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Abstract. This paper shows how to extend recent results of Colonius and Kliemann, regarding connections
between chaos and controllability, from continuous to discrete time. The extension is nontrivial because the
results all rely on basic properties of the accessibility Lie algebra which fail to hold in discrete time. Thus, this
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1 Introduction

In a recent paper, Colonius and Kliemann [3] provide
an elegant connection between controlled and classical
(no-input) dynamical systems. Essentially, they first
associate to each finite-dimensional control system Σ
an infinite-dimensional dynamical system Σ∗ whose
state space consists of all states and possible inputs
for Σ, and then they show how to establish a one-
to-one correspondence between “control subsets” of
Σ and “chaotic subsets” of Σ∗. These concepts are
defined more precisely below; the former are basically
sets in which approximate controllability holds, and
the latter are sets in which the dynamics is chaotic in
the sense defined in [4].

The results in [3] are given in continuous-time, and
the purpose of this note is to study their discrete-
time analogues. In principle, the analogy is straight-
forward, and it is obvious how one should generalize
the above correspondence. However, there are diffi-
culties that have to do with controllability proper-
ties of discrete-time systems. A basic property that
holds –under appropriate Lie-algebraic conditions– in
the continuous case is that of (forward) accessibility:
from any given state one can reach in positive time
an open subset, and one can do so with respect to
any fixed open set containing the state in question.
In discrete-time, in contrast, this fails to be true in
general, even under assumptions analogous to those
made in continuous-time. As this basic property un-
derlies most of the results in [3], it would appear at
first sight that one cannot generalize those results un-
less one makes additional and very strong ad-hoc as-
sumptions.

Fortunately, there is a way of applying the recent
theory developed in [5] and [1] in such a manner that
the above analogy can indeed be completed. In [3] a
key fact employed, which follows from the above ac-
cessibility property, is that the interiors of control sets
are exactly (rather than approximately) controllable.
While not true here, we are able to replace his fact
by the weaker property that inside each such set there
exists an open dense subset, which we call its “core,”
in which controllability holds. The existence of such
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a subset is perhaps the most interesting part of our
work, both because in order to establish it one must
use some of the results given in the above cited pa-
pers, and also because it provides new insight into the
structure of nonlinear discrete-time systems. Because
of the need to work with this dense subset and vari-
ous associated technical difficulties, the proofs become
considerably more involved. But otherwise the argu-
ments closely parallel those in [3], and we organized
this note in such a manner that a direct comparison
with that paper should be easy. A counterexample in
the last section illustrates the differences.

It should be noted that our results are given only
for systems that are invertible (each control induces
a diffeomorphism) and analytic. The first restriction
can probably be relaxed considerably, and is due to the
method of proof. The second restriction is however
much deeper, and it is doubtful that similar results
would hold in a more general smooth situation –for
instance, a central fact used is that from a dense set
of points one has accessibility, but this may fail for
smooth but nonanalytic systems, even under further
Lie-algebraic assumptions.

2 Notations

We will consider a discrete-time system Σ as follows:

x(t + 1) = f(x(t), u(t)) (1)

where x(t) ∈ M and u(t) ∈ U for each t = 0, 1, 2, . . ..
We assume that:

(1) M is a Riemannian, paracompact, connected,
and analytic manifold of dimension n.

(2) U ⊆ IRn is a compact, convex set with at least
two points and so that U ⊆ clos int U .

(3) f : M × Ũ −→ M (where Ũ ⊇ U and is open)
is analytic, and denoting by fu : M −→ M the map
f(·, u), this map is a global diffeomorphism of M for
each u ∈ U (i.e., the system Σ is invertible).

(4) The system Σ is controlled-transitive.
We will use f−u to denote the inverse of the map

fu. See [5] for basic background on such discrete-
time systems. The property called here “controlled-
transitivity” is often called simply “transitivity”; we
use a different terminology because of the later use in



this paper of the word transitivity in its dynamical sys-
tems sense. Another name for controlled-transitivity
is “forward-backward accessibility”. It means that
every state can be reached from every other state
by some finite iteration of maps of the type fu or
f−u . The property can be elegantly characterized in
Lie-algebraic terms (see [5]). If the system Σ is not
controlled-transitive, there is a decomposition of M
into a disjoint union of invariant submanifolds, in
such a manner that the system can be restricted to
a controlled-transitive one on each of them. This re-
duces the analysis of general systems to the controlled-
transitive case.

For each x ∈ M , each subset S of M , and each
k ≥ 0, we will use the following notations:

Rk(x) = {y ∈ M | ∃u1, . . . , uk ∈ U such that
fuk◦ . . . ◦fu1(x) = y},

R(x) =
⋃
k≥0 Rk(x), Rk(S) =

⋃
s∈S Rk(s),

R(S) =
⋃
k≥0 Rk(S), R̄(x) = clos R(x),

and R̄(S) = clos R(S).
For any sequence ω = u1, . . . , uk ∈ Uk we also de-

note fkω = fuk◦ . . . ◦fu1 . The following two facts are
easy to establish:

(1) R̄(R̄(S)) = R̄(S) ∀S ⊂M .
(2) R̄(S1 ∪ S2) = R̄(S1) ∪ R̄(S2).
Let Ω = UZZ = {ω : ZZ −→ U}, equipped with

the pointwise convergence topology. Since U is com-
pact, it can be shown that with this topology Ω is a
compact, complete, separable metric space when the
distance between two elements ω, ω′ is given by:

d(ω , ω′) =
∑
k∈ZZ

2−|k| | ω (k)− ω′(k) |.

Depending on the context (control or dynamical sys-
tems, respectively), the letter ω will denote a finite
sequence ω = u1, . . . , uk ∈ U∗ = ∪k≥0U

k or a double
infinite sequence ω ∈ Ω. The meaning will be clear
from the context.

To the system Σ we associate a classical dynamical
system Σ∗ on M ×Ω, where the flow Φ is given by the
following: {φk; k ∈ ZZ}, where φk : M×Ω −→M×Ω,
φk(x, ω) = (fkω(x), σkω), with: (σkω )(i) = ω (i + k)
i.e. σ represents the shift operator, and with:

fkω(x) =

 fuk◦fuk−1◦ . . . ◦fu1(x) if k > 0
x if k = 0
f−uk+1

◦f−uk+2
◦ . . . ◦f−u0

(x) if k < 0

where ui = ω(i). Observe that the notation fkω is
consistent with that used, in the context of control,
when ω is just a finite sequence.

It can be shown that the flow Φ defines a continuous
dynamical system on M × Ω, meaning that φk+s =
φk◦φs for all k, s, and each mapping φk is continuous
on M × Ω.

Observe that y ∈ Rk(x) if and only if ∃ ω ∈ Ω such
that fkω(x) = y.

3 Properties of Control Sets

The next definition is a precise analogue of that in
[3], except that we make the assumption of nonempty

interior.

Definition 3.1 A set D ⊆ M is called a precontrol
set if D ⊆ R̄(x) for all x ∈ D and intD 6= ∅. A
precontrol set which is maximal with respect to set
inclusion is called a control set .

Note that if D is a precontrol set, then in D the system
Σ is “almost” controllable, in the sense that if x, y ∈ D
then from x it is possible to reach any neighbourhood
of y.

Next we state some properties of control sets that
will be useful later. For the proofs of the following
results we refer to [2].

Lemma 3.2 Let D ⊆ M be a control set. Pick any
two elements x̄, ȳ in intD. Then, for each sequence
(u0, . . . , uT ) ∈ UT+1 such that fuT ◦ . . . ◦fu0(x̄) = ȳ we
have that, necessarily, also

fuk◦ . . . ◦fu0(x̄) ∈ intD for k = 0, . . . , T − 1.

Lemma 3.3 Let D ⊆ M be a precontrol set. Then
we have: D ⊆ clos Fk(intD) for all k = 0, 1, 2, . . .
where Fk(intD) =

⋃
l≥k Rl(intD)

Lemma 3.4 Let D ⊆ M be a control set. Then:
clos D = clos intD

Definition 3.5 Let x ∈M and S ⊆M . We say that
x is forward accessible (f.a.) in S (resp. backward
accessible (b.a.) in S ) if int (R(x) ∩ S) 6= ∅ (resp.
int (C(x)∩S) 6= ∅). If we simply say that x is forward
(backward) accessible, we mean forward (backward)
accessible in M .

Lemma 3.6 Let S ⊆M and define:
Sf = { x ∈M | x is forward accessible in S },

then Sf is open.

Lemma 3.7 Let D ⊆M be a precontrol set and pick
any x ∈ D. If x is forward accessible then x is forward
accessible in D.

We conclude the following important property of
precontrol sets.

Theorem 1 Let D ⊆ M be a precontrol set. Then
every point of D is forward accessible in D.

The definition of precontrol set is not reversible in
time, so we cannot conclude backward accessibility
from every point. However, the next result provides
backward accessibility from a dense subset.

Proposition 3.8 Let D ⊆M be a control set. Then
there exists some (necessarily nonempty) open subset
E ⊆ D such that:

(1) closE = clos D,
(2) if y ∈ E then y is backward accessible in D.

Lemma 3.9 Let D ⊆ M be a control set and let E
be any set as in the conclusion of the previous Propo-
sition. Then E ⊆ R(x) for each x ∈ D.



Definition 3.10 For any set S ⊆ M , define:
Core (S) := { x ∈ intS | x is forward and backward
accessible in S }.

Using Lemma 3.6 twice (once for Σ and another time
for the “inverse” system x(t + 1) = f−u (x(t))), we can
conclude the following.

Lemma 3.11 For any subset S ⊆ M , Core (S) is
open.

For a control set D, we proved (see results in Theorem
1 and Proposition 3.8) that Core (D) ⊇ E for some
E ⊆ D such that closE = clos D. Thus we have:

clos Core (D) = clos D for a control set D.

Moreover the result in Lemma 3.9 can be rephrased
as follows.

Proposition 3.12 If D is a control set, and E =
Core (D), then E ⊆ R(x) for all x ∈ D.

If D is a control set, then, by the previous results,
Core (D) is a dense subset of D in which we have
exact controllability. Note that (as it is implicitely
used in [3]) if Σ was a continuous time system then
Core (D) would have been equal to intD. An exam-
ple of a control set D for which Core (D) is strictly
contained in intD will be given later. However the
density property of Core (D) will allow us to derive
analogous results of those in [3].

4 Main Results

Now we associate to each given control set D a subset
D∗ of the dynamical system Σ∗ on the state space
M × Ω. Let D be any control set; we define D∗ as
follows, in exact analogy to [3]:

Definition 4.1 D∗ = clos {(x, ω) ∈M × Ω | fkω(x) ∈
intD for all k ∈ ZZ}

Note that this set is obviously invariant, so Φ can be
restricted to D∗.

Remark 4.2 Note that, under our assumptions, D∗

is certainly non-empty. In fact, choose any x̄, ȳ ∈
Core (D) with x̄ 6= ȳ. By Proposition 3.12 there exist
input sequences ω1, ω2 ∈ Ω and integers k1, k2 (with
ki ≥ 1 for i = 1, 2) such that: fk1

ω1(x̄) = ȳ and fk2
ω2(ȳ) =

x̄. Let:
ω̄ ≡ (. . . ω2(1), . . . , ω2(k2), ω1(1), . . . , ω1(k1), . . .) with
ω̄(0) = ω2(k2).

Then the trajectory starting at x̄ with input se-
quence ω̄ is periodic (in fact fk1+k2

ω̄ (x̄) = x̄), thus
by Lemma 3.2 it lies entirely in intD. So (x̄, ω̄) ∈ D∗.

The next results will extablish a correspondence be-
tween control sets D and their “lifts” D∗. In order to
make this correspondence clear, we first recall some
definitions for dynamical systems; the definition of
chaotic system is from [4].

Definition 4.3 Let (X,Ψ) be a discrete-time dynam-
ical system. (X,Ψ) is called topologically mixing if for
any two open sets V1, V2 of X there exist k1, k2 ∈ ZZ
with k2 > 0 such that, for all l ∈ IN,

ψ−lk2+k1(V1) ∩ V2 6= ∅.

Definition 4.4 A discrete-time dynamical system
(X,Ψ) on a metric space (X, d) is said to have sen-
sitive dependence on initial conditions if there exists
some δ > 0 such that for each x ∈ X and each neigh-
bourhood W of x there are y ∈ W and a positive
integer l such that: d(ψl(x), ψl(y)) ≥ δ.

Definition 4.5 Let (X,Ψ) as before; (X,Ψ) is said to
be chaotic if it is topologically mixing, has sensitive
dependence on initial condition, and has a dense set
of periodic points.

The result in the next Proposition and its proof are a
discrete-time parallel of Proposition 3.5 in [3].

Proposition 4.6 Let D be a control set, and define
D∗ ⊆M × Ω according to Definition 4.1. Then D∗ is
a chaotic set, and D∗ = clos int D∗.

Proof. We will show:
(1) Periodic points are dense in D∗,
(2) Φ|D∗ is topologically mixing,
(3) Φ|D∗ has sensitive dependence on initial condi-

tions,
(4) D∗ = clos int D∗.
(1) It is sufficient to show that each (x̄, ω̄) ∈ D∗

with fkω̄(x̄) ∈ intD for all k ∈ ZZ can be approximated
by periodic points.

Let W = (N×V )∩D∗ be a neighbourhood of (x̄, ω̄).
We may assume that N , V have the following forms:
N = {y ∈M | d1(x̄, y) < ε}, V = {ω ∈ Ω | d2(ω̄, ω) <
ε}; where d1, d2 represent the distances respectively
on M and on Ω. There exists l > 0 such that:

Σk∈ZZ\{−l,...,0,...,l}2−|k| ≤
ε

diamU
(2)

where diam U = sup{|u1 − u2|; u1, u2 ∈ U}. By
assumption on (x̄, ω̄) we know that f lω̄(x̄) and f−lω̄ (x̄)
are in intD. Thus we can find ε̃ (ε̃ ≤ ε), for which the
ε̃-neighbourhoods of x̄, f lω̄(x̄) and f−lω̄ (x̄) are contained
in D. By continuity, there exists some δ so that:

if d1(y, f−lω̄ (x̄)) < δ then, denoting by ω̃ =
σ−(l+1)(ω̄), we have d1(f l+1

ω̃ (y), x̄) < ε̃ and
d1(f2l+1

ω̃ (y), f lω̄(x̄)) < ε̃.

Let E = Core (D). Since closE = clos D, we can
choose a point y−l in E whose distance from f−lω̄ (x̄)
is less than δ. Then, denoting y0 = f l+1

ω̃ (y−l) and
yl = f2l+1

ω̃ (y−l), we know that y0 and yl lie in intD.
So, by Proposition 3.12, there exists k > 0 and v ∈ Ω
such that fkv (yl) = y−l. Define

ωp(i) =
{

ω̄(i) for i ∈ {−l, . . . , 0, . . . , l}
v(i− l) for i ∈ {l + 1, . . . , l + k}

and extend ωp(·) by periodicity. Then (y0, ωp) is a
periodic point of period 2l + 1 + k. Moreover:



(i) d1(y0, x̄) ≤ ε̃, so y0 ∈ N ,
(ii) d2(ωp, ω̄) = Σi∈ZZ2−|i| | ωp(i)− ω(i) | =
= Σi∈ZZ\{−l,...,0,...,l}2−|i| | ωp(i)− ω(i) | ≤
≤ (diamU)Σi∈ZZ\{−l,...,0,...,l}2−|i| ≤ ε, so ωp ∈ V ,
(iii) by Lemma 3.2, since y0 and y−l are in intD,

all the trajectories joining them lie interely in intD,
so fkωp(y

0) ∈ intD for all k ∈ ZZ.
Thus (y0, ωp) ∈W .
(2) We have to show that for every pair W1, W2 of

open sets in D∗ there exists k0 ∈ ZZ and k1 > 0 such
that for all n ∈ IN φ−nk1+k0(W2) ∩W1 6= ∅.

Since, by (1), the periodic points are dense, we may
assume that the sets Wi i = 1, 2, are of the form:
Wi = (Ni×Vi)∩D∗ with Vi = {ω ∈ Ω | d2(ω, ωi) <
ε}, Ni = {y ∈ M | d1(y, xi) < ε}, where (xi, ωi)
i = 1, 2 are periodic points with periods li.

Choose l > 0 as in eqution 2; we may assume that
li > l for i = 1, 2. Using the same argument as when
proving (1), we can find periodic points (yi, vi) ∈ Wi,
i = 1, 2, with periods Li > li > l, such that, if we
denote E = Core (D) ⊆ D, as before, then yi ∈ E and
vi(ki) = ωi(ki) for ki ∈ {−li, . . . , 0, . . . , li}.

Since E ⊆ R(x) for all x ∈ D (Proposition 3.12),
there exist v0 ∈ Ω and L0 ∈ IN such that fL0

v0
(y2) = y1.

For any n ≥ 1 we define ωn(i) as follows:

v1(i) if i ≥ −nL1

v0(i + 1 + nL1 + L0) if −nL1 > i ≥ −nL1 − L0

v2(i + 1 + nL1 + L0) if −nL1 − L0 > i.

Since v1(i) = ω1(i) = ωn(i) for i ∈ {−l, . . . , 0, . . . , l},
we have that ωn ∈ V1 for all n. Futhermore, since
fkωn(y1) = fkv1

(y1) for k ≥ −nL1 and fkωn(y1) =
fk+nL1+L0
v2

(y2) for k < −nL1 − L0, we can conclude
fkωn(y1) ∈ intD for all k ∈ ZZ. Thus (y1, ωn) ∈ W1.
On the other hand:

(i) f
−nL1+(−L0−L2)
ωn (y1) = y2,

(ii) ωn(−nL1 − L0 − L2 + k) = v2(k − L2 + 1) =
v2(k) = ω2(k) for k ∈ {−L2, . . . , 0, . . . , L2} (thus in
particular for k ∈ {−l, . . . , 0, . . . , l}).

So we can conclude φ−nL1−L0−L2(y1, ωn) =
(y2, σ

−nL1−L0−L2(ωn)) ∈W2 since from what we have
observed before, v2(k) = σ−nL1−L0−L2(ωn)(k) for
k ∈ {−l, . . . , 0, . . . , l}, and so their distance is less than
ε. Thus (2) holds with k1 = L1 and k0 = −L0 − L2.

(3) If we consider the dynamical system (Ω, σk) for
k ∈ ZZ it can be shown, in complete analogy to [3],
proposition 2.8, that this system has sensitive depen-
dence on initial conditions. Thus the sensitive depen-
dence on initial conditions of Φ|D∗ is an immediate
consequence of the same property of (Ω, σk), since if
d is any metric on M ×Ω, we have that if d1(ω, v) ≥ δ
then d((x, ω), (y, v)) ≥ δ.

(4) Let (x, ω) ∈ D∗. There exists a sequence
(xn, ωn) → (x, ω) such that fkωn(xn) ∈ intD for all
k. By (1) we know that the periodic points are dense
in D∗. Thus for each n there exists (yn, vn) peri-
odic of period ln with d((xn, ωn), (yn, vn)) < 1/n.
So (yn, vn) → (x, ω). Moreover we can assume that
yn ∈ E, where E = Core (D). From the facts that
(yn, vn) is periodic and E is open, it is not difficult to
prove that (yn, vn) ∈ intD∗.

Thus we have D∗ ⊆ clos int D∗. From this we can
conclude D∗ = clos intD∗, as desired.

Proposition 4.7 Let D∗ ⊆ M × Ω be a chaotic set
for Φ, such that D∗ = clos int D∗. Define:

ΠMD∗ = {x ∈M | ∃ ω ∈ Ω with (x, ω) ∈ D∗}.

Then there exists some precontrol set D ⊆ M such
that D ⊆ ΠMD∗ and closD = ΠMD∗.

Proof. Since the system Σ is analytic and controlled-
transitive we know that there exist two open sets
A1, A2 from which we have backward and forward
accessibility respectively (see [1]).

Let A = A1 ∩ A2, then A is still open and dense.
Let P = {x ∈ ΠMD∗ | ∃ ω ∈ Ω for which (x, ω) is a
periodic point of D∗}.

Since by assumption periodic points are dense in
D∗, P is dense in ΠMD∗.

Now let E = A ∩ P ∩ int ΠMD∗. Then E 6= ∅ since
D∗ = clos int D∗ implies ΠMD∗ = clos int ΠMD∗, so
in particular int ΠMD∗ 6= ∅. Moreover, since A is open
and dense and P is dense in ΠMD∗, we can conclude
that: closE = clos int ΠMD∗ = ΠMD∗.

Claim 1 E ⊆ Core (ΠMD∗).

Pick any e ∈ E; in particular e is forward accessi-
ble. By analyticity we know that, for all k sufficiently
large, closRk(e) = clos intRk(e). Futhermore, e ∈ P ,
thus there exist ω ∈ Ω and l > 0 such that f lω(e) = e.
Since l can be chosen arbitrarily large (in particular
l > k), then e ∈ clos int Rl(e). So from the fact that
e ∈ int ΠMD∗ we have that e is forward accessible in
ΠMD∗. A similar argument shows that e is also back-
ward accessible in ΠMD∗. Thus e ∈ Core (ΠMD∗).

Claim 2 E ⊆ R(x) for all x ∈ E.

Pick x1, x2 ∈ E. By Claim 1, there exist two open
sets W x1

+ , W x2
− contained in ΠMD∗ such that W x1

+ ⊆
R(x1) and W x2

− ⊆ C(x2). Let:

V1 = (W x1
+ × Ω) ∩D∗ V2 = (W x2

− × Ω) ∩D∗

By the mixing property, there exists some L > 0 such
that φ−L(V2) ∩ V1 6= ∅. Thus we can find ω ∈ Ω,
y1 ∈ W x1

+ , and y2 ∈ W x2
− such that fkω(y1) = y2 for

some k ∈ IN; this implies x1 ∈ R(x2), as desired.
By Claim 2, in E we have exact controllability. Next

we extend E to a precontrol set. Define:

D = {x ∈ ΠMD∗ | x is f.a. in ΠMD∗}.

Note that E ⊆ D ⊆ ΠMD∗. In order to prove that D
is a precontrol set we need to show: (i) D ⊆ R̄(x) for
all x ∈ D, and (ii) intD 6= ∅.

To prove (i), pick any x, y ∈ D. Since from x one
can reach an open subset of ΠMD∗ and E is dense in
ΠMD∗, we have that from x one can reach a state e ∈
E. Moreover, using again the density of E, there exists
a sequence of elements en ∈ E so that en → y. By
Claim 2, we know that en ∈ R(e) for all n. Therefore
also en ∈ R(x), which in turn implies y ∈ R̄(x), as
wanted.



We now show (ii). Choose an element e ∈ E. By
Claim 1, there exists an open subset W of ΠMD∗

so that W ⊆ C(e). Since e is forward accessible in
ΠMD∗, any element y ∈ W is forward accessible in
ΠMD∗; thus W ⊆ D, which implies intD 6= ∅.

Definition 4.8 If (X,Ψ) is a dynamical system, we
say that W ⊆ X is a maximal chaotic set if:

1. W is closed and Ψ-invariant.

2. Ψ|W is chaotic.

3. For all W
′ ⊃ W with Ψ|W ′ topologically mixing

we have W
′
= W .

The next theorem will establish a one-to-one corre-
spondence between control sets of the control system
Σ on M and maximal chaotic sets of the dynamical
system Σ∗ on M × Ω.

Theorem 2 Let C be the class of all control sets D ⊆
M , and let C∗ be the class of all maximal chaotic sets
D∗ for Φ such that D∗ = clos int D∗. Define α : C →
C∗ and β : C∗ → C as follows:

α(D) = clos {(x, ω) ∈M ×Ω | fkω(x) ∈ intD ∀k ∈ ZZ}

β(D∗) = {x ∈ ΠMD∗ | x is f. a. in ΠMD∗}.
Then α and β give a one-to-one correspondence be-
tween C and C∗ with α◦β = idC∗ and β◦α = idC.

Furthermore if either D∗ = α(D) or D = β(D∗),
we have:

1. intD ⊆ int ΠMD∗,

2. clos D = ΠMD∗.

Proof. We divide the proof in 3 steps. In part (a) we
prove that α is well defined and satisfies (1) and (2),
in (b) we show the same properties for β, and in (c)
we prove that α and β are inverse maps.

Recall that if (X,Ψ) is a discrete-time dynamical
system, and x ∈ X, the ω-limit set of x is

ω(x) = {y ∈ X | ∃ nk →∞ for which ψnk(x)→ y}.

Moreover, the system (X,Ψ) is called transitive if
there exists some x ∈ X for which ω(x) = X. It is a
consequence of Proposition I.11.4 of [6] that, for the
system Σ∗, topologically mixing implies transitivity.
Since chaotic sets are topologically mixing, we are al-
lowed, in what follows, to use the fact that chaotic
sets are transitive.

(a) In proposition 4.6 we have already proved that
α(D) is a chaotic set such that α(D) = clos intα(D).
Thus in order to see that α is well defined (i.e. α(D) ∈
C∗), we need to establish maximality of α(D).

Suppose that there exists some D′ ⊇ α(D) with D′

topologically mixing. Then since D′ is also transitive
there exists (x, ω) ∈ D′ such that the ω-limit set of
(x, ω) is all of D′. Let E = Core (D) and choose e ∈ E;
then there exists a sequence kn, with kn → ∞, such
that fknω (x)→ e. So, since E is open, for n̄ sufficiently
large fkn̄ω (x) = ẽ ∈ E.

By maximality of D and the fact that fknω (x) be-
longs to intD for infinitely many n ≥ n̄, it follows
that fkω(x) ∈ intD for all k ≥ kn̄. Since ẽ ∈ E, we
can also find ω̃ so that fkω̃(ẽ) ∈ intD for all k ≤ kn̄.
Define:

ω̄(i) =
{

ω̃(i) for i < kn̄
ω(i + kn̄) for i ≥ kn̄.

Then (ẽ, ω̄) ∈ α(D), since fkω̄(ẽ) ∈ intD for all k ∈ ZZ.
Moreover, the ω-limit set of (ẽ, ω̄) is equal to the

ω-limit set of (x, ω), which is D′. Thus, since α(D)
is closed, D′ ⊆ α(D). So D′ = α(D), from which we
have maximality.

Next we prove that (1) and (2) hold for D and α(D).
(1) Suppose that x ∈ intD, and take ε > 0 so that

the open ball Bε centered at x is contained in D. Let
y ∈ Bε ∩ E. Then, as shown in the proof of part (4)
of proposition 4.6, there exists ω ∈ Ω so that (y, ω) ∈
intα(D).

So we have Bε ∩ E ⊆ ΠMα(D). Since ΠMα(D)
is closed and closE = clos D, we have: closBε ⊆
ΠMα(D), which implies x ∈ int ΠMα(D).

(2) Since E ⊆ ΠMα(D), ΠMα(D) is closed, and
clos E = clos D, we have clos D ⊆ ΠMα(D).

Conversely, take x ∈ ΠMα(D). Then there exists
ω such that (x, ω) ∈ ΠMα(D). This in turn implies
that there exists (xn, ωn) → (x, ω) with xn ∈ intD,
by definition of α(D). Thus x ∈ clos D.

(b) By proposition 4.7 we know that β(D∗) is a
precontrol set. So, also in this case, to see that β is
well defined we need to prove maximality of β(D∗).
Suppose that β(D∗) is not maximal, and let: D̃ =
∪λDλ where Dλ is a precontrol set such that Dλ ⊃
β(D∗).

Since intβ(D∗) 6= ∅, it is easy to see that D̃ is a
control set. If we show that D̃ ⊆ ΠMD∗, then we can
conclude that D̃ = β(D∗) since, by Theorem 1, we
know that all x ∈ D̃ must be forward accessible in D̃.
Since D̃ is a control set, we can apply α to D̃.

Let E∗ = {(x, ω) ∈ intD∗ | (x, ω) is a periodic point
and x is forward accessible }; then E∗ is dense in D∗,
since the set of periodic points is dense. Moreover
if (x, ω) ∈ E∗ then x ∈ β(D∗); thus x ∈ D̃ and,
futhermore, (x, ω) ∈ α(D̃).

So E∗ ⊆ α(D̃), since α(D̃) is closed, D∗ = clos E∗ ⊆
α(D̃). By the maximality of D∗, we have D∗ = α(D̃).

By part (a) we know that: D̃ ⊆ ΠMα(D̃) = ΠMD∗.
Thus β(D∗) is maximal, and so it is a control set.

Next we prove (1) and (2) for D∗ and β(D∗). Using
proposition 4.7 we know that closβ(D∗) = ΠMD∗.
Thus (2) holds. To prove (1), it is sufficient to notice
that ΠME∗ ⊆ intβ(D∗), and now, using the same
arguments as in the proof of (1) of part (a), we can
conclude intβ(D∗) ⊆ int ΠMD∗.

(c) Let D be a control set. We need to prove
β(α(D)) = D. By property (1) we know that closD =
ΠM (α(D)) = closβ(α(D)), thus the equality follows
by the maximality of both D and β(α(D)).

Conversely, let D∗ be a maximal chaotic set. Again
choosing E∗ as in part (b), E∗ is a dense subset of D∗

which is contained in α(β(D∗)). Thus, by closeness



and maximality of D∗ and α(β(D∗)), we can conclude
D∗ = α(β(D∗)), as needed.

The result of the previous Theorem is the discrete-
time version of the result given in Theorem 3.9 of [3].
The main difference is that in the continuous time
case the inclusion (1) is always an equality, while in
the discrete time case it can be a proper inclusion, as
it is shown in the example given in the next section.

5 An Example

Here we provide an example of a system for which
intD 6= int ΠM (α(D)), and D is a control set so that
Core (D) 6= int D.

Example 5.1 Consider the function g(x) = sin(πx)
πx .

It is easy to verify that |g′(x)| ≤ 1 for all x ∈ IR.
Moreover, g(x) = 0 if and only if x ∈ ZZ\{0}. Now let
us consider the following discrete-time, analytic sys-
tem: M = IR2, U = [−1, 1]2, and equations

x+ = x + 1 + uy

y+ = y +
v

2
g(x)

where g(x) is the above function.
This system is invertible. In fact the determinant of

the Jacobian matrix of the map fu,v(x, y) is given by:
1 − uv

2 g′(x), which is never zero since u, v ∈ [−1, 1],
and |g′(x)| ≤ 1. Moreover it is easy to verify that for
each (u, v) ∈ U , the map fu,v(·, ·) is bijective. It is
also easy to prove that this system is transitive.

For this system we can see that for all k ∈ IN with
k ≥ 1 the following hold:

1. the points of the type (−k, 0) are not backward
accessible,

2. the points of the type (k, 0) are not forward ac-
cessible.

Letting B = {(k, 0) | k ∈ IN, k ≥ 1}, we want to show
that D = IR2 \B is a control set.

Notice that D is certainly maximal; in fact, no
points in B could belong to a control set, since they
are not forward accessible. To prove that D satisfies:

D ⊆ R̄(ξ) for all ξ ∈ D (3)

we will prove the following:

IR2 \ { (k, y) | k ∈ ZZ, y ∈ IR } ⊆ R(ξ) (4)

which, by taking the closure in both sides, implies 3.
Let F = { (k, y) | k ∈ ZZ, y ∈ IR }.

First we notice that, since | sin(π(x + 1))| =
| sin(πx)|, if we apply to any (x, y) a control sequence
of the form:

ul = 0, vl = sign (g(x + l − 1)), (5)

then, after k steps, we will reach the point:

xk = x + k

yk = y +
| sin(πx)|

2π

k−1∑
l=0

1
|x + l| .

Using this fact and the divergence of the series
∑
n 1/n

we will prove 4.
Fix (x̄, ȳ) ∈ D and (x̃, ỹ) ∈ IR2 \ F . Notice that,

since (x̄, ȳ) 6∈ B, it is not restrictive to assume:

g(x̄) 6= 0 and ȳ 6= 0.

First we choose ul, vl as in 5. Since g(x̄) 6= 0 there
exists k such that yk > 1. Next we apply a control
sequence with all vl = 0 so as to reach a state (x′, y′)
of the type:

x′ = x̃− n and y′ = yk

where n is a positive integer that will be chosen later.
Notice that we can assume ỹ < y′.

Now we want to find a sequence of controls (0, vl)
such that we get the state (x̃, ỹ) in exactly n steps. It
is clear that this is possible if and only if:

y′ − | sin(πx̃)|
2π

n−1∑
l=0

1
|x̃− n + l| ≤ ỹ (6)

So we just have to choose n large enough such that 6
is satisfied. This is possible since sin(πx̃) 6= 0 and:

n−1∑
l=0

1
|x̃− n + l| =

n∑
m=1

1
|x̃−m|

is divergent. Thus D is a control set.
Notice that, for this control set D, Core (D) is

strictly contained in D = intD. In fact, none of the
points of the type (−k, 0) with k a strictly positive
integer, belongs to Core (D).

Now if we consider the corresponding maximal
chaotic set α(D), it is clear that α(D) = M×Ω. Thus,
in this case, the inclusion (1) in Theorem 2 is proper
(i.e. intD 6= int ΠMα(D)).
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