) :=
{

0, if t ∈ [0, T ],
u(t), if t ∈ (T,∞).

Note that uT ∈ Lm∞ for each T .

An i/o operator is a partially defined mapping

F : D(F )→ Lp∞,e

with D(F ) ⊆ Lm∞,e, which is causal, i.e. it is such that

[F (uT )]T = F (u)T

for each T ≥ 0 and each u ∈ D(F ). Implicit in this definition is the requirement that
uT ∈ D(F ) for each T ≥ 0 whenever u is in D(F ).

For each state space system (2) and any fixed initial state ξ0 ∈ IRn, – which for
simplicity we always take to be ξ0 = 0,– let D be the set of controls u ∈ Lm∞,e for which
the solution x(·) of (2) with x(0) = ξ0 is defined for all t. Then the map

F (u)(t) := x(t), D(F ) = D,

is an i/o operator, the input to state mapping of the system.

Memoryless i/o operators are everywhere defined i/o maps of the form

F (u)(t) := h(u(t))

where h : IRm → IRp. In order for F to be well defined as a map into Lp∞,e, one needs
that it be a compact operator, in the sense that the following property should hold for
the mapping h:

sup{|h(µ)|, |µ| ≤ a} <∞ for all a > 0. (20)

If in addition to (20) it holds that h(0) = 0 and h is continuous at the origin, then h
is K-bounded. The supremum in (20) is a nondecreasing function of a; if it vanishes at
a = 0 and is continuous at 0, then it can be majorized by a function of class K . Thus
an equivalent definition of K-bounded function h is that there must exist a function α of
class K such that

|h(µ)| ≤ α(|µ|)
for each µ ∈ IRm, and hence the terminology. Observe that any continuous map h such
that h(0) = 0 is K-bounded. In particular, the feedback laws K in the definition of
smooth stabilizability are automatically K-bounded.

More generally, consider systems with output. These are given by an equation such
as (2) together with a K-bounded mapping (3) with some integer p. Taking the initial
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state ξ0 = 0, the assignment F (u)(t) := h(x(t)) gives the i/o operator of the system. In
the particular case when h is the identity, this is the same as the input to state map.

The i/o operator F is input/output stable (IOS) if D(F ) = Lm∞,e and there exist a
function β of class KL and a function γ of class K such that, for each pair of times
0 ≤ T ≤ t,

|F (u)(t)| ≤ β(‖uT‖, t− T ) + γ(‖uT‖) (21)

for each u ∈ Lm∞,e.
It is easy to see that if the system (2) is ISS, then the system with output (2)-(3) is

IOS. Also, if F : Lm∞,e → Lq∞,e and G : Lq∞,e → Lp∞,e are both IOS i/o operators then the
composition G ◦ F is also IOS.

If the i/o operator F : D(F )→ Lp∞,e is one-to-one then there exists a well-defined left
inverse

F−1 : D(F−1)→ D(F ) ⊆ Lm∞,e, F
−1F = identity on D(F )

whose domain D(F−1) is the image imF of F . (Using simply juxtaposition FG to denote
functional composition F ◦ G.) The operator F is causally invertible if it is one-to-one
and its inverse F−1 is an i/o operator.

The operator P : D(P ) → Lp∞,e admits a Bezout right factorization if and only if
there exist IOS operators

A : Lp∞,e → Lm∞,e, N : Lm∞,e → Lp∞,e, and B,D : Lm∞,e → Lm∞,e

such that B and D are causally invertible, D(D−1) = D(P ),

P = ND−1 (22)

and, if I denotes the identity in Lm∞,e,

AN +BD = I. (23)

In [18] this was called a coprime rather than a Bezout factorization. We now think
that the terminology “Bezout” is more appropriate. In [9] it is shown that in a certain
abstract sense, and with different definitions of stability, coprimeness in the sense of the
present paper, i.e., weak coprimeness, in which Q(u, y) cannot necessarily be written as
a sum

Q1(u) +Q2(y),

is equivalent to the Bezout property. But in terms of our definitions of stability the
equivalence is not at all clear, and in any case there is often a need for explicit formulas
for Q, such as are provided by the observer constructions.
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