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Abstract
This paper shows the existence of (nonlinear) smooth

dynamic feedback stabilizers for linear time invariant
systems under input constraints, assuming only that
open-loop asymptotic controllability and detectability
hold.

1 Introduction

The study of actuator saturation in linear control de-
sign has a long history; see for instance [1], in particular
Chapter 12 on dual-mode regulators, and the references
given there. The search for controllers of systems sub-
ject to such saturation can be seen as a problem in non-
linear control, and that is the point of view taken here.
In particular, we look at questions of stabilization, an
area that has witnessed a large amount of activity dur-
ing the last few years (see for instance [6] for a survey
and many bibliographical references). In this paper we
provide a general result on smooth stabilizability under
minimal (and clearly necessary) hypotheses.

The systems that we deal with have the form

ẋ = Ax + B θ(u) (SYS)

where A and B are n × n and n ×m matrices respec-
tively, and θ : IRm → IRm is smooth, bounded, in-
vertible in a neighborhood of the origin, has θ(0) = 0,
and is globally Lipschitz (for instance, the “squashing”
function θ(u) = (σ(u1), . . . , σ(um))′, where σ is a “sig-
moid” such as tanhu). One of our main results is:

Theorem 1 For the system (SYS), the following two
conditions are equivalent:

1. There is a smooth feedback k : IRn → IRm, k(0) =
0, so that zero is a globally asymptotically stable
state for the closed-loop system

ẋ = Ax + B θ(k(x)) . (CL)

2. (SYS) is asymptotically null-controllable.
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By asymptotic null-controllability we mean that ev-
ery state of (SYS) can be driven asymptotically to zero
using a bounded measurable control. This (obviously
necessary) property is equivalent to the two require-
ments:

(i) The pair (A,B) is stabilizable in the ordinary
sense, and

(ii) all eigenvalues of A have nonpositive real part.

The equivalence follows from consideration of the as-
sociated linear system ẋ = Ax + Bu subject to con-
straints on control values; one needs that this system be
asymptotically null-controllable using arbitrarily small
controls. The theory of controllability of linear systems
with bounded controls is well-studied; see for instance
[3], [5], and references there, for the above characteriza-
tion. (Note that there may be nontrivial Jordan blocks
in A corresponding to critical eigenvalues, so the sys-
tem ẋ = Ax may be unstable; this makes the problem
more interesting.) We only look at global problems;
local stabilization can always be achieved by the use of
a linear control law.

The result about stabilization of (SYS) is in turn a
consequence of the following one for linear systems:

Theorem 2 If the pair (A,B) is stabilizable and A has
no eigenvalues with positive real part, then there exists
for each ε > 0 a smooth feedback K : IRn → IRm,
K(0) = 0, such that K is globally Lipschitz, ‖K(x)‖ <
ε for all x, and the closed-loop system

ẋ = Ax + BK(x)

has 0 as a globally asymptotically stable equilibrium.

Now Theorem 1 for (SYS) follows from this by taking
ε small enough so that θ−1 is defined and smooth, and
then using k(x) := θ−1(K(x)).

We also consider dynamic stabilization using output
feedback. Assume that only y = Cx can be used for
the control of (SYS). It is reasonable then to introduce
an observer

ż = (A+ LC)z +Bθ(u)− Ly



where L is picked so that A+LC is a Hurwitz matrix.
Assuming detectability of the original system, this in-
deed provides an exponential observer. To complete
the design, it is natural to feed

u = k(z)

rather than u = k(x). A problem arises, however, due
to the nonlinearity in the control law, and the sepa-
ration proof that works for linear systems fails to ex-
tend to the present situation. The problem turns out
to be closely related to questions of “bounded-input
bounded-output” stability surveyed in [6], and a theo-
rem from [7] is needed to provide the final result:

Theorem 3 Assume that (SYS) is asymptotically
null-controllable and that the pair (A,C) is detectable.
Then there exists a smooth k : IRn → IRm, with
k(0) = 0, and a p × m matrix L, such that the 2n-
dimensional system consisting of

ẋ = Ax + B θ(k(z))
ż = (A+ LC)z + B θ(k(z)) − LCx

has (0, 0) as a globally asymptotically stable equilibrium
point.

For reasons of space, we can only provide a scketch
of the proofs here. A complete version of this paper
can be obtained by electronic mail from either of the
authors.

2 Sketch of proof for state stabi-
lization

The proof of Theorem 2 is outlined next. To begin
with, the asumptions easily imply that one can reduce
the general case to the case when all the eigenvalues of
A are purely imaginary and the pair (A,B) is control-
lable. After this reduction, the next step is to prove
the result for the easy case when there are no ones
in the Jordan form of A. In this case, we can make
a linear change of coordinates and assume that A is
skew-symmetric, and we can take V (x) = ‖x‖2 as a
candidate Lyapunov function. Writing

Bu = u1b1 + . . .+ umbm,

we take a feedback of the form ui = ϕ(〈bi, x〉), where ϕ
is a smooth real-valued function of one variable, such
that |ϕ(s)| < ε for all s, ϕ(0) = 0, 0 < ϕ′(s) for all s,
ϕ is linear for s near 0, and the derivative of ϕ is kept
small enough for the further induction proof. A sim-
ple calculation —using the LaSalle invariance principle
and the controllability of (A,B)— then shows that this

feedback has all the desired properties. This is basically
the saturation control described by [2] and [4].

We now proceed by induction on the dimension of the
state space. For the induction we prove at each step
that there is smooth feedback with the desired proper-
ties which in addition is linear near the origin, and a
corresponding Lyapunov function Ṽ which is quadratic
near the origin. Asssuming the theorem true for a par-
ticular dimension n, we prove it for n+ 1. After some
algebraic manipulations, and assuming that we are not
in the easy case treated earlier, one can reduce the
proof to the case when the state vector x of our sys-
tem can be written as x = (ξ, z), where z is one- or
two-dimensional, and ξ, z obey

ξ̇ = Ãξ + B̃u

ż = Jz +Hξ ,

with (Ã, B̃) controllable. Here J is the zero matrix
in the one-dimensional case, or a two by two skew-
symmetric matrix in the two-dimensional case.

The inductive assumption implies that we can find
a smooth feedback ũ = K̃(ξ) which stabilizes the ξ
system, is linear near the origin, and is bounded by
ε/2, and a corresponding Lyapunov function which is
quadratic near 0. Using the same feedback, we can
consider the submanifold S of x-space consisting of all
the points that are driven to zero. It is easy to see that
S is the graph of a function z = h(ξ). (Precisely, for
any given ξ(0), find the corresponding trajectory ξ(t)
of

ξ̇ = Ãξ + B̃K̃(ξ) ,
and then solve the equation ż = Jz + Hξ backwards
along this trajectory with terminal condition z(+∞) =
0. The resulting value z(0) is h(ξ).) We then seek to
make

V (x) = ‖z − h(ξ)‖2 + Ṽ (ξ)
a Lyapunov function for the new system. For this, we
choose the new feedback K(x) to be of the form

K̃(ξ) + v(x) .

By computing V̇ it is easy to find a formula for a
bounded v that will make V̇ ≤ 0. The most delicate
part of the proof is then to apply the invariance prin-
ciple to prove asymptotic stability. This requires some
lengthy calculations, but the result is indeed true. The
induction is then complete. (In addition, the induc-
tion must insure that the resulting feedback is globally
Lipschitz, but this can also be done.)

3 Sketch of output stabilization
part

We assume observability for this sketch; the detectabil-
ity case can be easily reduced to this after a preliminary



Kalman observability decomposition is done. Let L be
so that A+ LC is a Hurwitz matrix. Consider the dy-
namic feedback equations in the statement of Theorem
3, and use coordinates (x, δ) rather than (x, z), where
δ := z − x. As

δ̇ = (A+ LC)δ

just as in the linear case one has that the error δ(t) =
z(t) − x(t) is exponentialy decreasing, for any initial
conditions x(0), z(0). The equation for x can be written
as

ẋ = Ax + B θ(k(x)) + B {θ(k(x+ δ))− θ(k(x))} ,

that is, in the form

ẋ = Ax + B θ(k(x)) +Bv , (PERT)

as a perturbation of the system (CL), which is globally
asymptotically stable provided that we picked k as a
state stabilizer. The problem is that the perturbation
v may cause instability. This relates to the general
question of bounded-input bounded-output behavior of
nonlinear stable systems.

It follows from the construction, because of local ex-
ponential stability, or from results about cascades of
stable systems, that the origin is locally asymptotically
stable for the composite system in Theorem 3. The
problem is to show global attraction. In general, even
an exponentially decreasing input perturbation may
destabilize a nominally globally asymptotically stable
system. However, in this case, note that θ and k are
globally Lipschitz, so

‖v(t)‖ ≤ c‖δ(t)‖

for all t, where c is some constant that depends only
on θ and k. In particular, if δ ∈ exp(α), the class
of functions satisfying an estimate ‖δ(t)‖ < κe−αt for
some κ (that may depend on δ), the same is true for v.
Thus, we can guarantee that v ∈ exp(α), for any given
α, by an appropriate choice of the observer poles. In
addition, the function

Ax+Bθ(k(x)) +Bv

is globally Lipschitz in x, v. So the following result,
a trivial consequence of Theorem 5.3 in [7], applies to
provide the desired conclusion:

Lemma 3.1 Assume that ẋ = f(x, u) has a globally
Lipschitz right-hand side, and that zero is a globally
asymptotically stable state for ẋ = f(x, 0). Then there
exists some α > 0 such that every solution of ẋ =
f(x, v) converges to zero, for every v ∈ exp(α). 2

Observe that one does not need the stronger hypoth-
esis that ẋ = f(x, 0) is globally exponentially stable,
which can never happen with bounded controls. The
result from [7] holds under just global asymptotic sta-
bility.

4 Comments

We do not know as yet if an arbitrary linear observer
(that is, built from any L so that A+ LC is Hurwitz)
will work in Theorem 3. The proof only shows that this
holds provided that all observer poles have real part less
than a certain margin (which can be estimated from the
construction).

If there are control and observation disturbances,
represented respectively by functions v and w, it is still
true that all solutions of

ẋ = Ax+Bθ(k(z + v)),
ż = (A+ LC)z +Bθ(k(z))− LC(x+ w)

converge to zero, provided that v and w are exponen-
tially decreasing with a fast enough rate. This follows
also from the proof.
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