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Abstract

This paper establishes a precise correspondence between realizability and the existence
of algebraic differential equations relating derivatives of inputs and outputs of a continuous
time system. The only assumption needed is that the data be “well-posed” in a suitable
sense. Our results serve to relate the notion of realizability proposed by Fliess in the context
of differential algebra with the more standard concept used in nonlinear state-space systems.

1 Introduction

It is often useful to model system behavior through differential equations of the type

E
(
u(t), u′(t), u′′(t), . . . , u(r)(t), y(t), y′(t), y′′(t), . . . , y(r)(t)

)
= 0 (1)

where u(·) and y(·) are the input and output signals respectively. The form of the functional
relation E may be deduced experimentally, for instance thorugh least squares techniques if
a certain form (e.g. polynomials) is chosen. For instance, in linear systems theory one often
deals with “autoregressive moving average” representations such as

y(k)(t) = a1y(t) + . . .+ aky
(k−1)(t) + b1u(t) + . . .+ bku

(k−1)(t) . (2)

On the other hand, in most theoretical developments in nonlinear control, one uses a state-
space formalism, where inputs and outputs are related by a system of first order differential
equations

ẋ = f(x) +G(x)u , y = h(x)

where the state x is multidimensional.

It is a classical (and easy) fact that equations (2) can be reduced, by adding state
variables for enough derivatives of the output y, to systems of first order equations, linear
finite-dimensional systems. (In frequency-domain terms, rationality of the transfer function
is equivalent to realizability). For nonlinear systems this reduction, essentially the problem
of realization, is a far more difficult problem, one that is to a great extent unsolved.

Work by one of the authors in discrete-time ([15]) provided one approach to relating
these two types of representations –with difference equations appearing instead,– and this
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was used as a basis of identification algorithms by other authors; see for instance [8] and
[3]. (The former reference shows also how to include stochastic effects in the resulting
approach.)

The present paper deals with continuous time. A number of partial results are available
in that case; see for instance [13] or [2], and recently [4] showed that it is natural to add
inequality constraints to (1). On the other hand, the discrete time approach mentioned
above has recently been extended to continuous-time bilinear systems and a theorem showed
that realizability by such systems is equivalent to the existence of an E of a special form,
namely affine on y (see [16]). We show in this paper how to generalize the full power of the
results in ([15]) to the continuous case.

The view proposed in [14], [15] is that one should attack the problem as follows. One
should separate the issue of existence of a realization from the question of “well-posedness”
of the equation. For example, the equation

u(t)y′(t) = 1

can never be satisfied by all the input/output pairs corresponding to a state space system,
as remarked in [16], nor is this true for

y′′(t) = u′(t)2 .

In both of these cases, not only cannot the equation be reduced to state-space form but
–as one can easily prove– even more basically, it cannot be satisfied by any “input/output
map” of the type that we shall consider. Indeed, we shall show that if the equation would
have been well-posed, in the sense that it is an equation satisfied by all input/output pairs
corresponding to a Fliess operator –i.e. one described by a convergent generating series–
and if E is a polynomial, then it is always realizable in the sense to be explained below.

We view our results being used as follows. The idea is very similar to that employed in
the discrete case, and explored in detail in [3]. If there is reason to believe that the system
producing the observed data is well-posed, then an equation E may be fit to the data. We
are assured that there is then a realization of the type to be considered, and we then try to
find this realization by any method. Efficient techniques for obtaining the realization are
an important topic for further research, but the following example illustrates the basically
constructive character of the proofs.

Consider the input/output equation

uÿ = y2u2 + ẏu̇ (3)

and assume that it is “well-posed” in the sense mentioned above, that is, that there is a
Fliess operator y = Fc[u] so that every pair (u, Fc[u]) satisfies the equation. Then we know,
because of our main result to be given later (“recursive equation” part), that Fc can be
realized by some polynomial state space system

ẋ = f(x) + g(x)u (4)

y = h(x) . (5)

So we have

ẏ = Lfh(x) + Lgh(x)u

ÿ = L2
fh(x) + (LfLgh(x) + LgLfh(x))u+ L2

gh(x)u2 + Lgh(x)u̇.

Substituting y, ẏ, ÿ into equation (3) we get the following formulas:

Lfh = 0, (6)

LfLgh+ LgLfh = h2, (7)

L2
gh = 0. (8)



Formulas (6) and (7) suggest that L2
fh = 0 and LfLgh = h2. Now let

z1 = h(x), z2(x) = Lgh(x).

Then along any trajectory x(t) of (4),

ż1(t) = Lfh(x(t)) + Lgh(x(t))u(t) = z2(t)u(t)

ż2(t) = LfLgh(x(t)) + L2
gh(x(t))u(t) = z1(t)

2.

Hence, Fc can be realized by the following polynomial system

ż1 = z2u

ż2 = z21

y = z1 .

We close this introduction by pointing out that our results provide a link with the
differential-algebraic work of Fliess, who in [5] defined realizability by the requirement that
outputs be differentiably dependent on inputs, in other words, that an equation such as ((1)
hold. We show then that this is basically the same as realizability in the more classical sense.
Yet another link is with the recent work of Willems and his school. Consider the behavior
w(·) = (u(·), y(·)) associated to an input/output description. If we write the equation as

E
(
w(t), w′(t), w′′(t), . . . , w(r)(t)

)
= 0

as preferred in some of the recent system-theoretic literature (see [18]), then what we do is
to relate the fact that the behavior satisfies an algebraic differential equation to realizability.

In this conference paper, we only give definitions and statements, and sketches of proofs
of results.

2 Statements of Main Results

By a Fliess operator (or i/o mapping) we mean an operator

y(·) = F [u(·)]

described by a convergent generating series. (An equivalent definition can be given in terms
of Volterra series with analytic kernels). This is a very general kind of i/o causal operator,
and it includes a large variety of nonlinear systems; the book [7] provides an introduction
to such mappings, and the basic definitions, in the way needed here, are given in [16] too.

Definition 2.1 The Fliess mapping F is realizable (by a singular polynomial state-space
system) if there exists an integer n, polynomial vector fields f, g1, . . . , gm on IRn, some
x0 ∈ IRn, and two polynomial functions q, h : IRn → IR such that the following properties
hold:

1. for each i/o pair, there is some solution x(·) of

q(x(t))ẋ(t) = f(x(t)) +
m∑
i=1

ui(t)gi(x(t))

such that x(0) = x0, y(t) = h(x(t)) for all t; and

2. there holds the following regularity condition: For a set of Cω pairs generic in the
Whitney topology, there exists some Cω solution x(·) as above such that for almost
all t, q(x(t)) 6= 0.



Singular systems appear naturally in control theory, for instance in robotics; see [12] for
many examples. The following is our main result:

Theorem 1 The operator F is realizable if and only if it satisfies an algebraic i/o equation
(E polynomial).

An algebraic equation will be called recursive if it has the form

a
(
u(t), . . . , u(k)(t)

)
y(k)(t) = b

(
u(t), . . . , u(k)(t), y(t), . . . , y(k−1)(t)

)
, (9)

as for instance the example (3). It will be shown that existence of a recursive equation
implies that there is a (nonsingular) polynomial system realizing F , that is, a system as
above with q = 1.

Obviously nonsingular systems are to be preferred, but we do not know if there is always
a realization of that type (for nonrecursive equations). In any case, we have been able to
prove that about every point where q vanishes there is another system, locally defined in
terms of analytic functions, that realizes (locally) the desired behavior. The picture that
emerges then is that, at least, one can cover the possibly singular part with local analytic
realizations. In a computer simulation, this would be achieved by passing to a subroutine
to deal with trajectories near this set.

3 Comments

The proofs are based on a careful analysis of the concept of observation space, introduced
in [10] and [6], and later rediscovered by many authors. The main technical result, given
in [17], relates two different definitions of this space, one in terms of smooth controls and
another in terms of piecewise constant ones; these two definitions are seen to coincide.
One of them immediately relates to i/o equations, while the other is related to realizability
through the notion of observation algebras and observation fields. These are the analogues
of the corresponding discrete-time concepts studied in [15]; for differential equations they
were first employed in [1].

Among future directions in this area, we are planning to concentrate on the study of
the possibility of realizability by nonsingular polynomial systems as well as by “rational
systems” (those for which q never vanishes). It is very possible that under extremely weak
conditions every i/o operator might be realizable by some such systems, or at worst a
system which can be naturally decomposed into a finite number of components of this type.
Essentially this is the case for discrete-time in [15], where it is shown that realizability is
equivalent to the existence of realizations whose state spaces are (Grothendieck) schemes
which can be stratified in this fashion. In the present context, the treatment is complicated
by the problem of understanding the meaning of differential equations over such spaces,
as well the difficulties that arise when trying to prove existence and uniqueness results for
differential equations on such spaces, i.e. integrability results for vector fields defined by
formal derivation operators in the corresponding algebra of functions. The work [1] (and
other papers by the same author) has already given preliminary results in that direction,
however, and we plan to exploit these.

In addition to single i/o maps, it is also natural to study families of i/o maps, defined
by a family of convergent generating series. To study a single i/o map may seem to be
natural as a formal description of a “black box”, but in general, a system may induce more
than one i/o map. For example, a system described by an ordinary differential equation
on a manifold may induce infinitely many i/o maps, each of them corresponding to some
initial state. One should study all the i/o maps induced by the system simultaneously than



to study them individually, unless a fixed initial state is of particular interest. This leads to
the concept of a family of i/o maps. One question arises naturally: when can a family of i/o
maps be realized by one state space system? i.e., when can all the members of the family be
realized by some singular polynomial system, each of them is associated to some initial state
of the system? The result we have so far obtained is that a family of i/o maps is realizable if
and only if all the members of the i/o maps satisfy an i/o equation simultaneously. Details
will be explained in a forthcoming paper.

4 Some Technical Details

Let m be a fixed integer, and consider noncommuting variables η0, . . . , ηm. A power series
in these variables is a formal expression

c = 〈c, φ〉+
∑
〈c, ηι〉ηι

where the sum is over all possible sequences of indices

ι = (i1, . . . , il), l ≥ 0

with each ir ∈ {0, . . . ,m}, including the empty sequence ε (l = 0), and where we denote

ηι := ηi1 . . . ηil ,

and ηε := 1. The coefficients 〈c, ηι〉 are real numbers. The set of all formal power series on
η0, . . . , ηm forms a real vector space under the coefficientwise operations

〈rc1 + c2, ηi〉 = r〈c1, ηi〉+ 〈c2, ηi〉.

We can also define the shuffle product for the power series in the following way: for c =∑
〈c, ηι〉ηι and d =

∑
〈d, ηκ〉ηκ

c d =
∑
〈c, ηι〉〈d, ηκ〉ηι ηκ.

For the definition of ηι ηκ, we refer the readers to [11], [9], [17]. With the operations “+”
and “ ” defined as above, the set of all power series forms a commutative IR-algebra.

We shall say that c is convergent if there exist M,K > 0 such that, for each sequence ι
as above,

|〈c, ηι〉| ≤ KM ll!.

For any fixed T , we let UT to denote the set of all essentially bounded functions, u : [0, T ]→
IRm endowed with the L1 topology .

Then for each T , each u ∈ UT , and each multiindex ι as above, we define inductively
the functions Vι = Vι[u] ∈ C[0, T ] by Vε ≡ 1 and

Vi1,...,ik+1
(t) =

∫ t

0
ui1(τ)Vi2,...,ik+1

(τ)dτ,

where ui(τ) is the i-th coordinate of u(τ) for i = 1, . . . ,m and u0(τ) ≡ 1. It is easy to prove
that each operator

UT → C[0, T ] : u 7→ Vι[u]

is continuous. Further, if c is a convergent series and K,M are as above, then for T <
(Mm+M)−1, the series of functions

Fc[u](t) = F [u](t) =
∑
〈c, ηι〉Vι(t)



is absolutely and uniformly convergent for all t ∈ [0, T ] and all those u ∈ UT such that
sup |ui(t)| ≤ 1 for all i; see [7], chapter III, for details. Thus the operator Fc is also
continuous on the subset of UT satisfying this magnitude constraint.

Furthermore, c is in turn determined by Fc, in the sense that if Fc = Fd for small
enough T then c = d, or equivalently, Fc = 0 implies that c = 0. We have not been able to
find a complete proof of this fact –that generating series are well-defined– in the literature.
However, it can readily be proved by the following argument: if Fc[u] = 0 for a piecewise
constant control u, then the derivatives of Fc[u] with respect to switching times and the
(constant) values of u are all zero. It can be shown that every coefficient of c is one of those
derivatives with some piecewise constant control. Therefore, Fc[u] = 0 for all piecewise
constant controls implies that c = 0.

If T and u are like the above and u is of class Ck−1, then y := F [u] is of class Ck; we
call such a pair (u, y) a Ck i/o pair associated to c. It can also be proved that y is of class
Cω if u is of class Cω.

We shall say that the i/o map Fc satisfies an algebraic i/o equation if there exist an
integer k and a nonzero polynomial E such that for any Ck i/o pair w = (u, F [u]),

E
(
w(t), w′(t), . . . , w(k)(t)

)
= 0 for any t.

The i/o equation is called a recursive equation if it can be written as in (9). where a, b
are polynomials and a 6≡ 0.

In realization theory, observation spaces play an important role. One may define the
observation space in two different ways. The following is the first approach. For a power
series c = 〈c, φ〉+

∑
〈c, ηι〉ηι and monomial α = ηι we define α−1c by

〈α−1c, ηi1 . . . ηil〉 = 〈c, ηj1 . . . ηjkηi1 . . . ηil〉

for any α = ηj1 . . . ηjk .

The observation space F0 is defined to be the space spanned by the Fα−1c’s over IR, i.e.,
F0 = span IR{Fα−1c}α. This space is in fact isomorphic to the space span IR{α−1c}α and the
latter was used earlier in [16] to study realizability by bilinear systems.

The observation algebra A0 is defined to be the IR-algebra generated by F0, and the
observation field Q0 is defined to be the quotient field of A0. (It can be proved that A0

is an integral domain, thus Q0 is well defined.) In fact, A0 is isomorphic to the IR-algebra
generated by all the power series of the form α−1c.

Lemma 4.1 Let c be a convergent power series. Then

(a) Fc is realizable by a singular polynomial system ifQ0 is a finitely generated field extension
of IR.

(b) Fc is realizable by a non-singular polynomial system, (i.e., a singular polynomial system
in which q is identically 1) if A0 is a finitely generated algebra. 2

Now we discuss the second type of observation space. For the i/o map Fc, we define

Gµ0µ1···µk−1 [u](t) :=
dk

dτk
|τ=0+

Fc[(u, t)(ω, τ)](t+ τ).

where ω(τ) = µ0 + µ1τ + · · · + µk−1τ
k−1 and v = (u, t)(ω, τ) is the concatenated control

defined by

v(s) =

{
u(s) for 0 ≤ s ≤ t,
ω(s) for t < s ≤ t+ τ .



For k = 0 we define Gφ = Fc.

The (second type of) observation space F1 is defined as follows:

F1 := span IR{Gµ0µ1···µk−1 : k ≥ 0, µi ∈ IR, }.

The corresponding observation algebra A1 is defined to be the IR-algebra generated by
F1 and the observation field Q1 is the quotient field of A1. Again, Q1 is well defined since
it can be proved that A1 is an integral domain.

Lemma 4.2 Suppose that c is a convergent power series. Then

(a) Fc satisfies an algebraic i/o equation =⇒ Q1 is a finitely generated field extension of IR.

(b) Fc satisfies a recursive i/o equation =⇒ A1 is a finitely generated IR-algebra. 2

Lemma 4.1 shows that F1 is closely related to realizability of the i/o map while lemma
4.2 shows that F2 is closely related to existence of an i/o equation. Thus the relation
between F0 and F1 should give the desired relation between the realizability and the i/o
equations. The following important lemma shows that the two spaces are indeed the same.
This is the main result of [17].

Lemma 4.3 The two observation spaces F0 and F1 are the same. 2

Applying lemma 4.1, lemma 4.2 and lemma 4.3, we obtain the conclusion that the
existence of an i/o equation implies realizability. For the other direction, one can first
prove that for those analytic i/o pairs (u, y) corresponding to q(x(t)) 6≡ 0, there is an i/o
equation E = 0. Now by using the regularity property and continuity, one can prove that
the equation is satisfied by every Ck i/o pair.

Finally, using lemma 4.3 and part (b) in both lemma 4.1 and lemma 4.2, the following
conclusion can also be proved:

Theorem 2 Fc can be realized by a non-singular polynomial system if Fc has a recursive
i/o equation.

Generally, an i/o map Fc may fail to satisfy a recursive equation even if it satisfies an
algebraic i/o equation. By theorem 1, we know that Fc admits a realization by a singular
system Σ. If the initial state x0 in the definition of realization satisfies q(x0) 6= 0, then Σ is
a local analytic realization of Fc. In the general case, we know that there is some Cω input
ω such that for the corresponding trajectory xω, q(xω(t)) 6= 0 for 0 < t < δ for some small
δ. Now we construct a family of generating series in the following way:

cτ =
∑
〈cτ , ηι〉ηι; 〈cτ , ηι〉 = Fηι−1c[ω](τ).

It can be proved that
Fcτ [u](t) = Fc[ω

τu](t+ τ),

where ωτu is the concatenated input whose value is ω(s) for s ∈ [0, τ ] and u(s) for s > τ .
Thus Fcτ is realized by Σ with initial state xω(τ). Therefore, the Lie rank – in the sense of
Fliess, see[7], of cτ is bounded by n – the dimension of the system Σ for τ 6= 0. Note that
cτ is continuous in the sense that 〈cτ , ηι〉 → 〈c, ηι〉 as τ → 0 for any ηι ∈ P ∗. Since the Lie
rank is lower semicontinuous, it follows that it is bounded by n, and hence finite, also at
τ = 0. By the main result in [7], we obtain:

Theorem 3 If Fc satisfies an algebriac i/o equation, then it has a local analytic realization.
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